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Preface

Remote Sensing is collecting and interpreting information on targets without being in physi-
cal contact with the objects. Aircraft, satellites... etc are the major platforms for remote sens-
ing observations. Unlike electrical, magnetic and gravity surveys that measure force fields, 
remote sensing technology is commonly referred to methods that employ electromagnetic 
energy as radio waves, light and heat as the means of detecting and measuring target char-
acteristics. 

Geoscience is a study of nature world from the core of the earth, to the depths of oceans and to 
the outer space. This branch of study can help mitigate volcanic eruptions, floods, landslides... 
etc terrible human life disaster and help develop ground water, mineral ores, fossil fuels and 
construction materials. Also, it studies physical, chemical reactions to understand the dis-
tribution of the nature resources. Therefore, the geoscience encompass earth, atmospheric, 
oceanography, pedology, petrology, mineralogy, hydrology and geology. 

Normally speaking, remote sensing is a technology that applied on earth as in-
verse problem. The object around earth may not be directly measured, by using data 
derived computer model from the equipments on aircraft or satellites, some oth-
er information may well be detected and observed. Take one simple example for  
remote sensing, while it is impossible to directly measure temperatures in the upper atmo-
sphere, it might very well be possible to measure the spectral emissions from carbon dioxide 
in that region. Through thermodynamics principle, the frequency of the emission can be re-
lated to the temperature in that area. 

The remote sensing field has experienced rapid growth in recent the years. The advent of 
satellites has provided the opportunity to acquire global and synoptic information about the 
environment and its associated phenomena. The wide coverage capability allows for monitor-
ing the rapid changed phenomena on a large scale. The repetitive capability allows the obser-
vation of seasonal, annual and long term changes. The global capability allows the viewing of 
regional and large-scale structures. In addition, remote sensing also allows measurement of 
hurricanes, bottom of ocean, volcano and mountainous terrain... etc hazardous regions that 
might not be easily accessible. 



VI

This book covers latest and futuristic developments in remote sensing novel theory and appli-
cations by numerous scholars, researchers and experts. It is organized into 26 excellent chap-
ters which include optical and infrared modeling, microwave scattering propagation, forests 
and vegetation, soils, ocean temperature, geographic information , object classification, data 
mining, image processing, passive optical sensor, multispectral and hyperspectral sensing, 
lidar, radiometer instruments, calibration, active microwave and SAR processing. With rapid 
technological advances in both sensors and computing, signal processing and image process-
ing are playing increasingly important roles in remote sensing. In chapter 15, 16 and 21, the 
state of the art Kernel Learning Machine method, Support Vector Machine and Maximum A 
Posteriori statistical classification schemes are presented. The use of electromagnetic waves 
for remote sensing can be separated into active and passive remote sensing. Active remote 
sensing utilizes an external source to irradiate the object or phenomena. The interaction of the 
object and radiation is used to extract information about the object. Most active remote sen-
sors such as radars operate at the microwave and millimeter wave frequencies. On the other 
hand, the optical systems such as lidars are getting more commonly use. In passive remote 
sensing, the natural radiation properties of the object are utilized to extract information. Sen-
sors that handle illumination from sunlight are generally categorized as passive sensors. They 
cover the entire electromagnetic spectrum from microwave frequencies to the visible region 
and beyond. Due to the fact that the strength of natural sources is weak, passive sensors re-
quire very sensitive detectors as compared with active sensors. Chapter 4, 12, 13, 18, 20, 25 
and 26 contain detailed contents of these particular active/passive sensors’ new technologies. 
In chapter 14, the important and newer remote sensing techniques for land cover change 
detection are introduced. Nevertheless, in chapter 3, the development of the high resolution 
wireless sensor network for monitoring volcanic activity is very well introduced. 

A picture worth thousand words. In this book, many pictures and graphs has been included in 
each chapter concisely to convey information about positions, sizes and correlations between 
objects in the remote sensing. They portray information on things that can be recognized 
as objects. These objects in turn can deliver deep levels of meaning. We think that humans 
normally possess a high level of proficiency in deriving information from such images that 
we might experience less difficult in interpreting even those scenes that are visually complex. 

Last but not the least, this book presented chapters that highlight frontier works in remote 
sensing information processing. I am very pleased to have leaders in the field to prepare 
and contribute their most current research and development work. Although no attempt is 
made to cover every topic in remote sensing and geoscience, these entire 26 remote sensing 
technology chapters shall give readers a good insight. All topics listed are equal important 
and significant. 

Pei-Gee Peter Ho 
DSP Algorithm and Software Design Group,

 Naval Undersea Warfare Center 
Newport, Rhode Island, USA 
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1. Introduction      
 

The management of large transnational river basins is subject to a range of challenges 
stemming from differing national priorities, governance of land use activities and resource 
use, and differences in institutional capacity, data gathering and data sharing. Over vast, 
often inaccessible areas, remote sensing allows for rapid assessment of ecological resources 
and hydrological processes. This includes quantification of the extent and ecological 
functioning of vegetation communities, defining the distribution, duration and timing of 
flooding, measurement of water quality parameters, groundwater assessment, habitat 
assessment, and predictive modelling of the ecological impacts of landuse activities and 
changes to hydrological cycles. Remote Sensing technologies currently allow unparalleled 
capability for environmental monitoring and management. Data recording and delivery 
systems, sensor platforms, and sensor technology are constantly improving and each year 
deliver better remote sensing products for a wide array of applications. Largely independent 
of geopolitical constraints and boundaries, remote sensing systems allow investigation and 
analysis of water resources and ecosystem functioning and processes at a range of scales. 
Large transnational river basins such as the Mekong River basin, can be studied in their 
entirety or in part. 
 
This chapter examines the use of remote sensing techniques in various investigations in the 
Mekong River Basin, with particular reference to work on the Tonle Sap (Great Lake) of 
Cambodia. 

 
1.1 The Mekong River basin 
The Mekong is the 10th largest river basin in the world in terms of mean annual outflow, 
with an annual discharge of 475 billion m3 (Daming, 1997). From its source on the Tibetan 
Plateau, it flows some 4,800 km south to the Mekong Delta in Vietnam, draining a total 
catchment area of 795,000 km2 (MRC, 2005). The Mekong River Basin spans the six countries 
of China, Myanmar, Lao PDR, Thailand, Cambodia and Vietnam and forms the major 
hydrological resource for Southeast Asian. The basin has always faced the challenges of 
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area of savannah swamp forest and inundated forest in Asia, it contains important Ramsar-
listed wetlands, and supports extensive fisheries and agriculture of critical importance to the 
Cambodian economy. Some 2.9 million people live in the five provinces surrounding the lake 
(ADB, 2002). With economic and political stability returning to the region in the past decade, 
the population around the margins of the lake is expanding rapidly, along with agricultural 
activity. Floodplain hydrology and wetland, flooded forest and riparian communities are 
being modified at a rapid rate and with major ecological impacts.  
 

 
Fig. 1. The Tonle Sap Floodplain Study Area 
 
Several ancient Ankorean capitals flourished on the northern margins of the Tonle Sap 
floodplain between A.D. 802 and 1431 (Chandler, 1996) and the floodplain has been modified 
in the past. Structures were built to control the movement of water across the floodplain and 
harvest it for agricultural purposes or to provide sites for aquaculture activities. This resulted 
in an extensive hydraulic network estimated to cover more than 1000 km2 (Evans et al. 2007). 
Centralised control under the Ankorean court and highly organised agricultural production 
across the lowlands around Angkor produced economic surpluses for the state. Construction 
of reservoirs and channels occurred on a large scale through controlled use of labour, 
including slaves (Higham 2001). Although much of this original irrigation and agricultural 

widespread poverty, increasing demands on water and environmental resources, and 
conflict throughout the region (Jacobs, 2002). There is lack of coordinated management of 
the basin, although the Mekong River Commission (MRC), and its predecessors the Mekong 
Committee and the Mekong Interim Committee have sought to foster dialogue between the 
member countries since the late 1950s. The main achievement of the MRC, however, has 
been the development in recent decades of an extensive data gathering and dissemination 
system, flood forecasting and warning systems, and advancing the understanding of the 
ecological and physical attributes of the basin (Jacobs, 2002). 
 
Flow and runoff in the Mekong is strongly seasonal, reflecting the influence of the annual 
monsoon in the lower reaches of the basin. The wet season peaks in September-October with 
flows in the lower basin of 20,000-30,000 m3s-1, compared to dry season flows of 
approximately 2,000 m3s-1, which are derived mainly from snow melt in the upper basin 
(Mekong Secretariat, 1989). The Mekong is subject to natural annual variability which affects 
the size of the flood peak in any given year and is driven primarily by El Nino Southern 
Oscillation (ENSO) events (Kiem et al. 2004). Future flood pulse activity may be threatened, 
however, with significant water resources development occurring throughout the Mekong 
basin, along with the uncertain effects of climate change on precipitation and river flows. 
Development and water impoundment and extraction upstream on the Mekong, 
particularly in southern China but also in Laos, Thailand and Vietnam, is thought to be 
affecting the size, timing and intensity of the monsoonal flood pulse (Blake, 2001; Osbourne, 
2006). Although catchments in China account for approximately one fifth of the flows in the 
Mekong overall, they can contribute 70-80% of flows during the dry season (MRC, 2005). 
The two main dams built by China on the upper reaches of the Mekong are the Manwan 
dam, which was completed in 1993, and the larger Dachaosan dam, which was completed in 
2003. Campbell et al. (2006) show a reduction in average flood height and flooded area over 
the past decade. One of the most significant hydrological features of the lower reaches of the 
Mekong basin is the Tonle Sap lake in Cambodia, which fills annually and plays an 
important role in flood attenuation and sediment and nutrient exchange from the Mekong 
(MRC, 2005). Events occurring in the upper reaches of the Mekong that systematically alter 
the flood hydrograph or change its timing are likely to have significant effects on the 
sustainability of the Tonle Sap (Kummu et al. 2004). 
 
1.2 The Tonle Sap  
The Tonle Sap or Great Lake of Cambodia (Figure 1) forms part of a unique and ecologically 
significant sub-system within the Mekong basin. It is the largest freshwater lake in Southeast 
Asia, covering an area of 250,000-300,000 Ha during the dry season and up to 1.6 million Ha 
during the wet season (ADB, 2002). Expansion of the lake during the wet season is due 
primarily to the annual monsoonal flood pulse moving down the Mekong and entering the 
lake through the Tonle Sap River, which reverses its course as the water level in the Mekong 
rises above that of the lake. Besides drainage from the Mekong during the monsoonal flood, 
13 other catchments drain into the lake. The lake plays an important role in flood peak 
attenuation and flow control to the Mekong Delta, storing up to 40 km3 of Mekong 
floodwater each year and releasing it slowly back into the system (MRC, 2005). It was listed 
as a UNESCO Biosphere reserve in 1997, and is designated as a Protected Area under 
Cambodian Royal decree and through numerous international agreements. By far the largest 
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system, flood forecasting and warning systems, and advancing the understanding of the 
ecological and physical attributes of the basin (Jacobs, 2002). 
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monsoon in the lower reaches of the basin. The wet season peaks in September-October with 
flows in the lower basin of 20,000-30,000 m3s-1, compared to dry season flows of 
approximately 2,000 m3s-1, which are derived mainly from snow melt in the upper basin 
(Mekong Secretariat, 1989). The Mekong is subject to natural annual variability which affects 
the size of the flood peak in any given year and is driven primarily by El Nino Southern 
Oscillation (ENSO) events (Kiem et al. 2004). Future flood pulse activity may be threatened, 
however, with significant water resources development occurring throughout the Mekong 
basin, along with the uncertain effects of climate change on precipitation and river flows. 
Development and water impoundment and extraction upstream on the Mekong, 
particularly in southern China but also in Laos, Thailand and Vietnam, is thought to be 
affecting the size, timing and intensity of the monsoonal flood pulse (Blake, 2001; Osbourne, 
2006). Although catchments in China account for approximately one fifth of the flows in the 
Mekong overall, they can contribute 70-80% of flows during the dry season (MRC, 2005). 
The two main dams built by China on the upper reaches of the Mekong are the Manwan 
dam, which was completed in 1993, and the larger Dachaosan dam, which was completed in 
2003. Campbell et al. (2006) show a reduction in average flood height and flooded area over 
the past decade. One of the most significant hydrological features of the lower reaches of the 
Mekong basin is the Tonle Sap lake in Cambodia, which fills annually and plays an 
important role in flood attenuation and sediment and nutrient exchange from the Mekong 
(MRC, 2005). Events occurring in the upper reaches of the Mekong that systematically alter 
the flood hydrograph or change its timing are likely to have significant effects on the 
sustainability of the Tonle Sap (Kummu et al. 2004). 
 
1.2 The Tonle Sap  
The Tonle Sap or Great Lake of Cambodia (Figure 1) forms part of a unique and ecologically 
significant sub-system within the Mekong basin. It is the largest freshwater lake in Southeast 
Asia, covering an area of 250,000-300,000 Ha during the dry season and up to 1.6 million Ha 
during the wet season (ADB, 2002). Expansion of the lake during the wet season is due 
primarily to the annual monsoonal flood pulse moving down the Mekong and entering the 
lake through the Tonle Sap River, which reverses its course as the water level in the Mekong 
rises above that of the lake. Besides drainage from the Mekong during the monsoonal flood, 
13 other catchments drain into the lake. The lake plays an important role in flood peak 
attenuation and flow control to the Mekong Delta, storing up to 40 km3 of Mekong 
floodwater each year and releasing it slowly back into the system (MRC, 2005). It was listed 
as a UNESCO Biosphere reserve in 1997, and is designated as a Protected Area under 
Cambodian Royal decree and through numerous international agreements. By far the largest 
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including many economically important fish species. In addition, retention and restriction of 
floodwater movement inhibits nutrient exchange between the floodplain and the lake, and 
movement of juvenile fish into the lake and the Mekong. The impoundments disrupt the 
moving littoral of the lake’s flood pulse (Junk et al. 1989) where high turnover rates of organic 
matter and nutrients occur. The gradient of plant species adapted to seasonal degrees of 
inundation, nutrients and light no longer experiences the conditions under which it evolved.  
 
An aim of the current study was to use remote sensing to determine the extent of floodplain 
structures around the Tonle Sap and where they lay in relation to flooding extent and duration. 
Major structures associated with irrigation schemes located within the annually flooded zone 
of the floodplain were mapped using WAAS corrected GPS to an accuracy of 2-3 m during 
fieldwork in 2006. High resolution Japanese/NASA ASTER (Advanced Spaceborne Thermal 
Emission and Reflection Radiometer) imagery was obtained over the floodplain for a range of 
wet and dry-season dates. ASTER senses in 14 spectral bands in the visible, shortwave and 
thermal infrared, at 15 m, 30 m and 90 m resolutions respectively (Lillesand et al. 2008). From 
the 37 ASTER multi-spectral surface reflectance product images obtained for the study, a 
mosaic of 11 dry-season images covering the Tonle Sap floodplain was constructed with 
rectification carried out using GCPs (Ground Control Points) collected during fieldwork. The 
available ASTER coverage over the Tonle Sap is fragmented, both spatially and temporally, 
due to almost perpetual high levels of cloud cover, but it was possible to generate a near-
complete mosaic (Figure 2). As most of the structures occurred on the northern shore of the 
lake, generally they tended to have an east-west orientation. Horizontal spatial filtering was 
carried out on the imagery to identify and map the extent of major structures. Spatial filters 
operate on an image to emphasise or deemphasize image data of varying spatial frequencies. 
Directional first differencing is a simple directional image enhancement technique which 
improves the delineation of linear features (Lillesand et al. 2008). 
 

 
Fig. 2. ASTER Dry Season Image Mosaic of the Tonle Sap Floodplain 

infrastructure has probably been subsumed into more recent schemes, or obliterated by the 
flooding cycles of the lake, several examples of the largest ancient structures remain. These 
include the Domdek channel: a 200m wide channel extending approximately 80km through 
the floodplain with 10-15 m high walls; and the Western Baray at Angkor; a water storage 
covering 17.5 km2. 
 
The inflow from the Mekong accounts for approximately 70 % of flow into the Tonle Sap 
lake (Penny, 2006), with the remainder coming from local catchments. Some 80 % of the 
sediments and nutrients entering the lake from the Mekong are retained (MRC, 2005) and 
this annual process supports floodplain and fisheries productivity. The Tonle Sap lake is 
therefore highly susceptible to changes in the size, timing and duration of the annual 
monsoonal flood pulse, whether that occurs as a result of climate change or upstream water 
resources development. The past decade has seen reductions in flood height and flooded 
area of the lake (Campbell et al. 2006), although 2008 saw larger than normal floods 
throughout the Mekong. Kiem et al. (2008) in their latest modelling, suggest that 
precipitation will increase by 4.2% on average throughout the Mekong basin, concentrated 
in the upper sections of the basin in China. Chinvanno (2003) suggests that while there will 
be some shift in the timing of the flood peak, flooding durations will still be adequate for the 
survival of significant wetland areas on the Tonle Sap. 
 
Most management efforts on the Tonle Sap to date have focussed on maintaining the lake’s 
fisheries, which provide up to 70% of the protein intake for the entire Cambodian 
population (van Zalinge et al. 2000), and protection of the Ramsar wetlands as bird nesting 
sites. Natural resource management is severely under-resourced and occurs in a piecemeal 
manner (Bonhuer and Lane, 2002) in the face of poorly delineated jurisdictions and 
conflicting economic interests. Despite the importance of the Tonle Sap lake to the 
Cambodian economy, only in recent years have authorities and research agencies begun to 
characterise the flooding cycles of the lake or map floodplain vegetation distributions. Some 
modelling of lake hydrology was completed in 2003 (Koponen et al. 2003) and an Asian 
Development Bank project is currently underway to produce GIS datasets of lake resources 
(ABD, 2002). The Cambodian Mekong National River Commission (MNRC) in association 
with the multi-country Mekong River Commission (MRC) now monitor flood conditions in 
the Mekong and the Tonle Sap, but data is restricted to a limited number of gauging stations 
and is often not reliable. For example, the nearest MRC gauging station is located at 
Kampong Chhnang, on the Tonle Sap tributary (Figure 1). 

 
2. Remote Sensing of Floodplain Structures  
 

Many extensive water impoundment structures as part of irrigation schemes have been built 
throughout the Tonle Sap floodplain to retain flood waters and support dry season rice 
cropping. Such anthropogenic modification of the floodplain occurs primarily on the 
northern margins of the lake in closer proximity to larger settlements. It is likely that these 
structures have a significant impact on floodwater distribution and movement and will 
simply serve as flood barriers if peak lake levels are diminished. Floodplain structures result 
in permanent inundation of large areas that were previously subject to a wetting and drying 
cycle; essential for the maintenance and survival of many plant and animal species, 
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including many economically important fish species. In addition, retention and restriction of 
floodwater movement inhibits nutrient exchange between the floodplain and the lake, and 
movement of juvenile fish into the lake and the Mekong. The impoundments disrupt the 
moving littoral of the lake’s flood pulse (Junk et al. 1989) where high turnover rates of organic 
matter and nutrients occur. The gradient of plant species adapted to seasonal degrees of 
inundation, nutrients and light no longer experiences the conditions under which it evolved.  
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Major structures associated with irrigation schemes located within the annually flooded zone 
of the floodplain were mapped using WAAS corrected GPS to an accuracy of 2-3 m during 
fieldwork in 2006. High resolution Japanese/NASA ASTER (Advanced Spaceborne Thermal 
Emission and Reflection Radiometer) imagery was obtained over the floodplain for a range of 
wet and dry-season dates. ASTER senses in 14 spectral bands in the visible, shortwave and 
thermal infrared, at 15 m, 30 m and 90 m resolutions respectively (Lillesand et al. 2008). From 
the 37 ASTER multi-spectral surface reflectance product images obtained for the study, a 
mosaic of 11 dry-season images covering the Tonle Sap floodplain was constructed with 
rectification carried out using GCPs (Ground Control Points) collected during fieldwork. The 
available ASTER coverage over the Tonle Sap is fragmented, both spatially and temporally, 
due to almost perpetual high levels of cloud cover, but it was possible to generate a near-
complete mosaic (Figure 2). As most of the structures occurred on the northern shore of the 
lake, generally they tended to have an east-west orientation. Horizontal spatial filtering was 
carried out on the imagery to identify and map the extent of major structures. Spatial filters 
operate on an image to emphasise or deemphasize image data of varying spatial frequencies. 
Directional first differencing is a simple directional image enhancement technique which 
improves the delineation of linear features (Lillesand et al. 2008). 
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fisheries, which provide up to 70% of the protein intake for the entire Cambodian 
population (van Zalinge et al. 2000), and protection of the Ramsar wetlands as bird nesting 
sites. Natural resource management is severely under-resourced and occurs in a piecemeal 
manner (Bonhuer and Lane, 2002) in the face of poorly delineated jurisdictions and 
conflicting economic interests. Despite the importance of the Tonle Sap lake to the 
Cambodian economy, only in recent years have authorities and research agencies begun to 
characterise the flooding cycles of the lake or map floodplain vegetation distributions. Some 
modelling of lake hydrology was completed in 2003 (Koponen et al. 2003) and an Asian 
Development Bank project is currently underway to produce GIS datasets of lake resources 
(ABD, 2002). The Cambodian Mekong National River Commission (MNRC) in association 
with the multi-country Mekong River Commission (MRC) now monitor flood conditions in 
the Mekong and the Tonle Sap, but data is restricted to a limited number of gauging stations 
and is often not reliable. For example, the nearest MRC gauging station is located at 
Kampong Chhnang, on the Tonle Sap tributary (Figure 1). 

 
2. Remote Sensing of Floodplain Structures  
 

Many extensive water impoundment structures as part of irrigation schemes have been built 
throughout the Tonle Sap floodplain to retain flood waters and support dry season rice 
cropping. Such anthropogenic modification of the floodplain occurs primarily on the 
northern margins of the lake in closer proximity to larger settlements. It is likely that these 
structures have a significant impact on floodwater distribution and movement and will 
simply serve as flood barriers if peak lake levels are diminished. Floodplain structures result 
in permanent inundation of large areas that were previously subject to a wetting and drying 
cycle; essential for the maintenance and survival of many plant and animal species, 
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Fig. 3. Major Water Impoundment and Barrier Structures on the Tonle Sap Floodplain 
 
The Khmer Rouge under Pol Pot sought to dramatically increase the areas of land under 
cultivation on the floodplain, and emptied the cities to provide forced labour for the 
extensive irrigation schemes that were established (Kiernan, 1996). These structures form by 
far the largest spatial extent of modifications to the present day floodplain, although many 
have now been abandoned or are in partial use. Of those surveyed during fieldwork, 
approximately 40% are now in disuse and others partially used on a seasonally varying 
basis depending on flooding extent, land availability and population pressures (Bonheur & 
Lane, 2002). Many of the areas originally modified for rice cultivation have failed to be 
maintained by the present population because of their inaccessible locations within the 
floodplain, poor siting, lack of centralised management and maintenance of the schemes, 
and destruction of infrastructure by flooding. Many of these areas have now reverted to 
permanent wetlands in areas that would previously have dried out when the floodwaters 
receded each year. Wright et al. (2004) report on some 570 irrigation schemes existing within 
the Tonle Sap basin, with only 195 being fully operational today. It is not know how many 
of these schemes fall within the area of the floodplain, although it is likely that a proportion 
are located in non-flooded areas. A recent phenomenon on the floodplain is the 
development of large scale privately owned irrigation schemes which seek to harvest 
floodwaters for rice production. Substantial areas of floodplain previously utilised by 

Using the filtered images it was possible to identify and map approximately 321 km of 
major impoundment structures which directly affect water movement across the floodplain 
(Figure 2). These were generally constructed parallel to the lake shoreline and serve to retain 
large volumes of water behind them as the lake waters recede after October in any given 
year. Major structures are defined as being greater than approximately 2m in height, 
although there are large networks of smaller formal and informal dykes, weirs and 
regulators which are also used or have been used to modify water movement. Most were 
built by hand during the Khmer Rouge years using forced labour, and in the absence of any 
hydrological or engineering knowledge (Kiernan, 1996). Extensive colonisation of these 
structures with floodplain vegetation has meant that they now form permanent features on 
the floodplain. According to the flood cycle patterns revealed by the time series analysis 
described later in this chapter, most of the impoundment structures are built within the zone 
that would normally be inundated around the end of August in any given year, drying out 
by mid-December, giving a flood residence time of around 3-4 months (Figure 3). There is 
also an obvious interaction with floodplain soils. Significant waterlogging occurs around 
these structures for much of the year, which is a commonly observed phenomenon 
associated with water storages (Ramireddygari et al. 2000). This is causing a number of 
changes to wetlands in these areas. Euphorbiaceae, Fabaceae, and Combretaceae species, 
which once colonised the mosaic of flooded savannah forest are being replaced by those 
which can tolerate saturated soils. In the areas behind the dyke walls, which now form 
permanent water storages, natural wetland species have disappeared completely, due either 
to blanket infestations of water hyacinth and fringing introduced scrub species. 
 
A secondary impact can also be observed. Irrigated rice fields are present on the lake shore 
side of most water impoundment structures. Increased nutrient levels associated with the 
application of fertilisers to the rice fields are likely to be affecting the surrounding wetlands 
through mobilisation during flooding in the wet season and affecting groundwater quality. 
Leaching of nutrients into the groundwater from these areas, along with increased 
utilisation of the groundwater by wetland plants due to higher groundwater levels has 
created succession towards more nutrient tolerant weeds such as Mimosa pigra (Campbell et 
al. 2006). Similarly, pesticides leaching into groundwater which lies close to the surface are 
affecting the wetland soils which contain the eggs of hundreds of fish species deposited 
when the lake is in flood. Changes in predator prey relationships that are important for the 
ecology of the lake (Scheffer, 1998) and its fisheries are likely to be occurring due to 
floodwater containment. The impoundments would restrict movement of larger fish into 
shallow areas of lake for predation during flooding and also form barriers to movement of 
juveniles out from hatchery zones to the lake and the Mekong system. This undoubtedly 
contributes to the well-documented reduction in the number of fish species and changes in 
size of individuals (Puy et al. 1999; Bonheur & Lane, 2002). However, the impoundments are 
also an important source of protein for the occupants of the floodplain, as they effectively 
operate as large unmanaged aquaculture sites for much of the year, possibly reducing 
pressure on lake fish stocks.  
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that would normally be inundated around the end of August in any given year, drying out 
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these structures for much of the year, which is a commonly observed phenomenon 
associated with water storages (Ramireddygari et al. 2000). This is causing a number of 
changes to wetlands in these areas. Euphorbiaceae, Fabaceae, and Combretaceae species, 
which once colonised the mosaic of flooded savannah forest are being replaced by those 
which can tolerate saturated soils. In the areas behind the dyke walls, which now form 
permanent water storages, natural wetland species have disappeared completely, due either 
to blanket infestations of water hyacinth and fringing introduced scrub species. 
 
A secondary impact can also be observed. Irrigated rice fields are present on the lake shore 
side of most water impoundment structures. Increased nutrient levels associated with the 
application of fertilisers to the rice fields are likely to be affecting the surrounding wetlands 
through mobilisation during flooding in the wet season and affecting groundwater quality. 
Leaching of nutrients into the groundwater from these areas, along with increased 
utilisation of the groundwater by wetland plants due to higher groundwater levels has 
created succession towards more nutrient tolerant weeds such as Mimosa pigra (Campbell et 
al. 2006). Similarly, pesticides leaching into groundwater which lies close to the surface are 
affecting the wetland soils which contain the eggs of hundreds of fish species deposited 
when the lake is in flood. Changes in predator prey relationships that are important for the 
ecology of the lake (Scheffer, 1998) and its fisheries are likely to be occurring due to 
floodwater containment. The impoundments would restrict movement of larger fish into 
shallow areas of lake for predation during flooding and also form barriers to movement of 
juveniles out from hatchery zones to the lake and the Mekong system. This undoubtedly 
contributes to the well-documented reduction in the number of fish species and changes in 
size of individuals (Puy et al. 1999; Bonheur & Lane, 2002). However, the impoundments are 
also an important source of protein for the occupants of the floodplain, as they effectively 
operate as large unmanaged aquaculture sites for much of the year, possibly reducing 
pressure on lake fish stocks.  
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areas. As well as the loss of deep rooted tree species, groundwater levels are also likely to be 
affected by the permanent and semi-permanent water impoundments, which would have a 
subsurface connection to the local water table (Ramireddygari et al. 2000). An aim of the 
current study was to investigate whether these effects existed and were detectable using 
available optical remotely sensed imagery. Soil moisture absorbs incident radiant energy in 
the 1.4, 1.9 and 2.7 µm regions, although the spectral response can be complex depending on 
soil type and soil characteristics (Jensen, 2007). 
 
In three fieldsite locations on the Tonle sap floodplain, the relationship between 
groundwater and water storages was examined. During fieldwork elevated soil 
waterlogging adjacent to water storages could be observed through the presence of dark 
saturated soils along with consequent changes in vegetation type. Trenches were dug 
adjacent to the structures to ascertain depth to water table, and these confirmed water tables 
lying at or near the surface. Remotely sensed analysis of Landsat imagery over these areas 
made it possible to map the extent of waterlogging extending out from these structures. This 
involved the generation of wetness index maps, using the Kauth-Thomas (KT) 
transformation (Kauth & Thomas, 1976; Collins & Woodcock, 1996). A wetness index map 
derived from the KT transformation will indicate not only the level of surface soil moisture, 
but also the wetness of associated vegetation (Mutiti et al. 2008). A wetness index map for 
the fieldsite locations examined is presented in Figure 3. While the results do indicate a 
relationship between the size of the water storage and the area detected, such results are 
difficult to interpret without further information on the quantity of water stored, the 
duration of storage, the soil types and localised topography, all of which are unavailable for 
the Tonle Sap Floodplain. However, they did indicate the potential of remote sensing to 
detect and quantify these effects, and demonstrate the effects of waterlogging of soils 
adjacent to water impoundment structures – an important consideration given the rapid 
agricultural development occurring in some areas of the floodplain utilising water 
impoundments.  

 
4. Remote Sensing of Floodplain Vegetation  
 

The monsoonal driven flood pulse fills the lake and floods an extensive area of the 
floodplain, usually for several months from August through to January, creating a unique 
flooded forest plant community (McDonald et al. 1997). These temporary wetlands serve 
essential ecosystem processes in terms of nutrient exchange between the lake (and the 
Mekong system upstream) and the floodplain, and are essential for fish breeding (Puy et al. 
1999). Flooded forests are found mainly around the dry-season lake shoreline and comprise 
about 10% of the floodplain and are dominated by Barringtonia acutangula, Baringtonia 
micratha and Diospyros cambodiana. At higher elevations are extensive areas of short tree 
shrubland dominated by species of Euphorbiaceae, Fabaceae, and Combretaceae, together 
with Barringtonia acutangula (Wikramanayake & Dinerstein 2001) and seasonally flooded 
sedgelands and grasslands occupy the distal margins. Large seasonal contrasts in lake levels 
affect the characteristics of the wetland vegetation (Penny, 2006), with some forest areas 
enduring fluctuations of up to 8m and complete canopy submergence for months at a time 
(McDonald et al. 1997). 
 

village communes for lower impact agricultural activities are being modified in this way. 
The use of ring-dyke structures to harvest flood waters for rice production are seen as the 
ideal new model for agricultural development of the Tonle Sap floodplain (Someth et al. 
2009). 

 
3. Remote Sensing of Groundwater Resources 
 

Remote sensing has been widely used to measure the moisture content of soils (Jensen, 2007), 
although this often depends on the soil grain size and mineralogy, which will affect the 
ability of a soil mass to store water. Recently, a number of studies have begun to examine 
the use of remote sensing for inferring the nature of groundwater resources. Brunner et al. 
(2007) provide an overview of the potential use of remote sensing in the provision of data to 
support groundwater modelling in a number of large river basins. Other examples of recent 
studies include Mutiti et al. (2008), who examined groundwater resource development 
potential using Landsat imagery, Hendricks Franssen et al. (2008) who inferred 
groundwater patterning from remotely sensed data, and Milzow et al. (2009) who examined 
groundwater and hydrology of the large river/wetland system of the Okavango Delta using 
remote sensing. A range of remote sensing technologies are available to assist in the study of 
groundwater resources. These include technologies such as radar, LIDAR and digital 
photogrammetry to derive elevation products, airborne EM (electromagnetics) to examine 
changes in electrical conductivity in the shallow subsurface, and the remote sensing of 
vegetation, salt crusts and other surface features as a proxy for subsurface groundwater 
conditions (Brunner et al. 2007).  
 
Groundwater resources are particularly important for the region in and around the Tonle 
Sap floodplain, as they form the major water supply for human use (Wright et al. 2004). The 
sedimentary depression of the Tonle Sap is surrounded by low-lying alluvium, with older 
coarser ferruginous silts, sands and grits around the perimeter overlain by red-clayey and 
silty sediments (Stanger et al. 2005). The alluvial deposits of the Tonle Sap floodplain are 
believed to be very good shallow aquifers, with high recharge rates (5-20 m3/h) and a 
groundwater table generally within 4-6m of the surface. Groundwater quality is generally 
good apart from high iron content reducing palatability in some areas, and dangerous levels 
of arsenic contamination in others (Wright et al. 2004). In response to the large amplitude 
floods that characterise the hydrological cycle of the Tonle Sap, there is an annual cycle in 
groundwater levels from depths of around 6 m in riparian areas to a few centimetres in 
some parts of the floodplain (Stanger et al. 2005).  
 
Loss of vegetation, particularly deep rooted tree species, reduces uptake of water from the 
soil profile and exacerbates waterlogging problems in the wetlands. A large seasonal 
population usually migrates from upland areas and the non-flooded areas of the Tonle Sap 
basin to the floodplain as the floodwaters recede, building temporary settlements on and 
around the water impoundment structures (Bonheur & Lane, 2002). The temporary 
settlements facilitate activities such as dry season rice cropping and fishing and informal 
aquaculture. Human settlement compounds the loss of larger wetland tree species in these 
areas as they form the primary source of fuelwood and building materials. This occurs on a 
wide scale despite a complete ban on all forms of timber extraction from the flooded forest 
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involved the generation of wetness index maps, using the Kauth-Thomas (KT) 
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derived from the KT transformation will indicate not only the level of surface soil moisture, 
but also the wetness of associated vegetation (Mutiti et al. 2008). A wetness index map for 
the fieldsite locations examined is presented in Figure 3. While the results do indicate a 
relationship between the size of the water storage and the area detected, such results are 
difficult to interpret without further information on the quantity of water stored, the 
duration of storage, the soil types and localised topography, all of which are unavailable for 
the Tonle Sap Floodplain. However, they did indicate the potential of remote sensing to 
detect and quantify these effects, and demonstrate the effects of waterlogging of soils 
adjacent to water impoundment structures – an important consideration given the rapid 
agricultural development occurring in some areas of the floodplain utilising water 
impoundments.  
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landuse maps and metrics for all of the Tonle Sap catchments (ADB, 2009), although the 
landuse categories used are generalised and non-species specific. 
 
Image classification procedures can be used to identify, map and quantify vegetation units 
of interest in remotely sensed imagery. The overall objective of image classification 
procedures is to automatically categorise all pixels in an image into land cover classes or 
themes (Lillesand et al. 2008). Image classification attempts to use the spectral information 
available in the data for each pixel as the numerical basis for categorisation. Different feature 
types will manifest different combinations of spectral response in each band (depending on 
sensor type) based on their inherent spectral  reflectance and emittance properties which 
may also be variant in space and  time. Spectral pattern recognition refers to the family of 
classification procedures that utilise this pixel-by-pixel spectral information as the basis for 
automated land classification (Lillesand et al. 2008). 
 
Supervised classification is the procedure most often used for quantitative analysis of 
remote sensing image data. It rests upon using suitable algorithms to label the pixels in an 
image as representing particular ground cover types or classes (Richards & Jia, 2006). The 
multidimensional normal distribution of a spectral class is specified completely by its mean 
vector and its covariance matrix. Consequently, if the mean vectors and the covariance 
matrices are known for each spectral class then it is possible to compute the set of 
probabilities that describe the relative likelihoods of a pattern at a particular location 
belonging to each of those classes (Lillesand et al. 2008). It can then be considered as 
belonging to the class which indicates the highest probability. Therefore, if the mean vectors 
and the covariance matrix are known for every spectral class in an image, every pixel in the 
image can be examined and labelled corresponding to the most likely class on the basis of 
the probabilities computed for the particular location for a pixel. Before that classification 
can be performed however, the mean vectors and covariance matrix are estimated for each 
class from a representative set of pixels, called a training set. These are pixels which the 
analyst knows as coming from a particular spectral class. 
 
Supervised classification consists therefore of three broad steps. First a set of training pixels 
is selected for each spectral class using the reference data available in the form of digital 
vegetation maps. The second step is to determine the mean vectors and covariance matrices 
for each class from the training data. This completes the learning phase. The third step is the 
classification stage, in which the relative likelihoods for each pixel in the image are 
computed and the pixel labelled according to the highest likelihood (Richards & Jia, 2006). 
Numerous mathematical approaches have been developed for spectral pattern recognition 
and it is beyond the scope and relevance of this chapter to review them all. Some commonly 
used classifiers are the Minimum-Distance-to-Means, parallelepiped, Gaussian Maximum 
Likelihood Classifier (MLC) and the Piecewise Linear Classifier. In the current study, MLC 
was used for the supervised classification of the ASTER optical imagery. MLC has a 
demonstrated reliability in achieving accurate classification of land cover types across a 
range of different environments (Bolstad & Lillesand, 1991; San Miguel-Ayanz & Biging, 
1997). 
 

 
Fig. 4. KT Wetness Index Map of an area of the Tonle Sap Floodplain 
 
Like many ephemeral wetlands around the world, the distribution of the mosaic of flooded 
forest, scrub and grassland around the lake is determined largely by the duration and depth 
of flooding (Bonheur & Lane, 2002), and to a lesser degree substrate. The tropical climate, 
nutrient rich soils and abundant water present on the floodplain mean that vegetative 
growth occurs rapidly, and forests and wetlands quickly regenerate. It has been suggested 
that much of the present wetland vegetation is secondary regrowth (McDonald et al. 1997), 
although this seems unlikely over the majority of the Tonle Sap wetlands, which are highly 
inaccessible. Only on the northwestern margins of the lake, where the ancient civilizations of 
Angkor flourished between A.D. 802 and 1431 (Chandler, 1996) is large scale clearing likely 
to have occurred to facilitate extensive agricultural schemes. Many of these were re-
established, often unsuccessfully, during the Khmer Rouge period (Kiernan, 1996). While 
limited historical data exists on the distribution of plant communities across the floodplain, 
the majority of the floodplain vegetation is still intact, although often modified in areas 
closer to settlements, and capable of near normal ecological functioning subject to 
floodwater availability.  
 
One aim of the current study was to use remotely sensed data to map the current 
distribution of wetland and floodplain vegetation around the Tonle Sap, so that these could 
be examined in relation to where they occur spatially on the floodplain in relation to 
flooding extent and duration. Previous efforts to map wetland vegetation distribution and 
its relationships to flooding (e.g. Kite 2001) utilised generalised USGS landcover 
classifications not particularly suited to the Tonle Sap floodplain. The ADB has generated 
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landuse maps and metrics for all of the Tonle Sap catchments (ADB, 2009), although the 
landuse categories used are generalised and non-species specific. 
 
Image classification procedures can be used to identify, map and quantify vegetation units 
of interest in remotely sensed imagery. The overall objective of image classification 
procedures is to automatically categorise all pixels in an image into land cover classes or 
themes (Lillesand et al. 2008). Image classification attempts to use the spectral information 
available in the data for each pixel as the numerical basis for categorisation. Different feature 
types will manifest different combinations of spectral response in each band (depending on 
sensor type) based on their inherent spectral  reflectance and emittance properties which 
may also be variant in space and  time. Spectral pattern recognition refers to the family of 
classification procedures that utilise this pixel-by-pixel spectral information as the basis for 
automated land classification (Lillesand et al. 2008). 
 
Supervised classification is the procedure most often used for quantitative analysis of 
remote sensing image data. It rests upon using suitable algorithms to label the pixels in an 
image as representing particular ground cover types or classes (Richards & Jia, 2006). The 
multidimensional normal distribution of a spectral class is specified completely by its mean 
vector and its covariance matrix. Consequently, if the mean vectors and the covariance 
matrices are known for each spectral class then it is possible to compute the set of 
probabilities that describe the relative likelihoods of a pattern at a particular location 
belonging to each of those classes (Lillesand et al. 2008). It can then be considered as 
belonging to the class which indicates the highest probability. Therefore, if the mean vectors 
and the covariance matrix are known for every spectral class in an image, every pixel in the 
image can be examined and labelled corresponding to the most likely class on the basis of 
the probabilities computed for the particular location for a pixel. Before that classification 
can be performed however, the mean vectors and covariance matrix are estimated for each 
class from a representative set of pixels, called a training set. These are pixels which the 
analyst knows as coming from a particular spectral class. 
 
Supervised classification consists therefore of three broad steps. First a set of training pixels 
is selected for each spectral class using the reference data available in the form of digital 
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Fig. 4. KT Wetness Index Map of an area of the Tonle Sap Floodplain 
 
Like many ephemeral wetlands around the world, the distribution of the mosaic of flooded 
forest, scrub and grassland around the lake is determined largely by the duration and depth 
of flooding (Bonheur & Lane, 2002), and to a lesser degree substrate. The tropical climate, 
nutrient rich soils and abundant water present on the floodplain mean that vegetative 
growth occurs rapidly, and forests and wetlands quickly regenerate. It has been suggested 
that much of the present wetland vegetation is secondary regrowth (McDonald et al. 1997), 
although this seems unlikely over the majority of the Tonle Sap wetlands, which are highly 
inaccessible. Only on the northwestern margins of the lake, where the ancient civilizations of 
Angkor flourished between A.D. 802 and 1431 (Chandler, 1996) is large scale clearing likely 
to have occurred to facilitate extensive agricultural schemes. Many of these were re-
established, often unsuccessfully, during the Khmer Rouge period (Kiernan, 1996). While 
limited historical data exists on the distribution of plant communities across the floodplain, 
the majority of the floodplain vegetation is still intact, although often modified in areas 
closer to settlements, and capable of near normal ecological functioning subject to 
floodwater availability.  
 
One aim of the current study was to use remotely sensed data to map the current 
distribution of wetland and floodplain vegetation around the Tonle Sap, so that these could 
be examined in relation to where they occur spatially on the floodplain in relation to 
flooding extent and duration. Previous efforts to map wetland vegetation distribution and 
its relationships to flooding (e.g. Kite 2001) utilised generalised USGS landcover 
classifications not particularly suited to the Tonle Sap floodplain. The ADB has generated 
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Vegetation/Landuse Class Area (ha) Percentage 

Barringtonia acutangula dom. Flooded Forest 107928 7.75 
Barringtonia acutangula dom. Savannah 765737 55.01 
Diospyros cambodiana dom. Savannah 184344 13.24 
Euphorbiaceae Shrubland 53794 3.86 
Tiliaceae Shrubland 61062 4.39 
Mimosa pigra 7551 0.54 
Sedge 17810 1.28 
Phragmites Reeds 36928 2.65 
Thornbush 3380 0.24 
Water storage, unvegetated 19257 1.38 
Water storage, vegetated 11345 0.81 
Agricultural - rice 34972 2.51 
Agricultural - fallow 11839 0.85 
Legume cropping 250 0.02 
Grasslands 67410 4.84 
Mudbanks saturated soil 2722 0.20 
Bare dry soil 2344 0.17 
Firescar 1569 0.11 
Rock outcrop 183 0.01 
Human settlement 1664 0.12 
Total (excluding Lake Area) 1392089 100.00 

                             Kappa = 0.83 
Table 1. Landcover classification results for the Tonle Sap floodplain 

 
5. Relationships between Elevation and Floodplain Vegetation 
 

High quality digital elevation data are essential for the assessment of floodplains and spatial 
arrangement of vegetation communities. Numerous studies of wetland vegetation have 
suggested that elevation is a primary determinant of vegetation type and location within 
wetland systems (Scoones, 1981; Hughes, 1990), and substrate to a lesser degree. Analysis of 
elevation data can yield important information on the spatial arrangement of vegetation in 
wetland and floodplain environments as it determines the extent and duration of flooding of 
these areas. In many of the developing countries which comprise the Mekong River basin 
high quality survey data is simply not available, and over large inaccessible areas such as 
the Tonle Sap floodplain, ground based survey is logistically impossible. Therefore remote 
sensing offers the primary means of gathering such data. 
 
There are a range of remote sensing techniques available for the generation of elevation data 
or digital elevation models (dems). In general, higher precision in these products is 

MLC is one of the most commonly used supervised classification methods and it has been 
demonstrated to be extremely powerful and efficient in a great number of investigations 
(Maselli et al. 1990). It works most effectively when dealing with normal distribution in the 
spectral data, although it has also been shown to be relatively resistant to class distribution 
anomalies (Hixson et al. 1980; Yool et al. 1986). This classifier quantitatively evaluates both 
the variance and the covariance of the category spectral response patterns. It assumes a 
Gaussian distribution in the category training data, which is generally a reasonable 
assumption. Using this assumption the distribution of a category response pattern can be 
completely described by the mean vector and covariance matrix, it is possible to compute 
the statistical probability of an unknown pixel belonging to particular land cover class. In 
essence the maximum likelihood classifier delineates ellipsoidal "equiprobability contours" 
in the scatter diagram of spectral values which act as the decision regions (Lillesand et al. 
2008).  
 
The main limitation of maximum likelihood classification is the large number of 
computations required to classify each pixel. This is particularly true when either a large 
number of spectral channels are involved or a large number of spectral classes must be 
differentiated. Numerous extensions and refinements of the maximum likelihood classifier 
have been developed (Lillesand et al. 2008). These include the use of lookup tables in which 
the category identity of all possible combinations of digital numbers is determined prior to 
classifying the image and each unknown pixel is classified simply by reference to these 
lookup tables. This avoids the need to carry out complex statistical calculations for each 
pixel as they have already been determined for each category. Another means of optimizing 
maximum likelihood classifiers is to use some method to reduce the dimensionality of the 
dataset used to perform the classification. Procedures such as the principal components, 
canonical components (Jensen and Waltz, 1979) and tassled cap (Kauth and Thomas, 1976) 
transformations achieve this reduction of the dataset by making use only of the significant 
sections of the data.  
 
Floodplain vegetation type and distribution were observed and mapped in the field in and 
around the Tonle Sap through a number of fieldwork surveys conducted in 2005 and 2006, 
in accessible locations. Remote sensing offers the ability to map landcover types over large 
areas, based on spectral information collected from representative vegetation communities 
and other landuse and landcovers (Lillesand et al. 2008). On the basis of training sites 
mapped throughout the floodplain during fieldwork, wetland vegetation and landcover 
across the floodplain was classified into 20 classes using maximum likelihood classification 
on the 9 visible/near-infrared and shortwave infrared bands of the ASTER imagery, which 
were resampled to 30 m. This facilitated determination of the types and extent of wetland 
vegetation directly affected by the water impoundment structures and their relationship to 
flooding patterns. Classification accuracy was assessed using standard confusion matrices to 
generate overall accuracy and Kappa statistics (Congalton & Green, 2008), using one 
training site for each landcover type not used in the original classification. As a result of the 
classification carried out over the floodplain using the imagery, it was possible to generate 
floodplain metrics for the various vegetation and landuse classes, and these are presented in 
Table 1. 
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dataset used to perform the classification. Procedures such as the principal components, 
canonical components (Jensen and Waltz, 1979) and tassled cap (Kauth and Thomas, 1976) 
transformations achieve this reduction of the dataset by making use only of the significant 
sections of the data.  
 
Floodplain vegetation type and distribution were observed and mapped in the field in and 
around the Tonle Sap through a number of fieldwork surveys conducted in 2005 and 2006, 
in accessible locations. Remote sensing offers the ability to map landcover types over large 
areas, based on spectral information collected from representative vegetation communities 
and other landuse and landcovers (Lillesand et al. 2008). On the basis of training sites 
mapped throughout the floodplain during fieldwork, wetland vegetation and landcover 
across the floodplain was classified into 20 classes using maximum likelihood classification 
on the 9 visible/near-infrared and shortwave infrared bands of the ASTER imagery, which 
were resampled to 30 m. This facilitated determination of the types and extent of wetland 
vegetation directly affected by the water impoundment structures and their relationship to 
flooding patterns. Classification accuracy was assessed using standard confusion matrices to 
generate overall accuracy and Kappa statistics (Congalton & Green, 2008), using one 
training site for each landcover type not used in the original classification. As a result of the 
classification carried out over the floodplain using the imagery, it was possible to generate 
floodplain metrics for the various vegetation and landuse classes, and these are presented in 
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Vegetation Class Minimum 
Elevation (m) 

Maximum 
Elevation (m) 

Elevation 
Range (m) 

Barringtonia acutangula dom. Flooded 
Forest 

0.6 1.8 1.2 

Barringtonia acutangula dom. Savannah 1.9 8.2 6.3 
Diospyros cambodiana dom. Savannah 2.4 8.7 6.3 
Euphorbiaceae Shrubland 5.3 10.4 5.1 
Tiliaceae Shrubland 6.2 12.6 6.4 
Sedge 8.2 11.3 3.1 
Phragmites Reeds 1.0 2.6 1.6 
Grassland 9.1 18.4 9.3 

Table 2. Elevation ranges for primary vegetation classes 
 
The elevation ranges of the primary vegetation classes of the Tonle Sap confirm that the 
flooded forest and reed communities occupy lower elevations on the floodplain, with 
Savannah woodland communities at higher elevations followed by shrubland, sedge and 
grasslands. Flooded forest, reed and sedge communities occupy the narrowest elevation 
ranges on the floodplain, while those communities at higher elevations are most likely to be 
affected by reductions in flood height. This information can then be used with the 
information on temporal flood extent patterns described below to characterise the horizontal 
and vertical arrangement of species on the floodplain. This landscape ecology approach to 
the understanding of floodplain structure provides important information on ecological 
functioning. Landscape ecology is based on the hypothesis that the interactions among 
biotic and abiotic components of the landscape are spatially mediated. Not only are the 
flows of energy material or species from place to place affected by the locations of the places 
in the landscape, but these flows then determine the interactions among energy, material 
and species (Malanson, 1993). A central theme of landscape ecology is that spatial structure 
controls the processes that continuously reproduce the structure. Landscape ecology is an 
approach to the study of the environment that emphasizes complex spatial relations. The 
relative locations of phenomena, their overall arrangement in a mosaic and the types of 
boundaries between them, become the priorities of study (Forman & Godran, 1986; 
Ingegnoli, 2002). 

 
6. Flood Detection and Mapping  
 

The monsoonal flood pulse is the primary mechanism affecting productivity in the Tonle 
Sap lake, wetlands and floodplain. The economically important fisheries of the Tonle Sap 
are strongly influenced by the maximum flooded area and resultant area of fish feeding and 
breeding habitat (Webby et al. 2005). Remote sensing of the inundation patterns across the 
study area therefore formed an important part of the current study. Knowledge of the extent 
and residence time of floodwaters on the floodplains of major rivers is essential for 
hydrological and biological studies of these systems, and yet for most areas of the Mekong, 
this remains largely unknown beyond simple maps of flood extent. For the Tonle Sap, the 
ADB has compiled maps showing minimum and maximum flood extents for the catchments 

accompanied by higher cost of acquisition and processing. Techniques include digital stereo 
photogrammetry, radar interfereometry and LIDAR. For the Mekong basin the primary 
dataset that has been utilised is the United States Geological Survey (USGS) GTOPO 30 dem, 
which is a 30 arc-second resolution product. The Shuttle Radar Topography Mission (SRTM) 
global product can also be used which has a 3 arc-second (approximately 90 m) resolution 
with 5 m vertical accuracy (Slater et al. 2006), and more recently, the ASTER GDEM global 
dem became available in 2009 with 30 m resolution and 15 m vertical accuracy. Of these 
datasets, only the latter is suitable for use in a low relief environment such as the Tonle Sap 
floodplain. In the GTOPO 30 and SRTM data, variations in floodplain relief are dominated 
by data anomalies. In all cases where remotely sensed elevation data are available, finer 
resolution dem data can be interpolated, but these may lead to a false representation of 
precision as they will normally retain the errors present in the original data (Longley et al. 
2007). Kite (2001) used the USGS GTOPO 30 product for hydrological modelling of the 
Mekong Basin, and the ADB (2009) show flooded area maps and metrics for the Tonle Sap 
catchments interpolated from contour maps. In the current study, remotely sensed elevation 
data was utilised to investigate the relationship between the primary wetland and floodplain 
vegetation types and elevation, and hence relationship to flooding. For this purpose the 
ASTER GDEM product was used after processing to remove anomalies, most of which occur 
over areas of open water and along tile edges, and extracting only elevations below 30m in 
height. The resultant 30m dem for the Tonle Sap floodplain is shown in 3D in Fig 5. 
 

 
Fig. 5. 3D dem of Tonle Sap floodplain, derived from ASTER GDEM 
 
A simple GIS-based analysis of the location of vegetation communities in relation to 
elevation yields information on the elevation ranges they occupy within the floodplain. 
While elevation alone is not the sole determinant of flooding effects on vegetation, in a 
floodplain such as the Tonle Sap, where overbank flooding from the lake is the primary 
source of floodwater, it does indicate the sensitivities of various ecological communities to 
water level ranges. The depth and duration of flooding for these communities is a primary 
determinant of their evolution in a given location and their ecological functioning (Campbell 
et al. 2006). The main vegetation classes and their elevation ranges derived from this 
analysis are shown in Table 2. 
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mangrove swamps was demonstrated by Imhoff et al. (1987) in the Sundarbans region of 
Bangladesh and by Ford and Casey (1988) in East Kalimantan. Bright returns for seasonally 
inundated temperate forests are described by Richards et al. (1987b) for Eucalyptus 
camaldulensis forests in Australia. Ford et al. (1986) distinguished flooded varzea forest 
from non-flooded forest using SIR-B scenes of the Rio Japura in the Amazon Basin. 
 
The forest stands cited above have very diverse structures: canopy depth relative to total 
tree height, dominant branching angle, and crown shape are quite variable. They also 
encompass a wide range of leaf type and tree heights. It is clear that stands with low stem 
densities may appear bright at L-band (Hess et al. 1990). Enhancement has also been shown 
for stands described as dense or thick (Hoffer et al. 1986, Ford and Casey 1988). Enhanced 
backscattering from flooded forests thus occurs over a broad range of tree species, canopy 
structures and stand densities. Richards et al. (1987b) demonstrated that brighter returns 
from flooded forests are not simply a function of vegetation differences between upland and 
lowland sites. They were able to clearly distinguish between flooded and non-flooded 
portions of a single forest type. 
 
The accuracy of flood detection using radar imagery is difficult to determine since most 
studies of flooded forests focus only on those areas which do yield bright L-band returns. 
Near or complete absence of backscatter from flooded Maryland swamps with dense 
canopies has been noted by Krohn et al. (1983). It appears that dense undergrowth may 
significantly affect double-bounce returns. Ford and Casey (1988) found the opposite to be 
true, however, in flooded mangrove forests of Kalimantan. They found that open stands of 
low slender trees did not yield bright returns on SIR-B imagery while adjacent denser 
mangrove stands did. The above examples suggest that for certain forest types, the extent of 
flooding beneath the canopy would be underestimated using L-band radar. Overestimation 
would occur if other targets yielding bright returns were mistaken for flooded forests. Other 
sources of bright returns would normally be able to be visually distinguished from flooded 
forest based on shape, pattern, associated features and minimal site knowledge. A more 
serious source of confusion is non-forest vegetation naturally occurring adjacent to flooded 
forest. Flooded marshes (emergent herbaceous vegetation) typically appear dark at L-band 
(Krohn et al. 1983, Ormsby et al. 1985). However, marsh vegetation sometimes yields bright 
returns very similar to those from flooded forests (Krohn et al. 1983).  
 
The magnitude of enhancement associated with double bounce beneath flooded forests can 
vary significantly. In many studies, variations in magnitude appear to be the result of 
differences in stand composition as well as flooding (Hess et al. 1990). The problem of 
separating backscatter variation caused by differences in vegetation from that caused by 
flooding was minimised in the study by Richards et al. (1987b), because of the virtually 
monospecifc stands of eucalyptus examined. Backscattering from flooded and non-flooded 
sites within the forest was estimated to vary by 10.8 dB: a substantial difference. Treating the 
canopy as a uniform layer of small particles, Engheta and Elachi (1982) estimate the 
enhancement resulting from the presence of a perfectly reflecting surface beneath the 
canopy to be 3 to 6 dB. It appears from the literature that L-band radar imagery used in the 
current study should enable accurate delineation of floodwater boundaries.  
 

around the lake as derived from satellite image interpretation (ADB, 2009). For the areas 
examined in this study, information on flow rates and stream heights may be available, but 
because of the low relief and complex hydrology of many wetland areas, these data do not 
correlate well with inundation patterns. Rates of organic matter production, decomposition 
and export to the river channel are closely linked to floodplain inundation patterns. Primary 
production rates in inland wetlands are very high and these communities may cover 
hundreds of thousands of square kilometres (Matthews and Fung, 1987). In many large river 
systems with associated extensive wetland areas, the difficulty in determining the extent of 
flooding makes it difficult to accurately estimate wetland area and characterise vegetation 
relationships. Ground measurement of flooding in forested wetlands is severely limited by 
the inaccessibility typical of these areas, where mobility is often hampered by flooding and 
boggy conditions. Remote sensing offers the ability to detect flooded over such areas, and 
this is typically done using optical or radar imagery. 
 
With regard to optical remote sensing of inundation and the spectral reflectance of water, 
probably the most distinctive characteristic is the absorption of energy at near-infrared (NIR) 
wavelengths. Locating and delineating water bodies with remote sensing data is done most 
easily at NIR wavelengths because of this property (Lillesand et al. 2008). However, various 
conditions of water bodies manifest themselves primarily in visible wavelengths. Landsat 
TM imagery has been used to map floodwater distribution and characteristics (e.g Imhoff et 
al. 1987; Pope et al. 1992; Mertes et al. 1993, 1995; Johnston and Barson 1993), and optical 
SPOT data has also been used for floodwater mapping (Blasco et al. 1992).  
 
Remote sensing of flooding may also be hampered by forest canopies that render the 
land/water boundary invisible to infrared and visible wavelength sensors and by frequent 
cloud cover during periods of rainfall. These limitations are largely overcome by SAR radar 
sensors which are unaffected by clouds and can significantly penetrate relatively dense 
forest canopies (Hess et al. 1990). Passive microwave remote sensing has also proved useful 
for revealing large-scale inundation patterns, even in the presence of cloud cover and dense 
vegetation (Choudery 1991, Sippel et al. 1994). The bright appearance of flooded forests on 
radar images results from double-bounce reflections between smooth water surfaces and 
tree trunks or branches. Enhanced back scattering at L-band has been shown to occur in a 
wide variety of forest types and is a function of both stand density and branching structure 
(Hess et al. 1990). Steep incidence angles (20-30o) are optimal for detection of flooding, since 
some forests exhibit bright returns only at steeper angles. Backscattering from flooded 
forests is enhanced by underlying water. For forests of moderate density, L-band returns are 
dominated by corner reflections between trunks and surface and between branches and 
surface (Richards et al. 1987a). Scattering from a smooth water surface is specular, whereas 
that from soil includes a significant diffuse component and therefore the amplitude of 
returns will be higher for standing water beneath forests. 
 
There is a high degree of structural diversity associated with flooded forests, as they occur 
on numerous substrates, in both saline and fresh water and at a wide range of latitudes 
(Matthews and Fung 1987). Most frequently studied have been the swamp forests of the 
coastal plains of the southeastern United States. Relatively bright L-band returns from semi-
permanently to permanently flooded stands have been reported in several studies (e.g. 
Hoffer et al. 1986, Evans et al. 1986, Wu and Sader 1987). Detection of underlying water in 
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mangrove swamps was demonstrated by Imhoff et al. (1987) in the Sundarbans region of 
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inundated temperate forests are described by Richards et al. (1987b) for Eucalyptus 
camaldulensis forests in Australia. Ford et al. (1986) distinguished flooded varzea forest 
from non-flooded forest using SIR-B scenes of the Rio Japura in the Amazon Basin. 
 
The forest stands cited above have very diverse structures: canopy depth relative to total 
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current study should enable accurate delineation of floodwater boundaries.  
 

around the lake as derived from satellite image interpretation (ADB, 2009). For the areas 
examined in this study, information on flow rates and stream heights may be available, but 
because of the low relief and complex hydrology of many wetland areas, these data do not 
correlate well with inundation patterns. Rates of organic matter production, decomposition 
and export to the river channel are closely linked to floodplain inundation patterns. Primary 
production rates in inland wetlands are very high and these communities may cover 
hundreds of thousands of square kilometres (Matthews and Fung, 1987). In many large river 
systems with associated extensive wetland areas, the difficulty in determining the extent of 
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relationships. Ground measurement of flooding in forested wetlands is severely limited by 
the inaccessibility typical of these areas, where mobility is often hampered by flooding and 
boggy conditions. Remote sensing offers the ability to detect flooded over such areas, and 
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With regard to optical remote sensing of inundation and the spectral reflectance of water, 
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Remote sensing of flooding may also be hampered by forest canopies that render the 
land/water boundary invisible to infrared and visible wavelength sensors and by frequent 
cloud cover during periods of rainfall. These limitations are largely overcome by SAR radar 
sensors which are unaffected by clouds and can significantly penetrate relatively dense 
forest canopies (Hess et al. 1990). Passive microwave remote sensing has also proved useful 
for revealing large-scale inundation patterns, even in the presence of cloud cover and dense 
vegetation (Choudery 1991, Sippel et al. 1994). The bright appearance of flooded forests on 
radar images results from double-bounce reflections between smooth water surfaces and 
tree trunks or branches. Enhanced back scattering at L-band has been shown to occur in a 
wide variety of forest types and is a function of both stand density and branching structure 
(Hess et al. 1990). Steep incidence angles (20-30o) are optimal for detection of flooding, since 
some forests exhibit bright returns only at steeper angles. Backscattering from flooded 
forests is enhanced by underlying water. For forests of moderate density, L-band returns are 
dominated by corner reflections between trunks and surface and between branches and 
surface (Richards et al. 1987a). Scattering from a smooth water surface is specular, whereas 
that from soil includes a significant diffuse component and therefore the amplitude of 
returns will be higher for standing water beneath forests. 
 
There is a high degree of structural diversity associated with flooded forests, as they occur 
on numerous substrates, in both saline and fresh water and at a wide range of latitudes 
(Matthews and Fung 1987). Most frequently studied have been the swamp forests of the 
coastal plains of the southeastern United States. Relatively bright L-band returns from semi-
permanently to permanently flooded stands have been reported in several studies (e.g. 
Hoffer et al. 1986, Evans et al. 1986, Wu and Sader 1987). Detection of underlying water in 
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Fig. 6. MODIS derived flood extents for the Tonle Sap – an example 
 
The MODIS derived flood maps indicate a reduction in flooding extent of the Tonle Sap lake 
since 2000. While the 2000 flood was large by historical standards, and caused widespread 
damage and loss of life throughout the Mekong Basin (CNMC, 2006), every year since then 
has been characterised by a reduction in the spatial extent of flooding across the floodplain, 
apart from the 2008 flood for which the MODIS imagery products are not yet available. This 
corresponds with MNRC and MRC observations that the flood peaks are now reduced in 
amplitude and have a much faster fill and drain cycle (CNMC, 2006). Some authors have 
suggested large dam development throughout the Mekong, and particularly in China, may 
be responsible (Blake, 2001). The very large Dachaosan dam in southern China began filling 
in 2003. The monsoons deliver large quantities of water very quickly into the dams where it 
can be released slowly throughout the year for hydroelectricity generation and for irrigation. 
The Chinese government currently has another three dams under construction in the upper 
reaches of the Mekong, with the Xiaowan dam now nearing completion, and another three 
are at the planning stage (Osbourne, 2006). This will form an 8 dam cascading system 
capable of retaining very large volumes of water that would otherwise contribute to the 
monsoonal Mekong flood pulse. With limited fossil fuel reserves and exponential growth in 
energy demand, the Mekong and other Chinese rivers are seen as offering abundant cheap 
and clean power. The Chinese dams in the upper reaches of the Mekong are unlikely to be 
responsible for all reduced flow into the Tonle Sap, as the region may also be experiencing 
some ongoing effects of drought and climate change (MRC, 2005), and irrigation 
development is also occurring rapidly on other tributaries which feed the lake. Other 
current and proposed dams for Laos, Thailand and Vietnam are likely to further ameliorate 

Aims of this study in relation to flood detection and mapping were to utilise remote sensing 
methods to (a.) characterise the flood cycles of the lake; (b.) map the spatial distribution of 
water across the floodplain, and; (c.) determine the relationship between the flooding cycles 
of the lake and vegetation distributions across the floodplain. The current flood monitoring 
and mapping efforts of the MNRC and MRC rely on simple linear models of the relationship 
between river gauge height collected at only a few locations and maximum annual volume 
and flooded area. Few of the tributaries which drain the 13 catchments around the lake and 
make significant contributions to lake volume and flooded area have any gauging stations, 
and hydrological relationships between these tributaries and the lake are complex (Penny, 
2006).  
 
For the current study, regional scale MODIS (Moderate resolution Imaging Spectrometer) 
data was used to determine inundation patterns. MODIS images in 36 spectral bands at 250 
m, 500 m and 1 km resolutions, dependent on wavelength, and is widely used for multiple 
land and ocean applications which require high frequency temporal coverage (Lillesand et 
al. 2008). A large time-series of MODIS 500m 8 Day Surface Reflectance imagery collected 
over the period 2001-2005 was used to characterize the flood cycles during the period June 
to March, at weekly intervals, where the data was of sufficient quality. The MODIS imagery 
was subsetted to the area of the Tonle Sap and rectified to the ASTER basemap (Figure 2) 
with its much higher spatial precision using 6 GCPs per image. 
 
The temporal dynamics of the flooded area for the lake are affected by landcover, infiltration 
rates, and local catchment inputs and cannot be estimated simply from lake gauge height. 
Inundation mapping in floodplain environments can be problematic due to the presence of 
high levels of vegetative cover, shallow inundation over large areas and dark organic rich 
alluvial soils which can appear inundated when they are not (Pearce, 1995). The methods 
used to map inundation can have a marked effect on the observed patterns (Frazier et al. 
2003). On the Tonle Sap, the use of AIRSAR and JERS-1 radar data has been investigated as 
means of mapping inundation at localised scales (Milne & Tapley, 2005) but this has not 
been applied at the scale of the entire floodplain. Usual inundation mapping methods using 
optical imagery involve use of a ratio of mid-infrared reflectance to a visible band 
reflectance (Lillesand et al. 2008) although this is generally only suitable for relatively deep 
water. Investigations of techniques for floodplains suggest a combination approach using 
this ratio and mid-infrared (MIR) change detection is necessary to deal effectively with the 
shallow water problem (Sims, 2004). Due to the unique nature of the floodplain vegetation 
and shallow inundation over much of the wet season lake area, a specialised flood detection 
algorithm was developed for the Tonle Sap using MODIS B6/B4 ratio combined with a B1 
threshold, and the accuracy of the technique was verified using the wet-season ASTER 
imagery. An example of the output from this analysis for a single image date is shown in 
Figure 6. The MODIS time series was used to determine the extent of flooding and flood 
duration in conjunction with hydrological data from the CNMC and Mekong River 
Commission. 
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threshold, and the accuracy of the technique was verified using the wet-season ASTER 
imagery. An example of the output from this analysis for a single image date is shown in 
Figure 6. The MODIS time series was used to determine the extent of flooding and flood 
duration in conjunction with hydrological data from the CNMC and Mekong River 
Commission. 
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The temporal dynamics of the annual flood event on the Tonle Sap are also revealed in the 
MODIS data, and show the variability in the duration of the flooding. A cell-based GIS 
analysis was used to calculate the change in the duration of flooding between the simulated 
dry year conditions and average conditions. This approach also allows for the determination 
of how changes occur over temporal cycles, making it possible to develop a dynamic means 
of estimating changes to vegetation and landuse types. The temporal flood cycle model 
derived from the MODIS time-series and the dem data were integrated into ArcGIS 9.3 
ModelBuilder (Environmental Systems Research Institute, 2009). The time series data 
provides weekly time steps showing change in flooded area. The mean duration of 
inundation per cell of landcover type was then generated and this data is summarised in 
Table 3, showing the change in flood residence time for primary vegetation units between 
the simulated dry season flood and an average flood. Results indicate that the largest 
reductions in flood duration will be experienced by the Savannah woodland communities, 
followed by the shrubland communities, with minor change in the sedge and grassland 
communities. The core wetland areas of flooded forest and reeds occur at lower elevations 
and show no reduced flood duration in this analysis. The results of simulating reduced 
flooding based on the average dry year hydrological data for the Tonle Sap from the GIS-
based flood extent model indicate that reductions in flood peak and duration such as those 
experienced during dry years will have a significant effect on inundation area of the 
floodplain. This would result in reduction in flooded area reducing from 13,286 km2 to 
11,134 km2, or approximately 16%. 
 

Vegetation Class Simulated Dry 
Year Flood 

Duration (days) 

Average Flood 
Duration (days) 

Change 
(days) 

Barringtonia acutangula dom. Flooded 
Forest 

318 318 0 

Barringtonia acutangula dom. Savannah 242 311 69 
Diospyros cambodiana dom. Savannah 213 288 75 
Euphorbiaceae Shrubland 58 79 21 
Tiliaceae Shrubland 51 68 17 
Sedge 43 52 9 
Phragmites Reeds 324 324 0 
Grassland 11 23 12 

Table 3. Change in flood durations between simulated dry year and average flood 
conditions for primary vegetation classes 
 
Core areas of wetland on the floodplain including the high conservation value Barringtonia 
acutangula dominated flooded forests are most immune to changes in the flood amplitude as 
they are subject to greater depths of inundation and these are estimated to decline in area by 
only 2.5%. However, reduced lake levels and reduced flood duration will mean that normal 
full canopy submergence may no longer occur or submergence time will be reduced. This 
may affect productivity and growth characteristics and cause a transition towards shorter 
trees. Similarly, core emergent reed and grass mat areas will suffer only limited effects and 

the Mekong flood pulse in the future. The output from the analysis of the MODIS time-
series was then used to model the effects of inundation variability on the wetland and 
floodplain vegetation on the Tonle Sap floodplain. 

 
7. GIS Modelling of the Effects of Flooding Changes on Vegetation  
 

The MODIS time-series for the period 2001-2005 shows the area of the Tonle Sap flooded 
each year and duration of inundation. A goal of the current study was to be able use all the 
remotely sensed data and derived information on the functioning and spatial arrangement 
of vegetation and landuse on the floodplain to predict what changes might occur due to 
interference with the annual flood pulse. This entailed determining the flooding 
characteristics of floodplain vegetation in terms of depth, timing and duration of flooding 
and relating these to the spatial distribution of changes in flood patterns. The effects of 
possible diminished flood peak height and duration on the floodplain were simulated by 
using an average dry year hydrograph averaged from the four years 1992, 1993, 1999 and 
2003 from CNMC data for the Tonle Sap to modify the maximum flood extent model 
derived from the MODIS imagery. Increasing water use and extraction throughout the 
Mekong is likely to create move toward dry year conditions with reduced water availability. 
The average dry year extent was subtracted from the average maximum flood extent derived 
from the five years of MODIS data for the period 2001-2005, and processed at the resolution of 
the floodplain dem (30 m). The results show the likely changes in the extent of flooding on the 
Tonle Sap floodplain if the flooding was likely to be reduced to drier year conditions due to 
water resource development in the Mekong Basin (Figure 7). When used with the vegetation 
and landuse cover classifications of the floodplain, this enables GIS modelling of the changes 
likely to occur in respective landcover types due to reductions in flooded area. 
 

 
Fig. 7. Modelled reduction in flooded area from MODIS derived flood extents, with change 
shown in black. 
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The temporal dynamics of the annual flood event on the Tonle Sap are also revealed in the 
MODIS data, and show the variability in the duration of the flooding. A cell-based GIS 
analysis was used to calculate the change in the duration of flooding between the simulated 
dry year conditions and average conditions. This approach also allows for the determination 
of how changes occur over temporal cycles, making it possible to develop a dynamic means 
of estimating changes to vegetation and landuse types. The temporal flood cycle model 
derived from the MODIS time-series and the dem data were integrated into ArcGIS 9.3 
ModelBuilder (Environmental Systems Research Institute, 2009). The time series data 
provides weekly time steps showing change in flooded area. The mean duration of 
inundation per cell of landcover type was then generated and this data is summarised in 
Table 3, showing the change in flood residence time for primary vegetation units between 
the simulated dry season flood and an average flood. Results indicate that the largest 
reductions in flood duration will be experienced by the Savannah woodland communities, 
followed by the shrubland communities, with minor change in the sedge and grassland 
communities. The core wetland areas of flooded forest and reeds occur at lower elevations 
and show no reduced flood duration in this analysis. The results of simulating reduced 
flooding based on the average dry year hydrological data for the Tonle Sap from the GIS-
based flood extent model indicate that reductions in flood peak and duration such as those 
experienced during dry years will have a significant effect on inundation area of the 
floodplain. This would result in reduction in flooded area reducing from 13,286 km2 to 
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may affect productivity and growth characteristics and cause a transition towards shorter 
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Future events in the Mekong basin, whether related to climate change or human 
development, will have important ramifications for the Tonle Sap. The annual flood pulse 
which sustains lake and floodplain ecology is vulnerable to change and as it changes the 
primary vegetation communities on the Tonle Sap floodplain will most likely face 
significant declines. In addition, in-situ impacts from upstream developments in the sub-
catchments of the lake, as well as further modification of the floodplain will act to reduce 
water availability and wetland area. The floodplain is already exhibiting signs of over-
exploitation (Campbell et al. 2006) and this will increase in line with population and 
development pressures. It is critical that future basin planning and water resource extraction 
between the Mekong Basin countries be coordinated in order to preserve the size, duration 
and timing of the flooding of the Tonle Sap. 
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as they are short rooted and colonise quickly they can more easily make spatial transitions. 
Flooded woodland savannah, which makes up the majority of the floodplain is likely to be 
significantly affected, with areas predicted to reduce by some 23%. Grassland and sedge 
communities on the distal margins of the floodplain will be greatly reduced in area by an 
estimated 76%, although they are fast disappearing anyway due to human encroachment. In 
terms of human landuse, dry season cropping area within the flooded zone will be reduced 
by an estimated 43%, which will displace these activities to other locations, most likely 
toward lower elevations in the floodplain. The infrastructure associated with dry season 
cropping will in many cases no longer be viable.  
 
The results of the GIS modelling indicate that a number of habitats within the Tonle Sap 
floodplain are vulnerable to changes in the monsoonal flood pulse. This will possibly have 
ramifications throughout the Mekong due to the importance of many areas as fish breeding 
habitat. These problems will be compounded by the incursion of agricultural activities into 
core wetland areas as water availability is reduced on the lake margins (Campbell et al. 
2006), along with associated land clearance and resource extraction. 

 
8. Conclusion 
 

Remote sensing is able to provide valuable information on the structure, processes and 
functioning of the Tonle Sap floodplain. Large, inaccessible wetland and floodplain systems 
such as the Tonle Sap can be studied from space with a range of remote sensing technologies 
in combination with appropriate fieldwork and reference data. Interference with the natural 
flood cycles and inundation patterns of the lake and surrounding floodplain are causing 
changes in vegetation and are likely to be affecting the biological productivity not only on 
the Tonle Sap but throughout the Mekong system. The myriad impacts occurring in and 
around the impoundment structures on the floodplain are changing wetland community 
composition and structure, which in turn will affect fisheries productivity and species 
biodiversity. Local livelihoods are already affected by fierce (often violent) competition for 
lake and floodplain resources (Bonheur & Lane, 2002), and as the wetlands and floodplain 
degrade further this is likely to increase. Historical development of water resources has had 
significant impacts on the environments and catchments in parts of the floodplain, and 
caused permanent changes in the hydrology of these areas (Kummu, 2009), and this will 
continue and accelerate with population growth in the region. Water resource use upstream 
of the Tonle Sap is potentially reducing and moderating the monsoonal flood pulse which 
sustains the lake and floodplain system. This may be linked to the timing of large dam 
construction within the Mekong River basin, although Laos and Thailand are extracting 
increasing amounts of water from the Mekong as well for use in rapidly expanding rice 
irrigation schemes (Osbourne, 2006). While social benefits may arise from amelioration of 
floods which in some years can cause extensive property damage and loss of life, this must 
be balanced against the need to maintain flood cycles which can sustain the environment of 
the Tonle Sap, and economic activities such as fishing and agriculture. There is an urgent 
need to develop effective cross-border management plans and agreements for the water 
resources of the Mekong system before the unique and economically important Tonle Sap 
region slips into further decline. 
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Future events in the Mekong basin, whether related to climate change or human 
development, will have important ramifications for the Tonle Sap. The annual flood pulse 
which sustains lake and floodplain ecology is vulnerable to change and as it changes the 
primary vegetation communities on the Tonle Sap floodplain will most likely face 
significant declines. In addition, in-situ impacts from upstream developments in the sub-
catchments of the lake, as well as further modification of the floodplain will act to reduce 
water availability and wetland area. The floodplain is already exhibiting signs of over-
exploitation (Campbell et al. 2006) and this will increase in line with population and 
development pressures. It is critical that future basin planning and water resource extraction 
between the Mekong Basin countries be coordinated in order to preserve the size, duration 
and timing of the flooding of the Tonle Sap. 

 
9. References 
 

Asian Development Bank (2002). Report and Recommendation for the Tonle Sap Environmental 
Management Project, ADB Report RRP: Cam 33418. 

Asian Development Bank (2005). Summary Initial Environmental Examination Report for the 
Tonle Sap Sustainable Livelihoods Project in Cambodia, August 2005, ABD. 

Asian Development Bank (2009) The Tonle Sap Initiative: Future Solutions Now, Available 
online: http://www.adb.org/Projects/Tonle_Sap/default.asp 

Benger, S.N. (2006) Groundwater interactions with the wetlands of the Tonle Sap, Cambodia, 
in Proc. HydroEco 2006, Karlovy Vary, Czech Republic, Sept 2006, pp.45-48. ISBN 80-
903635-1-2 

Blake, D. (2001). Proposed Mekong Dam scheme in China threatens millions in downstream 
countries. World Rivers Review 4-5, pp.43-51, ISBN 08906211 

Blasco, F.; Bellan, M.F. & Chaudhury, M.U. (1992)  Estimating the extent of floods in 
Bangladesh using SPOT data, Remote Sensing of Environment 39, pp.167-178, ISSN: 
0034-4257 

Bonheur, N. & Lane, B. D. (2002). Natural resources management for human security in 
Cambodia's Tonle Sap Biosphere Reserve, Environmental Science and Policy 51, pp. 
33-42, ISSN: 1462-9011 

Bolstad, P.V. & Lillesand, T.M. (1991) Rapid maximum likelihood classification, Photogramm. 
Eng. Remote Sens. 57, pp.67-74, ISSN: 0034-4257 

Brunner, P.; Hendricks Franssen H.J.; Kgotlhang, L.; Bauer-Gottwein, P. & Kinzelbach, W. 
(2007) How can remote sensing contribute to groundwater modelling? Hydrogeology 
Journal 15(1), pp.5–18, ISSN 1431-2174 

Cambodia National Mekong Committee (CNMC) (2006). Cambodia Country Report: Flood 
information in Cambodia, Proceedings of the 4th Annual Mekong Flood Forum 
“Improving Flood Forecasting and Warning Systems for Flood Management and 
Mitigation in the Lower Mekong Basin”, Siem Reap, Cambodia, May 2006, pp.23-36. 

Campbell, I. C.; Poole, C.; Giesen, W. & Valbo-Jorgensen, J. (2006) Species diversity and 
ecology of Tonle Sap Great Lake, Cambodia, Aquatic Sciences - Research Across 
Boundaries 68, pp. 355-373, ISSN 1015-1621 

Chandler, D. (1996). A History of Cambodia, Westview Press Inc, ISBN 974-7100-65-7, 
Melbourne. 

as they are short rooted and colonise quickly they can more easily make spatial transitions. 
Flooded woodland savannah, which makes up the majority of the floodplain is likely to be 
significantly affected, with areas predicted to reduce by some 23%. Grassland and sedge 
communities on the distal margins of the floodplain will be greatly reduced in area by an 
estimated 76%, although they are fast disappearing anyway due to human encroachment. In 
terms of human landuse, dry season cropping area within the flooded zone will be reduced 
by an estimated 43%, which will displace these activities to other locations, most likely 
toward lower elevations in the floodplain. The infrastructure associated with dry season 
cropping will in many cases no longer be viable.  
 
The results of the GIS modelling indicate that a number of habitats within the Tonle Sap 
floodplain are vulnerable to changes in the monsoonal flood pulse. This will possibly have 
ramifications throughout the Mekong due to the importance of many areas as fish breeding 
habitat. These problems will be compounded by the incursion of agricultural activities into 
core wetland areas as water availability is reduced on the lake margins (Campbell et al. 
2006), along with associated land clearance and resource extraction. 

 
8. Conclusion 
 

Remote sensing is able to provide valuable information on the structure, processes and 
functioning of the Tonle Sap floodplain. Large, inaccessible wetland and floodplain systems 
such as the Tonle Sap can be studied from space with a range of remote sensing technologies 
in combination with appropriate fieldwork and reference data. Interference with the natural 
flood cycles and inundation patterns of the lake and surrounding floodplain are causing 
changes in vegetation and are likely to be affecting the biological productivity not only on 
the Tonle Sap but throughout the Mekong system. The myriad impacts occurring in and 
around the impoundment structures on the floodplain are changing wetland community 
composition and structure, which in turn will affect fisheries productivity and species 
biodiversity. Local livelihoods are already affected by fierce (often violent) competition for 
lake and floodplain resources (Bonheur & Lane, 2002), and as the wetlands and floodplain 
degrade further this is likely to increase. Historical development of water resources has had 
significant impacts on the environments and catchments in parts of the floodplain, and 
caused permanent changes in the hydrology of these areas (Kummu, 2009), and this will 
continue and accelerate with population growth in the region. Water resource use upstream 
of the Tonle Sap is potentially reducing and moderating the monsoonal flood pulse which 
sustains the lake and floodplain system. This may be linked to the timing of large dam 
construction within the Mekong River basin, although Laos and Thailand are extracting 
increasing amounts of water from the Mekong as well for use in rapidly expanding rice 
irrigation schemes (Osbourne, 2006). While social benefits may arise from amelioration of 
floods which in some years can cause extensive property damage and loss of life, this must 
be balanced against the need to maintain flood cycles which can sustain the environment of 
the Tonle Sap, and economic activities such as fishing and agriculture. There is an urgent 
need to develop effective cross-border management plans and agreements for the water 
resources of the Mekong system before the unique and economically important Tonle Sap 
region slips into further decline. 
 



Geoscience and Remote Sensing24

Hughes, F.M.R. (1990) The influence of flooding regimes on forest distribution and 
composition in the Tana River Floodplain, Kenya, Journal of Applied Ecology 27, 
pp.475-491, ISSN 1365-2664 

Ingegnoli, V. (2002) Landscape Ecology: A Widening Foundation, Springer, ISBN: 978-3-540-
42743-8, Amsterdam. 

Imhoff, M.; Vermillion, C.; Story, M.H.; Choudery, A.M. & Gafoor, A. (1987) Monsoon flood 
boundary delineation and assessment using spaceborne imaging radar and Landsat 
data, Photogramm. Eng. Remote Sens. 53, pp.405-413, ISSN: 0099-1112 

Jacobs, J.W. (2002)  The Mekong River Commission: transboundary water resources 
planning and regional security, The Geographical Journal 168, pp. 354-364, ISSN 1861-
9568 

Jensen, J.R. (2007) Remote Sensing of the Environment, 2nd Edition, Pearson Prentice Hall, ISBN 
0-13-188950-8, Upper Saddle River, NJ. 

Jensen, S.K. & Waltz, F.A. (1979) Principal Components Analysis and Canonical Analysis in 
Remote Sensing, in Proc. American Photogrammetric Society 45th Annual Meeting, 
pp.337-348, ISSN: 0099-1112 

Johnson, R.M. & Barson, M.M. (1993) Remote sensing of Australian wetlands: an evaluation 
of Landsat TM data for inventory and classification, Aust. J. Mar. Freshwater Res. 44, 
pp.235-252, ISSN: 0067-1940 

Junk, W. J.; Bayley, P. B. & Sparks, R. E. (1989). The Flood Pulse Concept in river-floodplain 
systems, Can. Spec. Publ. Fish. Aquat. Sci. 106, pp. 110-127. ISSN: 1205-7533  

Kauth, R.J. & Thomas, G.S. (1976) The Tasseled Cap - A graphic description of the spectral 
temporal development of agricultural crops as seen by Landsat, in Proc. LARS 1976 
Symposium on Machine Processing of Remotely Sensed Data, Purdue University. 

Kiem, A. S.; Ishidaira, H.; Hapuarachchi, H. P.; Zhou, M. C.; Hirabayashi,Y. & Takeuchi, K. 
(2008) Future hydroclimatology of the Mekong River basin simulated using the 
high-resolution Japan Meteorological Agency (JMA) AGCM, Hydrological Processes 
22: 1382-1394, ISSN: 1099-1085 

Kiem A.S., Hapuarachchi H.P. & Takeuchi, K. (2004) Impacts of climate variability on 
streamflow in the Mekong River: an interesting challenge for hydrological 
modelling, In: Proc. River Symposium 2004, Sept 2004, Brisbane. 

Kiernan, B. (1996). The Pol Pot Regime – Race, Power and Genocide in Cambodia under the Khmer 
Rouge, 1975-79, Yale University Press, ISBN 974 7100 43 6, New Haven 

Kite, G. (2001). Modelling the Mekong: hydrological simulation for environmental impact 
studies, Journal of Hydrology 253, pp. 1-13, ISSN: 0022-1694 

Koponen, J.; Josza, J.; Lauri, H.; Sarkkula, J. & Markku, V. (2003)  Modelling Tonle Sap 
Watershed and Lake Processes for Environmental Change Assessment, Mekong 
River Commission MRCS/WUP-FIN Model Report. 

Krohn, M.D.; Milton, N.M. & Segal, D.B. (1983) Seasat synthetic aperture radar (SAR) 
response to lowland vegetation types in eastern Maryland and Virginia, J. Geophys. 
Res. 88, pp.1937-1952, ISSN 0148–0227 

Kummu, M. (2009) Water management in Angkor: Human impacts on hydrology and 
sediment transportation, Journal of Environmental Management 90, 3, pp. 1413-1421, 
ISSN: 0301-4797 

Lillesand, T.M.; Kiefer, R.W. & Chipman, J.W. (2008). Principles of Remote Sensing and Image 
Analysis, 6th Edition, Wiley, ISBN 978-0-470-05245-7, New York. 

Choudery, B.J. (1991) Passive microwave remote sensing contribution to hydrological 
variables, Surveys in Geophyics 12, pp.63-84, ISSN 0169-3298 

Collins, J.B. & Woodcock, C.E. (1996) An assessment of several linear change detection 
techniques for mapping forest mortality using multitemporal Landsat TM data. 
Remote Sensing of Environment 56, 66-77, ISSN: 0034-4257 

Congalton, R. G. & Green, K. (2008). Assessing the Accuracy of Remotely Sensed Data: Principles 
and Practices, 2nd Edition, CRC Press, ISBN:  9781420055122, Boca Raton, FL. 

Daming, H. (1997) Facilitating regional sustainable development through integrated multi-
objective utilization management of water resources in the Lancang-Mekong river 
basin, Journal of Chinese Geography 7, 4, ISSN 1861-9568 

Engheta, N. & Elachi, C. (1982) Radar scattering from a diffuse vegetation layer over a 
smooth surface, IEEE Trans. Geosci. and Remote Sens. 20, pp.212-216, ISSN: 0196-2892 

Environmental Systems Research Institute (2009) ArcGIS 9.3 ModelBuilder Software, ESRI, 
Redlands, CA. 

Evans, D.; Pottier, C.; Fletcher, R.; Hensley, S.; Tapley, I.; Milne, A. & Barbetti, M. (2007) 
A comprehensive archaeological map of the world's largest preindustrial 
settlement complex at Angkor, Cambodia, Proceedings of the National Academy of 
Sciences of the United States of America 104 (36), pp. 14277–14282, ISSN 1091-6490 

Evans, D.E.; Farr, T.G.; Ford, J.P.; Thompson, T.W. & Werner, C.L. (1986)  Multipolarisation 
radar images for geological mapping and vegetation discrimination, IEEE Trans. 
Geosci. and Remote Sens. 24, pp.246-257, ISSN: 0196-2892 

Ford, J.P. & Casey, D.J. (1988) Shuttle radar mapping with diverse incidence angles in the 
rainforest of Borneo, Int. Journal of Remote Sensing 5, pp.927-943, ISSN: 1366-5901 

Ford, J.P.; Cimano, J.B.; Holt, B. & Ruzek, M.R. (1986) Shuttle Imaging Radar Views the Earth 
from Challenger: The SIR-B Experiment, Jet Propulsion Laboratory publication 86-10, 
Pasadena, California 

Forman, R.T.T. & Godron, M. (1986)  Landscape Ecology, Wiley, ISBN: 0471870374, New 
York.  

Frazier, P., Page, K., Louis, J., Briggs S. & Robertson, A. I. (2003). Relating wetland 
inundation to river flow using Landsat TM data. Int. Journal of Remote Sensing 2419, 
pp. 3755-3770, ISSN: 1366-5901 

Hendricks Franssen, H. J.; Brunner, P.; Makobo, P. & Kinzelbach, W. (2008) Equally likely 
inverse solutions to a groundwater flow problem including pattern information 
from remote sensing images, Water Resources Research, 44, W01419, 
doi:10.1029/2007WR006097 

Hess, L.L.; Melack, J.M. & Simonett, D.S. (1990) Radar detection of flooding beneath the 
forest canopy: a review, Int. Journal of Remote Sensing 11, pp.1313-1325, ISSN: 1366-
5901 

Higham, C. (2001). The Civilisation of Angkor, Orion Books, London. ISBN 1 84212 584 2 
Hixson, K., Scholz, D. and Funs, N. (1980) Evaluation of several schemes for classification of 

remotely sensed data, Photogramm. Eng. Remote Sens. 46, pp.1547-1553, ISSN: 0099-
1112 

Hoffer, R.M.; Lozano-Garcia, D.F.; Gillespie, D.D.; Mueller, P.W. & Ruzek, M.J. (1986)  
Analysis of multiple incidence angle SIR-B data for determining forest stand 
characteristics, The Second Spaceborne Imaging Radar Symposium, JPL Publication 86-
26, Pasadena CA, pp.159-164 



Remote Sensing of the Ecology and Functioning  
of the Mekong River Basin with Special Reference to the Tonle Sap 25

Hughes, F.M.R. (1990) The influence of flooding regimes on forest distribution and 
composition in the Tana River Floodplain, Kenya, Journal of Applied Ecology 27, 
pp.475-491, ISSN 1365-2664 

Ingegnoli, V. (2002) Landscape Ecology: A Widening Foundation, Springer, ISBN: 978-3-540-
42743-8, Amsterdam. 

Imhoff, M.; Vermillion, C.; Story, M.H.; Choudery, A.M. & Gafoor, A. (1987) Monsoon flood 
boundary delineation and assessment using spaceborne imaging radar and Landsat 
data, Photogramm. Eng. Remote Sens. 53, pp.405-413, ISSN: 0099-1112 

Jacobs, J.W. (2002)  The Mekong River Commission: transboundary water resources 
planning and regional security, The Geographical Journal 168, pp. 354-364, ISSN 1861-
9568 

Jensen, J.R. (2007) Remote Sensing of the Environment, 2nd Edition, Pearson Prentice Hall, ISBN 
0-13-188950-8, Upper Saddle River, NJ. 

Jensen, S.K. & Waltz, F.A. (1979) Principal Components Analysis and Canonical Analysis in 
Remote Sensing, in Proc. American Photogrammetric Society 45th Annual Meeting, 
pp.337-348, ISSN: 0099-1112 

Johnson, R.M. & Barson, M.M. (1993) Remote sensing of Australian wetlands: an evaluation 
of Landsat TM data for inventory and classification, Aust. J. Mar. Freshwater Res. 44, 
pp.235-252, ISSN: 0067-1940 

Junk, W. J.; Bayley, P. B. & Sparks, R. E. (1989). The Flood Pulse Concept in river-floodplain 
systems, Can. Spec. Publ. Fish. Aquat. Sci. 106, pp. 110-127. ISSN: 1205-7533  

Kauth, R.J. & Thomas, G.S. (1976) The Tasseled Cap - A graphic description of the spectral 
temporal development of agricultural crops as seen by Landsat, in Proc. LARS 1976 
Symposium on Machine Processing of Remotely Sensed Data, Purdue University. 

Kiem, A. S.; Ishidaira, H.; Hapuarachchi, H. P.; Zhou, M. C.; Hirabayashi,Y. & Takeuchi, K. 
(2008) Future hydroclimatology of the Mekong River basin simulated using the 
high-resolution Japan Meteorological Agency (JMA) AGCM, Hydrological Processes 
22: 1382-1394, ISSN: 1099-1085 

Kiem A.S., Hapuarachchi H.P. & Takeuchi, K. (2004) Impacts of climate variability on 
streamflow in the Mekong River: an interesting challenge for hydrological 
modelling, In: Proc. River Symposium 2004, Sept 2004, Brisbane. 

Kiernan, B. (1996). The Pol Pot Regime – Race, Power and Genocide in Cambodia under the Khmer 
Rouge, 1975-79, Yale University Press, ISBN 974 7100 43 6, New Haven 

Kite, G. (2001). Modelling the Mekong: hydrological simulation for environmental impact 
studies, Journal of Hydrology 253, pp. 1-13, ISSN: 0022-1694 

Koponen, J.; Josza, J.; Lauri, H.; Sarkkula, J. & Markku, V. (2003)  Modelling Tonle Sap 
Watershed and Lake Processes for Environmental Change Assessment, Mekong 
River Commission MRCS/WUP-FIN Model Report. 

Krohn, M.D.; Milton, N.M. & Segal, D.B. (1983) Seasat synthetic aperture radar (SAR) 
response to lowland vegetation types in eastern Maryland and Virginia, J. Geophys. 
Res. 88, pp.1937-1952, ISSN 0148–0227 

Kummu, M. (2009) Water management in Angkor: Human impacts on hydrology and 
sediment transportation, Journal of Environmental Management 90, 3, pp. 1413-1421, 
ISSN: 0301-4797 

Lillesand, T.M.; Kiefer, R.W. & Chipman, J.W. (2008). Principles of Remote Sensing and Image 
Analysis, 6th Edition, Wiley, ISBN 978-0-470-05245-7, New York. 

Choudery, B.J. (1991) Passive microwave remote sensing contribution to hydrological 
variables, Surveys in Geophyics 12, pp.63-84, ISSN 0169-3298 

Collins, J.B. & Woodcock, C.E. (1996) An assessment of several linear change detection 
techniques for mapping forest mortality using multitemporal Landsat TM data. 
Remote Sensing of Environment 56, 66-77, ISSN: 0034-4257 

Congalton, R. G. & Green, K. (2008). Assessing the Accuracy of Remotely Sensed Data: Principles 
and Practices, 2nd Edition, CRC Press, ISBN:  9781420055122, Boca Raton, FL. 

Daming, H. (1997) Facilitating regional sustainable development through integrated multi-
objective utilization management of water resources in the Lancang-Mekong river 
basin, Journal of Chinese Geography 7, 4, ISSN 1861-9568 

Engheta, N. & Elachi, C. (1982) Radar scattering from a diffuse vegetation layer over a 
smooth surface, IEEE Trans. Geosci. and Remote Sens. 20, pp.212-216, ISSN: 0196-2892 

Environmental Systems Research Institute (2009) ArcGIS 9.3 ModelBuilder Software, ESRI, 
Redlands, CA. 

Evans, D.; Pottier, C.; Fletcher, R.; Hensley, S.; Tapley, I.; Milne, A. & Barbetti, M. (2007) 
A comprehensive archaeological map of the world's largest preindustrial 
settlement complex at Angkor, Cambodia, Proceedings of the National Academy of 
Sciences of the United States of America 104 (36), pp. 14277–14282, ISSN 1091-6490 

Evans, D.E.; Farr, T.G.; Ford, J.P.; Thompson, T.W. & Werner, C.L. (1986)  Multipolarisation 
radar images for geological mapping and vegetation discrimination, IEEE Trans. 
Geosci. and Remote Sens. 24, pp.246-257, ISSN: 0196-2892 

Ford, J.P. & Casey, D.J. (1988) Shuttle radar mapping with diverse incidence angles in the 
rainforest of Borneo, Int. Journal of Remote Sensing 5, pp.927-943, ISSN: 1366-5901 

Ford, J.P.; Cimano, J.B.; Holt, B. & Ruzek, M.R. (1986) Shuttle Imaging Radar Views the Earth 
from Challenger: The SIR-B Experiment, Jet Propulsion Laboratory publication 86-10, 
Pasadena, California 

Forman, R.T.T. & Godron, M. (1986)  Landscape Ecology, Wiley, ISBN: 0471870374, New 
York.  

Frazier, P., Page, K., Louis, J., Briggs S. & Robertson, A. I. (2003). Relating wetland 
inundation to river flow using Landsat TM data. Int. Journal of Remote Sensing 2419, 
pp. 3755-3770, ISSN: 1366-5901 

Hendricks Franssen, H. J.; Brunner, P.; Makobo, P. & Kinzelbach, W. (2008) Equally likely 
inverse solutions to a groundwater flow problem including pattern information 
from remote sensing images, Water Resources Research, 44, W01419, 
doi:10.1029/2007WR006097 

Hess, L.L.; Melack, J.M. & Simonett, D.S. (1990) Radar detection of flooding beneath the 
forest canopy: a review, Int. Journal of Remote Sensing 11, pp.1313-1325, ISSN: 1366-
5901 

Higham, C. (2001). The Civilisation of Angkor, Orion Books, London. ISBN 1 84212 584 2 
Hixson, K., Scholz, D. and Funs, N. (1980) Evaluation of several schemes for classification of 

remotely sensed data, Photogramm. Eng. Remote Sens. 46, pp.1547-1553, ISSN: 0099-
1112 

Hoffer, R.M.; Lozano-Garcia, D.F.; Gillespie, D.D.; Mueller, P.W. & Ruzek, M.J. (1986)  
Analysis of multiple incidence angle SIR-B data for determining forest stand 
characteristics, The Second Spaceborne Imaging Radar Symposium, JPL Publication 86-
26, Pasadena CA, pp.159-164 



Geoscience and Remote Sensing26

status with airborne imaging radar, Remote Sensing of Environment 40, pp.185-196, 
ISSN: 0034-4257 

Puy, L.; Lek, S.; Touch, S. T.; Mao, S-O. & Chhouk, B. (1999). Diversity and spatial 
distribution of freshwater fish in Great Lake and Tonle Sap river Cambodia, 
Southeast Asia, Aquatic Living Resources 126, pp. 379-386, ISSN: 0990-7440 

Ramireddygari, S. R.; Sophocleous, M. A.; Koelliker, J. K.; Perkins, S. P. & Govindaraju, R. S. 
(2000). Development and application of a comprehensive simulation model to 
evaluate impacts of watershed structures and irrigation water use on streamflow 
and groundwater: the case of Wet Walnut Creek Watershed, Kansas, USA. Journal 
of Hydrology 2363-4, pp. 223-246, ISSN: 0022-1694 

Richards, J.A. & Jia, X. (2006) Remote Sensing Digital Image Analysis - An Introduction, 4th 
Edition, Springer-Verlag, Berlin. ISBN: 978-3-540-25128-6 

Richards, J.A.; Sun, G-Q. & Simonett, D.S. (1987a) L-band radar backscatter modelling of 
forest stands, IEEE Trans. Geosc. Remote Sens. 25, pp.487-498, ISSN: 0196-2892   

Richards, J.A.; Woodgate, P.W.; & Skidmore, A.K. (1987b) An explanation of enhanced radar 
backscattering from flooded forests, Int. Journal of Remote Sensing 8, pp.1093-1100, 
ISSN: 1366-5901 

San Miguel-Ayanz, J. & Biging, G.S. (1997) Comparison of single-stage and multi-stage 
classification approaches for cover type mapping with TM and SPOT data, Remote 
Sensing of Environment 59, pp.92-104, ISSN: 0034-4257 

Scheffer, M. (1998). The Ecology of Shallow Lakes, Chapman and Hill, ISBN: 0-412-74920-3, 
London. 

Scoones, I. (1991) Wetlands in Drylands: key resources for agricultural and pastoral 
production in Africa, Ambio 20, pp.366-371, ISSN: 0044-7447 

Sims, N. (2004). The Landscape-scale Structure and Functioning of Floodplains, 
Unpublished PhD Thesis, University of Canberra. 

Sippel, S.J.; Hamilton, S.K.; Melack, J.M. & Choudery, B.J. (1994) Determination of 
inundation area in the Amazon River floodplain using the SMMR 37 GHz 
polarisation difference, Remote Sensing of Environment 48, pp.70-76, ISSN: 0034-4257 

Slater, J.A.; Garvey, G.; Johnston, C.; Haase, J.; Heady, B.; Kroenung, G. & Little J. (2006) The 
SRTM data “finishing” process and products. Photogramm. Eng. Remote Sens. 72(3), 
pp.237–247, ISSN: 0099-1112 

Someth,  P.; Kubo, N.; Tanji, H. & Lyd, S. (2009) Ring dike system to harness floodwater 
from the Mekong River for paddy rice cultivation in the Tonle Sap Lake floodplain 
in Cambodia, Agricultural Water Management 96, pp.100-110, ISSN: 0378-3774 

Stanger, G.; VanTruong, T.; Ngoc, K. S.; Luyen, T. V. & Thanh, T. T. (2005). Arsenic in 
groundwaters of the Lower Mekong, Environmental Geochemistry and Health 27, pp. 
341-357, ISSN: 1573-2983 

Top, N.; Mizoue, N.; Kai, S. & Nokao, T. (2004). Variation in woodfuel consumption patterns 
in response to forest availability in Kampong Thom Province, Cambodia, Biomass 
and Energy 27, pp. 57-68, ISSN: 0167-5494 

Van Zalinge, N.; Thouk, N.; Tana, T.C. & Leung, D. (2000). Where there is water, there is fish?  
Cambodian fisheries issues in a Mekong River Basin perspective. In: Ahmed, M. 
and Hirsh, P. (Eds) Common Property in the Mekong: Issues of Sustainability and 
Subsistence. ICLARM Study Review.  

Longley, P.A.; Goodchild, M.F.; Maguire, D.J. & Rhind, D.W. (2005) Geographic Information 
Systems and Science, 2nd Edition, Wiley, ISBN 0-470-87000-1, New York. 

Malanson, G.P. (1993) Riparian Landscapes, Cambridge University Press, ISBN-13: 
9780521384315, Cambridge. 

Maselli, F.; Conese, C.; Zipoli, G. & Pittau, M.A. (1990) Use of error probabilities to improve 
area estimates based on maximum likelihood classifications, Remote Sensing of 
Environment 31, pp.155-160, ISSN: 0034-4257 

McDonald, J.; Bunnat, P. & Virak, P. (1997). Plant Communities of the Tonle Sap Floodplain, 
UNESCO/IUCN/WI, Phnom Penh. 

Mekong River Commission (2007) Annual Mekong Flood Report 2006, Mekong River 
Commission, ISSN: 1728 3248, Vientiane. 

Mekong River Commission (2005) Overview of the Hydrology of the Mekong Basin, Mekong 
River Commission, ISSN: 1728 3248, Vientiane, November 2005. 

Mekong Secretariat (1994) Annual Report 1994, Mekong Secretariat, ISSN: 1728 3248, 
Bangkok. 

Mertes, L.A.K.; Daniel, D.L.; Melack, J.M.; Nelson, B.; Martinelli, L.A. & Forsberg, B.R. (1995)  
Spatial patterns of hydrology, geomorphology, and vegetation on the floodplain of 
the Amazon River in Brazil from a remote sensing perspective, Geomorphology 13, 
pp.215-232,  ISSN: 0169-555X 

Mertes, L.A.K.; Smith, M.O. & Adams, J.B. (1993) Estimating suspended sediment 
concentrations in surface waters of the Amazon River wetlands from Landsat 
images, Remote Sensing of Environment 43, pp.281-301, ISSN: 0034-4257 

Milne, A.K. & Tapley, I.J. (2005). Change Detection Analysis in the Wetlands Using JERS-1 
Radar Data: Tone Sap Great Lake, Cambodia, IEEE doi 0-7803-9119-5/05. pp. 146-
150 

Milzow, C.; Kgotlhang, N.; Bauer-Gottwein, P.; Meier, P. & Kinzelbach, W. (2009) Regional 
review: the hydrology of the Okavango Delta, Botswana - processes, data and 
modelling, Hydrogeology Journal, ISSN 1431-2174, Published Online DOI 
10.1007/s10040-009-0436-0 

Mutiti, S.; Levy, J., Mututi, C. & Guturu, N.S. (2008) Assessing Ground Water Development 
Potential Using Landsat Imagery, Groundwater, Published Online DOI 
10.1111/j.1745-6584.2008.00524.x 

Ormsby, J.P.; Blanchard, B.J. & Blanchard, A.J. (1985) Detection of lowland flooding using 
active microwave systems, Photogramm. Eng. Remote Sens. 51, pp.317-328, ISSN: 
0099-1112 

Osbourne, M. (2006)  River at risk: The Mekong and the water politics of China and Southeast Asia, 
Lowy Institute for International Policy, ISBN 1 921004 02 9, New York. 

Pearce, B. (1995). The compilation of regional flood maps using remote sensing techniques over the 
Ballonne river catchment and downstream areas. Technical Report. Queensland 
Department of Primary Industries, Brisbane, QLD. 

Penny, D. (2006). The Holocene history and development of the Tonle Sap, Cambodia. 
Quaternary Science Reviews 25, pp. 310-322, ISSN: 0277-3791 

Pope, K.O.; Sheffner, E.J.; Linthicum, K.J.; Bailey, C.L.; Logan, T.M.; Kasischke, E.S.; Birney, 
K.; Nlogu, A.R. & Roberts, C.R. (1992) Identification of the central Kenyan Rift 
Valley fever virus vector habitats with Landsat TM and evaluation of their flooding 



Remote Sensing of the Ecology and Functioning  
of the Mekong River Basin with Special Reference to the Tonle Sap 27

status with airborne imaging radar, Remote Sensing of Environment 40, pp.185-196, 
ISSN: 0034-4257 

Puy, L.; Lek, S.; Touch, S. T.; Mao, S-O. & Chhouk, B. (1999). Diversity and spatial 
distribution of freshwater fish in Great Lake and Tonle Sap river Cambodia, 
Southeast Asia, Aquatic Living Resources 126, pp. 379-386, ISSN: 0990-7440 

Ramireddygari, S. R.; Sophocleous, M. A.; Koelliker, J. K.; Perkins, S. P. & Govindaraju, R. S. 
(2000). Development and application of a comprehensive simulation model to 
evaluate impacts of watershed structures and irrigation water use on streamflow 
and groundwater: the case of Wet Walnut Creek Watershed, Kansas, USA. Journal 
of Hydrology 2363-4, pp. 223-246, ISSN: 0022-1694 

Richards, J.A. & Jia, X. (2006) Remote Sensing Digital Image Analysis - An Introduction, 4th 
Edition, Springer-Verlag, Berlin. ISBN: 978-3-540-25128-6 

Richards, J.A.; Sun, G-Q. & Simonett, D.S. (1987a) L-band radar backscatter modelling of 
forest stands, IEEE Trans. Geosc. Remote Sens. 25, pp.487-498, ISSN: 0196-2892   

Richards, J.A.; Woodgate, P.W.; & Skidmore, A.K. (1987b) An explanation of enhanced radar 
backscattering from flooded forests, Int. Journal of Remote Sensing 8, pp.1093-1100, 
ISSN: 1366-5901 

San Miguel-Ayanz, J. & Biging, G.S. (1997) Comparison of single-stage and multi-stage 
classification approaches for cover type mapping with TM and SPOT data, Remote 
Sensing of Environment 59, pp.92-104, ISSN: 0034-4257 

Scheffer, M. (1998). The Ecology of Shallow Lakes, Chapman and Hill, ISBN: 0-412-74920-3, 
London. 

Scoones, I. (1991) Wetlands in Drylands: key resources for agricultural and pastoral 
production in Africa, Ambio 20, pp.366-371, ISSN: 0044-7447 

Sims, N. (2004). The Landscape-scale Structure and Functioning of Floodplains, 
Unpublished PhD Thesis, University of Canberra. 

Sippel, S.J.; Hamilton, S.K.; Melack, J.M. & Choudery, B.J. (1994) Determination of 
inundation area in the Amazon River floodplain using the SMMR 37 GHz 
polarisation difference, Remote Sensing of Environment 48, pp.70-76, ISSN: 0034-4257 

Slater, J.A.; Garvey, G.; Johnston, C.; Haase, J.; Heady, B.; Kroenung, G. & Little J. (2006) The 
SRTM data “finishing” process and products. Photogramm. Eng. Remote Sens. 72(3), 
pp.237–247, ISSN: 0099-1112 

Someth,  P.; Kubo, N.; Tanji, H. & Lyd, S. (2009) Ring dike system to harness floodwater 
from the Mekong River for paddy rice cultivation in the Tonle Sap Lake floodplain 
in Cambodia, Agricultural Water Management 96, pp.100-110, ISSN: 0378-3774 

Stanger, G.; VanTruong, T.; Ngoc, K. S.; Luyen, T. V. & Thanh, T. T. (2005). Arsenic in 
groundwaters of the Lower Mekong, Environmental Geochemistry and Health 27, pp. 
341-357, ISSN: 1573-2983 

Top, N.; Mizoue, N.; Kai, S. & Nokao, T. (2004). Variation in woodfuel consumption patterns 
in response to forest availability in Kampong Thom Province, Cambodia, Biomass 
and Energy 27, pp. 57-68, ISSN: 0167-5494 

Van Zalinge, N.; Thouk, N.; Tana, T.C. & Leung, D. (2000). Where there is water, there is fish?  
Cambodian fisheries issues in a Mekong River Basin perspective. In: Ahmed, M. 
and Hirsh, P. (Eds) Common Property in the Mekong: Issues of Sustainability and 
Subsistence. ICLARM Study Review.  

Longley, P.A.; Goodchild, M.F.; Maguire, D.J. & Rhind, D.W. (2005) Geographic Information 
Systems and Science, 2nd Edition, Wiley, ISBN 0-470-87000-1, New York. 

Malanson, G.P. (1993) Riparian Landscapes, Cambridge University Press, ISBN-13: 
9780521384315, Cambridge. 

Maselli, F.; Conese, C.; Zipoli, G. & Pittau, M.A. (1990) Use of error probabilities to improve 
area estimates based on maximum likelihood classifications, Remote Sensing of 
Environment 31, pp.155-160, ISSN: 0034-4257 

McDonald, J.; Bunnat, P. & Virak, P. (1997). Plant Communities of the Tonle Sap Floodplain, 
UNESCO/IUCN/WI, Phnom Penh. 

Mekong River Commission (2007) Annual Mekong Flood Report 2006, Mekong River 
Commission, ISSN: 1728 3248, Vientiane. 

Mekong River Commission (2005) Overview of the Hydrology of the Mekong Basin, Mekong 
River Commission, ISSN: 1728 3248, Vientiane, November 2005. 

Mekong Secretariat (1994) Annual Report 1994, Mekong Secretariat, ISSN: 1728 3248, 
Bangkok. 

Mertes, L.A.K.; Daniel, D.L.; Melack, J.M.; Nelson, B.; Martinelli, L.A. & Forsberg, B.R. (1995)  
Spatial patterns of hydrology, geomorphology, and vegetation on the floodplain of 
the Amazon River in Brazil from a remote sensing perspective, Geomorphology 13, 
pp.215-232,  ISSN: 0169-555X 

Mertes, L.A.K.; Smith, M.O. & Adams, J.B. (1993) Estimating suspended sediment 
concentrations in surface waters of the Amazon River wetlands from Landsat 
images, Remote Sensing of Environment 43, pp.281-301, ISSN: 0034-4257 

Milne, A.K. & Tapley, I.J. (2005). Change Detection Analysis in the Wetlands Using JERS-1 
Radar Data: Tone Sap Great Lake, Cambodia, IEEE doi 0-7803-9119-5/05. pp. 146-
150 

Milzow, C.; Kgotlhang, N.; Bauer-Gottwein, P.; Meier, P. & Kinzelbach, W. (2009) Regional 
review: the hydrology of the Okavango Delta, Botswana - processes, data and 
modelling, Hydrogeology Journal, ISSN 1431-2174, Published Online DOI 
10.1007/s10040-009-0436-0 

Mutiti, S.; Levy, J., Mututi, C. & Guturu, N.S. (2008) Assessing Ground Water Development 
Potential Using Landsat Imagery, Groundwater, Published Online DOI 
10.1111/j.1745-6584.2008.00524.x 

Ormsby, J.P.; Blanchard, B.J. & Blanchard, A.J. (1985) Detection of lowland flooding using 
active microwave systems, Photogramm. Eng. Remote Sens. 51, pp.317-328, ISSN: 
0099-1112 

Osbourne, M. (2006)  River at risk: The Mekong and the water politics of China and Southeast Asia, 
Lowy Institute for International Policy, ISBN 1 921004 02 9, New York. 

Pearce, B. (1995). The compilation of regional flood maps using remote sensing techniques over the 
Ballonne river catchment and downstream areas. Technical Report. Queensland 
Department of Primary Industries, Brisbane, QLD. 

Penny, D. (2006). The Holocene history and development of the Tonle Sap, Cambodia. 
Quaternary Science Reviews 25, pp. 310-322, ISSN: 0277-3791 

Pope, K.O.; Sheffner, E.J.; Linthicum, K.J.; Bailey, C.L.; Logan, T.M.; Kasischke, E.S.; Birney, 
K.; Nlogu, A.R. & Roberts, C.R. (1992) Identification of the central Kenyan Rift 
Valley fever virus vector habitats with Landsat TM and evaluation of their flooding 



Geoscience and Remote Sensing28

Webby, R.; Adamson, P.T.; Boland, J.; Howlett, P.G.; Metcalfe, A.V. & Piantadosi, J. (2005)  
The Mekong – Applications of Value at Risk (VaR) and Conditional Value at Risk 
(CVaR) simulation to the benefits, costs and consequences of water resources 
development in a large river basin. In: MODSIM 2005 International Congress on 
Modelling and Simulation. (ed. by A. Zerger & R.M. Argent), pp.2109-2115,  ISBN: 0-
9758400-0-2, Modelling and Simulation Society of Australia and New Zealand, 
December 2005, Brisbane. 

Wikramanayake, E. & Dinerstein, E. (2001) Terrestrial Ecoregions of the Indo-Pacific, Island 
Press, ISBN: 1559639237 Washington DC. 

Wright, G.; Moffatt, D. & Wager, J. (2004). Establishment of the Tonle Sap Basin Management 
Organisation: Tonle Sap Basin Profile, Cambodia National Mekong Committee, Asian 
Development Bank Report TA2412-CAM. 

Wu, S.T. & Sadler, S.A. (1987) Multipolaristaion SAR data for surface feature delineation and 
forest vegetation characterisation, IEEE Trans. Geosc. Remote Sens. 25, pp.67-76, 
ISSN: 0196-2892 

Yool, S.R.; Star, Y.L.; Estes, J.E.; Botkin, E.B.; Eckardt, D.W. & Davis, F.W. (1986)  
Performance analysis of image processing algorithms for classification of natural 
vegetation in the mountains of southern California, Int. Journal of Remote Sensing 7, 
pp.683-702, ISSN: 1366-5901 



Remote Sensing of Forest Health 29

Remote Sensing of Forest Health

Jyrki Tuominen, Tarmo Lipping, Viljo Kuosmanen and Reija Haapanen

X 
 

Remote Sensing of Forest Health 
 

Jyrki Tuominen, Tarmo Lipping, Viljo Kuosmanen* and Reija Haapanen** 
Tampere University of Technology 

Finland 
Geolocical Survey of Finland* 

Finland 
HaapanenForestConsulting** 

Finland 
 

1. Introduction 
 

Global forest health is declining. The main reasons for this unfortunate development include 
climate change, air pollution and increased human activities. There is a need to monitor and 
quantitatively measure the change in forest health. Forest health can be defined in many 
different ways depending on the perspective one takes. The relationship between the cause 
and the symptom of forest health deterioration is complex mainly because the same 
symptom can often be induced by multiple different stressors.  
Modern state of the art remote sensing technologies provide the means for wide coverage 
measurement of forest health with reasonable accuracy. In the assessment of forest health by 
means of remote sensing, features called Vegetation Indices (VIs) are usually extracted from 
the data. VIs are combinations of surface reflectances at two or more wavelengths designed 
to highlight a particular property of vegetation. In addition to specific VIs some attempts to 
develop a general forest health index combining the assessments of the various properties 
have been published.  
In this chapter we first discuss the term ‘forest health’ as well as the various causes and 
symptoms of forest health deterioration. We then argue about the role of remote sensing in 
forest health monitoring and present the most common VIs used for the assessment of forest 
health. The VIs’ capability to detect different types of forest damage is assessed in case 
studies; the results for Ni contaminated and pest inflicted forest areas are presented in 
sections 7 and 8, respectively. Finally, future possibilities in applying the remote sensing 
technologies to forest health monitoring are discussed.             

 
2. Forest health 
 

Despite its widespread use, the term “forest health” is vaguely defined in the literature, 
making its application to forest management difficult (Kolb et al., 1994). The definition of 
forest health is always a matter of perspective. Social, economic and ecological perspectives 
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matters for its own sake. Kolb, Wagner & Covington (1994) defined forest health as follows: 
“The term forest health should be restricted to the examination of the role of biotic and 
abiotic agents in ecosystem processes.” Several characteristics for such a system were 
mentioned: resistance to dramatic change in populations of important organisms within the 
ecosystem not accounted for by predicted successional trends; a functional balance between 
supply and demand of essential resources; and a diversity of seral stages, cover types and 
stand structures that provide habitat for many native species and all essential processes.            
Climate change, in particular increased temperatures and levels of atmospheric carbon 
dioxide, as well as changes in precipitation and the occurrence of extreme climate events, is 
having notable impacts on the world’s forest health. Increased temperatures may relieve 
forest stress during colder seasons but increase it during warmer seasons. Impacts of 
increased temperatures vary widely among different climatic zones. Climate change has 
both direct and indirect impacts on forest health (Moore&Allard, 2008). For example, 
climate change has strong influence on forest pests which can be considered as a direct 
impact. Pests can rapidly react to changing climate because of their short generation times. 
Drought is a good example of a cause that is influencing forest indirectly. Drought can 
change tree physiology in a way that it is more vulnerable to certain insect and pest species. 
Such changes are, e.g., sugar content of foliage, changes in leaf colour, change of leaf 
thickness and structural changes of foliage.  

 
3. Causes and symptoms of deteriorated forest health 
 

In the scope of this chapter it is only possible to address the complex relationship between 
causes and symptoms of deteriorated forest health briefly. The relationship is complex 
mainly because there are often multiple stressors causing a certain symptom (Ferretti, 1997). 
One of the major causes of deteriorated forest health is air pollution, particularly acid rain 
and ground-level ozone. There are two major types of pollutant threatening forest health: 
photochemical oxidants of which ozone is the primary compound, and nitrogen pollutants. 
Ozone is toxic (plant-killing) to sensitive plant species. Nitrogen is the primary growth-
limiting nutrient, yet it is also a pollutant when in excess. The emission levels of these two 
pollutants are expected to increase significantly globally (Moore&Allard, 2008).        
Some causes of deteriorated forest health are controversial. Depending on the perspective 
they can be seen as beneficial or negative. The role of disease agents (pathogens) and insects, 
for example, is controversial. They are essential to the function of dynamic ecosystems as 
they recycle nutrients and create habitats for different species. They can also negatively 
affect forest health, increase mortality and create growth losses. Diseases and insects 
influence the health of forests, trees outside forests and other wooded lands. Globally, all 
ecosystems with tree cover are under increasing threat, as the periods between sequential 
outbreaks are rapidly decreasing because of a range of factors including climate change and 
lack of proper forest  management (Moore&Allard, 2008). 
The impact of forest fires may also be controversial. Although they are usually seen as a 
threat to forest health, these natural events are key elements in many forest ecosystems as 
well. Another major cause for deteriorated forest health is posed by droughts. The 
consequences of a long-lasting drought can be very severe.  In addition to direct impacts, 
they have indirect ones, for example pest outbreaks are associated with droughts. Drought 
can also increase the risk of forest fires. 

 

are taken most frequently. Looking from different perspectives the definitions of healthy 
forest can even appear contradictory.  
Social perspective emphasises people’s needs for healthy living and recreational   
environment. In many countries people are becoming more and are more concerned about 
their environment. Since the 1960s, people have become more concerned about their 
environment, due to intensified management of natural resources, increased availability of 
information and structural changes in the society, i.e. decreased importance of primary 
production and increased leisure time. Healthy forests are needed for aesthetical pleasure 
and variety of outdoor activities. Economical perspective is quite complex. Historically 
short-term needs have usually exceeded long-term needs in forest industry. Production of 
commodities and services has outweighed ecological considerations in the past. 
Nevertheless, long-term economical benefits can only be obtained by practicing sustainable 
forest management. Ecological perspective is focused on ecosystems instead of human 
needs. This perspective emphasises the fact, that counterproductive interaction between 
ecosystems and humans should be minimized. The potential should exist for all biotic and 
abiotic elements to be present with sufficient redundancy at appropriate spatial and 
temporal scales across the landscape. Human intervention should not impact ecosystem 
sustainability by destroying or significantly degrading components that affect ecosystem 
capabilities.       
Utilitarian perspective versus ecosystem perspective is another categorization presented in 
literature (Kolb et al., 1994). The utilitarian perspective emphasizes forest conditions that 
directly satisfy human needs. The ecosystem perspective emphasises the maintenance of 
sustainable ecosystems over the landscape. Often different perspectives do overlap, 
however, on occasions they may be contradictory. Depending on the perspective, the 
condition of the same forest can be viewed as healthy or unhealthy. For example, a common 
component in ponderosa pine forests is dwarf mistletoe. It reduces the growth of ponderosa 
pine and increases its mortality. The existence of dwarf mistletoe is harmful from 
economical perspective. However, abundance and species richness of birds is higher when 
dwarf mistletoe is present. Thus, the existence of dwarf mistletoe is desirable from the 
ecological perspective (Kolb et al., 1994).        
The first definition of forest health usually cited in the scientific literature is by Aldo 
Leopold (1949): “Health is the capacity of the land for self-renewal. Conservation is our 
effort to understand and preserve this capacity.” Although Leopold’s definition is 
concerned also with other issues than forest health, it has founded the basis for all later 
definitions. Since Leopold’s definition many new ones have been presented in the scientific 
literature. Some of these definitions deserve more in-depth consideration.  
O’Laughlin et al. (1994) defined forest health in the following way: “Forest health is a 
condition of forest ecosystems that sustains their complexity while providing for human 
needs”. This definition is an effort to take all the different perspectives of forest health, i.e., 
social, ecological and economical, into account. The question often asked when discussing 
forest health is: ‘Can forest health be measured?’:   According to O’Laughlin et al. (1994) the 
answer is: “Objective indicators of forest condition can be specified and measured, but forest 
health assessments contain subjective value judgements which must be clearly recognized.” 
Some definitions of forest health like that by Monnig&Byller (1992), for example, emphasize 
ecological perspective: “A healthy forest is an ecosystem in balance”(Monnig&Byler, 1992). 
Human social and economical needs are not accounted for and the condition of ecosystems 
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matters for its own sake. Kolb, Wagner & Covington (1994) defined forest health as follows: 
“The term forest health should be restricted to the examination of the role of biotic and 
abiotic agents in ecosystem processes.” Several characteristics for such a system were 
mentioned: resistance to dramatic change in populations of important organisms within the 
ecosystem not accounted for by predicted successional trends; a functional balance between 
supply and demand of essential resources; and a diversity of seral stages, cover types and 
stand structures that provide habitat for many native species and all essential processes.            
Climate change, in particular increased temperatures and levels of atmospheric carbon 
dioxide, as well as changes in precipitation and the occurrence of extreme climate events, is 
having notable impacts on the world’s forest health. Increased temperatures may relieve 
forest stress during colder seasons but increase it during warmer seasons. Impacts of 
increased temperatures vary widely among different climatic zones. Climate change has 
both direct and indirect impacts on forest health (Moore&Allard, 2008). For example, 
climate change has strong influence on forest pests which can be considered as a direct 
impact. Pests can rapidly react to changing climate because of their short generation times. 
Drought is a good example of a cause that is influencing forest indirectly. Drought can 
change tree physiology in a way that it is more vulnerable to certain insect and pest species. 
Such changes are, e.g., sugar content of foliage, changes in leaf colour, change of leaf 
thickness and structural changes of foliage.  

 
3. Causes and symptoms of deteriorated forest health 
 

In the scope of this chapter it is only possible to address the complex relationship between 
causes and symptoms of deteriorated forest health briefly. The relationship is complex 
mainly because there are often multiple stressors causing a certain symptom (Ferretti, 1997). 
One of the major causes of deteriorated forest health is air pollution, particularly acid rain 
and ground-level ozone. There are two major types of pollutant threatening forest health: 
photochemical oxidants of which ozone is the primary compound, and nitrogen pollutants. 
Ozone is toxic (plant-killing) to sensitive plant species. Nitrogen is the primary growth-
limiting nutrient, yet it is also a pollutant when in excess. The emission levels of these two 
pollutants are expected to increase significantly globally (Moore&Allard, 2008).        
Some causes of deteriorated forest health are controversial. Depending on the perspective 
they can be seen as beneficial or negative. The role of disease agents (pathogens) and insects, 
for example, is controversial. They are essential to the function of dynamic ecosystems as 
they recycle nutrients and create habitats for different species. They can also negatively 
affect forest health, increase mortality and create growth losses. Diseases and insects 
influence the health of forests, trees outside forests and other wooded lands. Globally, all 
ecosystems with tree cover are under increasing threat, as the periods between sequential 
outbreaks are rapidly decreasing because of a range of factors including climate change and 
lack of proper forest  management (Moore&Allard, 2008). 
The impact of forest fires may also be controversial. Although they are usually seen as a 
threat to forest health, these natural events are key elements in many forest ecosystems as 
well. Another major cause for deteriorated forest health is posed by droughts. The 
consequences of a long-lasting drought can be very severe.  In addition to direct impacts, 
they have indirect ones, for example pest outbreaks are associated with droughts. Drought 
can also increase the risk of forest fires. 

 

are taken most frequently. Looking from different perspectives the definitions of healthy 
forest can even appear contradictory.  
Social perspective emphasises people’s needs for healthy living and recreational   
environment. In many countries people are becoming more and are more concerned about 
their environment. Since the 1960s, people have become more concerned about their 
environment, due to intensified management of natural resources, increased availability of 
information and structural changes in the society, i.e. decreased importance of primary 
production and increased leisure time. Healthy forests are needed for aesthetical pleasure 
and variety of outdoor activities. Economical perspective is quite complex. Historically 
short-term needs have usually exceeded long-term needs in forest industry. Production of 
commodities and services has outweighed ecological considerations in the past. 
Nevertheless, long-term economical benefits can only be obtained by practicing sustainable 
forest management. Ecological perspective is focused on ecosystems instead of human 
needs. This perspective emphasises the fact, that counterproductive interaction between 
ecosystems and humans should be minimized. The potential should exist for all biotic and 
abiotic elements to be present with sufficient redundancy at appropriate spatial and 
temporal scales across the landscape. Human intervention should not impact ecosystem 
sustainability by destroying or significantly degrading components that affect ecosystem 
capabilities.       
Utilitarian perspective versus ecosystem perspective is another categorization presented in 
literature (Kolb et al., 1994). The utilitarian perspective emphasizes forest conditions that 
directly satisfy human needs. The ecosystem perspective emphasises the maintenance of 
sustainable ecosystems over the landscape. Often different perspectives do overlap, 
however, on occasions they may be contradictory. Depending on the perspective, the 
condition of the same forest can be viewed as healthy or unhealthy. For example, a common 
component in ponderosa pine forests is dwarf mistletoe. It reduces the growth of ponderosa 
pine and increases its mortality. The existence of dwarf mistletoe is harmful from 
economical perspective. However, abundance and species richness of birds is higher when 
dwarf mistletoe is present. Thus, the existence of dwarf mistletoe is desirable from the 
ecological perspective (Kolb et al., 1994).        
The first definition of forest health usually cited in the scientific literature is by Aldo 
Leopold (1949): “Health is the capacity of the land for self-renewal. Conservation is our 
effort to understand and preserve this capacity.” Although Leopold’s definition is 
concerned also with other issues than forest health, it has founded the basis for all later 
definitions. Since Leopold’s definition many new ones have been presented in the scientific 
literature. Some of these definitions deserve more in-depth consideration.  
O’Laughlin et al. (1994) defined forest health in the following way: “Forest health is a 
condition of forest ecosystems that sustains their complexity while providing for human 
needs”. This definition is an effort to take all the different perspectives of forest health, i.e., 
social, ecological and economical, into account. The question often asked when discussing 
forest health is: ‘Can forest health be measured?’:   According to O’Laughlin et al. (1994) the 
answer is: “Objective indicators of forest condition can be specified and measured, but forest 
health assessments contain subjective value judgements which must be clearly recognized.” 
Some definitions of forest health like that by Monnig&Byller (1992), for example, emphasize 
ecological perspective: “A healthy forest is an ecosystem in balance”(Monnig&Byler, 1992). 
Human social and economical needs are not accounted for and the condition of ecosystems 
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data available enabled new forest health applications: detection of root diseases (Leckie et 
al., 2004), detection of pest inflicted damages (Vogelmann & Rock, 1989) and assessment of 
photosynthetic efficiency (Gamon et al., 1992).       
Recent advances in high spectral resolution hyperspectral technology have enabled a whole 
new approach to forest health studies - the remote chemistry. The most advanced 
technology to study the health of forest is foliar chemistry. Estimates of the foliar chemistry 
of canopies allow a better understanding of the functioning of forest ecosystems since many 
biochemical processes such as photosynthesis, respiration and litter decomposition, are 
related to the foliar chemistry of trees (Huber et al., 2008). The use of high spectral resolution 
data has enabled to study many forest health relevant observables, such as the concentration 
of nitrogen (Fourty et al., 1996), carbon (Daughtry et al., 2001) and leaf pigments (Gitelson et 
al., 2002).    
In the concept of forest health remote sensing nowdays means airborne or satellite imaging 
of forest areas. Depending on the number of wavelength channels used images obtained by 
remote sensing are categorized into aerial photographs, multi- and hyperpectral images. 
Other methodologies such as radar and Light Detection and Ranging(LIDAR) also used in 
remote sensing of forests. It has been shown that remote sensing can provide useful and 
relevant forest information (Solberg, 1999). Historically, the potential of remote sensing for 
forest health studies remained limited for a variety of reasons. Most of the remote sensing 
data suffered from insufficient spatial, spectral, or temporal resolution. Modern remote 
sensing instruments have overcome these problems opening new possibilities for forest 
health assessment. Especially promising is the modality of hyperspectral imaging.     
Traditionally, forest health monitoring is performed by means of field studies. In many 
cases systematically monitored sample plots are used. There is no conflict between field 
studies and remote sensing. Both techniques are needed and they have their own important 
role in forest health monitoring. The advantages of remote sensing over conventional field 
studies include better spatial coverage, shorter sampling intervals, efficiency of data 
acquisition as well as access to remote or restricted areas. Climate change and increasing 
pollution set new requirements to forest health monitoring. State of the art remote sensing 
technology and methods offer an efficient solution to meet those requirements. 
Disadvantages of remote sensing in forest health assessment mainly arise from quality and 
interpretation issues. The quality of modern remote sensing instruments has improved   
remarkably, however, unfortunately the advancements in algorithm development and 
verification are not at the same level. Algorithms used to retrieve end-user products such as 
chlorophyll content have to be validated using field measurements. Algorithms are used 
worldwide, but the field measurements used in their validation often cover only some 
specific area. Therefore it is not unusual that algorithms fail to produce reliable results at 
certain climate zone or geographic location. Remote sensing data products are sometimes 
difficult to interpret and that makes otherwise reliable data useless. Reliable verification of 
airborne remote sensed data can only be done using adequate ground truth measurements 
during the flight operation. 
Practically all remote sensing algorithms require the data to be atmospherically corrected. 
Atmospheric correction is a procedure where the filtering effects of the atmosphere are 
compensated for. Optical properties of the atmosphere are time and place variant making 
correction procedure complex and difficult. Atmospheric models used in the correction 
procedure are not precise enough to ensure correct results in all cases. Atmospheric 

 

Another cause of forest health deterioration is invasive species. Any species non-native to a 
particular forest ecosystem and whose introduction and spread causes deteriorated forest 
health can be considered invasive species. A major cause of increasing number of invasive 
species is increaced human activity. Transport vechiles act as carriers of seeds and plants. 
Sometimes invasive species can be intentionally introduced to an ecosystem to provide 
economic or environmental benefits. These species have later spread and caused serious 
problems in forests ecosystems.   
There is an abundance of symptoms of deteriorated forest health. Some symptoms are easy 
to detect and follow while others might be very difficult to monitor. Discoloration is a good 
example of a symptom, which is relatively easy to monitor. Discoloration is usually also a 
very useful index of forest health. Growth losses, in turn, are difficult to measure from large 
forest areas. Usually sample plots are used, but, as the problem may be sporadic and local, it 
may not be caught with the sampling design. The new remote sensing technologies offer 
possibilities to large-scale forest growth monitoring.  
Needle or leaf loss is a common symptom, which is also difficult to monitor unless the loss 
is severe. The needle loss symptom is often observed from needle retention. Needle 
retention provides an index of the number of years that needles are retained. It is only useful 
as a measure of needle loss if the loss occurs progressively from the oldest to the youngest 
needles (Innes, 1993). Defoliation can be estimated by observing the form of the tree crown. 
Mechanical damage to the crown is usually caused by wind. Butt and stem damage is 
another mechanical damage usually caused by animals like rabbits and squirrels, for 
example. A common nominator for most of the causes and symptoms of deteriorated forest 
health is, that almost all are expected to become more frequent.      

 
4. The role of remote sensing in forest health monitoring 
 

First attempts to introduce aerial photographs as a remote sensing tool in forestry were 
made in 1887. An airborne balloon was used as a photographic platform to produce 
photographs of forests in the vicinity of Berlin (Van Laar & Acka, 2007). The objective was to 
examine the possibility of preparing forest maps from aerial photographs. The forest was 
classified and described on the basis of visual examination of the photographs. Airborne 
photography from aircraft was introduced during World War 2. After the war the 
techniques developed for military use became available for civil applications. Since then 
aerial photography has been widely used in forestry applications. Forest inventory and 
measurement has been the most widely used application in forestry remote sensing. Earlier, 
stereo imagery consisting of pairs of oriented aerial images was used to measure individual 
trees. Today LiDAR based 3D-measurements have made stereo images obsolete (Clement, 
2004).  
Storm damage studies using aerial photographs were probably the first forest health 
applications using remotely sensed data. After the introduction of false colour photographs 
and early multispectral satellites it was possible to study red edge related observables 
(Barret & Curtis, 1997). By the red edge the difference between the reflectance maximum at 
near-infrared region and corresponding minimum at visible red region typical for all green 
vegetation due to chlorophyll absorption is meant. Red edge related indices such as 
normalized difference vegetation index (NDVI) and leaf area index (LAI) were applied. The 
introduction of hyperspectral sensors and the increased spatial resolution of multispectral 
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data available enabled new forest health applications: detection of root diseases (Leckie et 
al., 2004), detection of pest inflicted damages (Vogelmann & Rock, 1989) and assessment of 
photosynthetic efficiency (Gamon et al., 1992).       
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specific area. Therefore it is not unusual that algorithms fail to produce reliable results at 
certain climate zone or geographic location. Remote sensing data products are sometimes 
difficult to interpret and that makes otherwise reliable data useless. Reliable verification of 
airborne remote sensed data can only be done using adequate ground truth measurements 
during the flight operation. 
Practically all remote sensing algorithms require the data to be atmospherically corrected. 
Atmospheric correction is a procedure where the filtering effects of the atmosphere are 
compensated for. Optical properties of the atmosphere are time and place variant making 
correction procedure complex and difficult. Atmospheric models used in the correction 
procedure are not precise enough to ensure correct results in all cases. Atmospheric 
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where x represents reflectance at wavelength band x  (Tucker, 1979).   
Enhanced Vegetation Index (EVI) is designed to be used in dense vegetation areas. NDVI 
saturates in densely vegetated areas (Huete et al., 1997).  In order to overcome this problem 
blue reflectance is used to compensate the effects of background soil and atmospheric 
scattering effects. EVI is defined according to the equation   
 

                                            














BLUEREDNIR

REDNIREVI



5.76

5.2 .                                (2) 

 
The Red Edge Normalized Difference Vegetation Index (RENDVI) is a broadband version of 
the NDVI. While NDVI uses the minimum and maximum reflectances of the red edge 
region, the RENDVI employs wavelength bands along the red edge (Sims&Gamon, 2002). 
RENDVI is very sensitive to small changes in canopy chlorophyll content. It can only be 
calculated based on hyperspectral data. RENDVI is defined according to the equation      
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Malenovsky et al. (2006) presented a new approach to canopy chlorophyll content 
measurement in the form of an index called Area under curve Normalized to Maximal Band 
depth between 650-725 nm (ANMB). Most of the VIs use simple band ratios to calculate the 
measured property. In ANMB the surface integral and maximum band depth are calculated. 
In that way the whole red edge region is estimated instead of a few bands. In the first phase 
the area under the reflectance curve between 650 and 750 nm is integrated according to the 
equation 
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where j  and 1j  are reflectances at the j  and 1j  bands, j and 1j  are 

wavelengths of the j  and 1j  bands, and n is the number of the used spectral bands. 
The ANMB index is computed according to 
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where 725650MBD  is the maximal band depth of the reflectance, placed at one of the 
spectrally stable wavelengths of the strongest chlorophyll absorption peaks around 675-
680nm.   

 

correction should be made with utmost care in order to produce quality results. Results 
should always be verified using known ground targets. 
Another remarkable difficulty is the so called “mixed pixel problem”. This means that 
usually in remote sensing data one pixel represents many different materials. In forest areas 
one pixel often represents tree canopy, soil and some other materials like rock, for example. 
Then vegetation indices measuring certain forest property can give false results because the 
percentage of tree canopy is too low. In dense tropical forest the problem is not so serious as 
in boreal forest areas with low tree density. Because of the mixed pixel problem remote 
sensing usually provides general estimate of forest health over larger area rather than 
precise condition of a single tree.                    

 
5. Vegetation indices 
 

In the assessment of forest health by means of remote sensing, features called Vegetation 
Indices are usually extracted from the data. VIs are combinations of surface reflectances at 
two or more wavelengths designed to highlight a particular property of vegetation. They are 
derived using the reflectance properties of vegetation. Each of the VIs is designed to 
accentuate a particular vegetation property. VIs are usually developed by means of 
empirical laboratory measurements of the property to be studied as well as correlation 
analysis of remotely sensed data. VIs can be categorized into narrow or broadband ones 
according to the bandwidth of used wavelength channels. The use of narrowband VIs 
requires data of high spectral resolution, i.e., hyperspectral data. The use of many VIs is 
limited because they saturate in dense vegetation areas (Mutanga & Skidmore, 2004). Some 
narrowband VIs can overcome this problem. Another problem with VIs is nonlinearity 
(Jiang et al., 2006). The relationship between VI value and measured property is nonlinear 
which makes the use of VI somewhat difficult. Here we present the most important 
categories of VIs and some examples of VIs for each category. The ability of the VIs to detect 
different types of stressed forest areas are tested by means of two case studies presented in 
sections 7 and 8.       

 
5.1 Greennes (chlorophyll concentration) VIs 
Greennes VIs are designed to measure the general quantity and vigor of green vegetation. 
They measure many different aspects: chlorophyll concentration, canopy area and canopy 
structure. VI value is always determined by the combination of these different effects. 
Greennes VIs are based on the measuring of reflectance peak in near-infrared region (NIR). 
Red wavelength where the chlorophyll absorption is strongest is used as a reference. 
Normalized difference vegetation index (NDVI) is the most frequently used and most well 
know VI. It simply measures the reflectance peak at NIR region. NDVI is a good overall 
measure of green vegetation, but it has problems with saturation and non-linearity (Jiang et 
al., 2006). NDVI is defined according to the equation  
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where x represents reflectance at wavelength band x  (Tucker, 1979).   
Enhanced Vegetation Index (EVI) is designed to be used in dense vegetation areas. NDVI 
saturates in densely vegetated areas (Huete et al., 1997).  In order to overcome this problem 
blue reflectance is used to compensate the effects of background soil and atmospheric 
scattering effects. EVI is defined according to the equation   
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Anthocyanin reflectance index NIR (ARI_NIR) is similar to ARI_700, but it uses one 
additional NIR band (Gitelson et al., 2001). ARI_NIR is capable in detecting higher 
anthocyanin concetrations than ARI_700. ARI_NIR is defined according to the equation 
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Carotenoid Reflectance Index 550 (CRI_550) measures the amount of carotenoids in canopy. 
CRI_550 calculates the difference of two bands sensitive to carotenoid amount (Gitelson et 
al., 2002). CRI_550 is defined according to the equation 
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Carotenoid Reflectance Index 700 (CRI_700) is a similar reflectance measurement as 
CRI_550, but it uses NIR band instead of the green one. CRI_700 is designed to measure 
higher caroteinid concentrations compared to CRI_550. CRI_770 is defined according to the 
equation 
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5.4 Carbon VIs 
Vegetation contains many types of carbon: cellulose, lignin, sugar and starch. Cellulose is 
used to form cell walls of vegetation tissues. Lignin is used in structurally strong parts in 
vegetation. There is large amount of carbon in dead or senescent vegetation. These VIs can 
be used to observe the state of senescence of vegetation. 
Normalized Difference Lignin Index (NDLI) is designed to estimate the amount of lignin in 
vegetation. Reflectance at 1754 nm is primarily determined by lignin concentration of the 
canopy (Serrano et al., 2002). Reflectance at 1680 nm is used as a reference. NDLI is defined 
according to the equation 
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The Cellulose Absorption Index (CAI) is a vegetation index indicating surfaces containing 
dry wood material. Absorptions in the 2000 nm to 2200 nm range are sensitive to cellulose 
(Daughtry et al., 2004).  
 
 
 

 

5.2 Water content VIs 
Water content VIs are designed to provide an estimate of canopy water content. Water 
content is an important vegetation property which correlates with vegetation health. Water 
content VIs are based on the fact that there are well known water absorption features in the 
near-infrared and shortwave infrared regions. The use of water content VIs requires high 
spectral resolution data. 
The Water band index (WBI) is a simple reflectance measurement that is sensitive to changes 
in canopy water content. WBI is utilizing well know water absorption feature at 970nm. The 
ratio of the reflectance at 970nm to that at 900nm is measured (Penuelas et al., 1995). WBI is 
defined according to the equation 
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Normalized difference water index (NDWI) is sensitive to changes of canopy water content. 
It uses two different bands, 857 and 1241 nm having similar but slightly different water 
absorption properties (Gao, 1995). The scattering of light by canopy enhances the weak 
water absorption at 1241nm. NDWI is defined according to the equation  
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The Moisture Stress Index (MSI) is a simple reflectance measurement that is sensitive to 
increasing canopy water content. The strength of the absorption at 1599 nm increases when 
the canopy water content increases. The absorption at 819 nm is used as a reference because 
it is nearly unaffected by changing water content in the canopy (Ceccato et al., 2001). MSI is 
defined according to the equation 
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5.3 Leaf pigment VIs 
Leaf pigment VIs are measuring the amount of stress-related pigments in vegetation. 
Carotenoids and anthocyanins are pigments which are present in higher concentrations in 
stressed vegetation. Carotenoids are pigments that protect vegetation from high light 
condition. Anthocyanin pigment content is high in senescence and in new leafs.   
 
Anthocyanin reflectance index 700 (ARI_700) is sensitive to anthocyanin amount in 
vegetation (Gitelson et al., 2001). ARI_700 is defined according to the equation   
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Anthocyanin reflectance index NIR (ARI_NIR) is similar to ARI_700, but it uses one 
additional NIR band (Gitelson et al., 2001). ARI_NIR is capable in detecting higher 
anthocyanin concetrations than ARI_700. ARI_NIR is defined according to the equation 
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Carotenoid Reflectance Index 550 (CRI_550) measures the amount of carotenoids in canopy. 
CRI_550 calculates the difference of two bands sensitive to carotenoid amount (Gitelson et 
al., 2002). CRI_550 is defined according to the equation 
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Carotenoid Reflectance Index 700 (CRI_700) is a similar reflectance measurement as 
CRI_550, but it uses NIR band instead of the green one. CRI_700 is designed to measure 
higher caroteinid concentrations compared to CRI_550. CRI_770 is defined according to the 
equation 
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5.4 Carbon VIs 
Vegetation contains many types of carbon: cellulose, lignin, sugar and starch. Cellulose is 
used to form cell walls of vegetation tissues. Lignin is used in structurally strong parts in 
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The Cellulose Absorption Index (CAI) is a vegetation index indicating surfaces containing 
dry wood material. Absorptions in the 2000 nm to 2200 nm range are sensitive to cellulose 
(Daughtry et al., 2004).  
 
 
 

 

5.2 Water content VIs 
Water content VIs are designed to provide an estimate of canopy water content. Water 
content is an important vegetation property which correlates with vegetation health. Water 
content VIs are based on the fact that there are well known water absorption features in the 
near-infrared and shortwave infrared regions. The use of water content VIs requires high 
spectral resolution data. 
The Water band index (WBI) is a simple reflectance measurement that is sensitive to changes 
in canopy water content. WBI is utilizing well know water absorption feature at 970nm. The 
ratio of the reflectance at 970nm to that at 900nm is measured (Penuelas et al., 1995). WBI is 
defined according to the equation 
 

                                                                        
970

900




WBI  .                                                          (6) 

 
Normalized difference water index (NDWI) is sensitive to changes of canopy water content. 
It uses two different bands, 857 and 1241 nm having similar but slightly different water 
absorption properties (Gao, 1995). The scattering of light by canopy enhances the weak 
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The Moisture Stress Index (MSI) is a simple reflectance measurement that is sensitive to 
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represent the general condition of the forest. A general forest health index capable of 
detecting a variety of different damage types would be very desirable. Several methods for 
obtaining general forest health index have been proposed in the literature. 
NDVI index is generally used as a forest health index. Xiao&McPherson  (2005) presented a 
method using NDVI  with multispectral data to asses tree health in urban environment. 
Although NDVI is usually a good VI for general assessment of forest health it leaves 
opportunities for improvement. NDVI can detect chlorophyll content and defoliation, but 
there are problems regarding saturation with dense vegetation and non-linearity. 
Solberg et al. (2005) presented a method based on combining the LiDAR and hyperspectral 
data. Variation of canopy chlorophyll mass per area is used to measure forest health. NDVI 
calculated from hyperspectral data is used as a measure of chlorophyll mass while the Leaf 
area index (LAI) calculated from the LiDAR data is used as a measure of canopy area. The 
proposed method produced promising results.   
In hyperspectral data analysis the ENVI software package is widely used. ENVI features a 
forest health tool, which creates a spatial map showing the overall health and vigor of a 
forested region. The spatial map is showing health index using 9 different classes. Forest 
health tool uses three different vegetation indices in the classification process. Each VI 
represents one of the following VI categories: greennes, leaf pigments, canopy water content 
and light use efficiency. Forest health tool has produced good results in the detection of 
contaminated forest areas (Tuominen et al., 2008). It constitutes a promising effort to 
develop a tool to calculate general forest health index using combined VIs.  
Forest health can be evaluated using remote sensing by measuring chlorophyll content, 
defoliation and content of certain pigments (Solberg, 1999). A good general forest health 
index should measure at least those variables. In addition, water content and photochemical 
indices could be used. Even advanced foliar chemistry indices yet in experimental phase 
could be utilized. General forest health index integrating across different damage types is 
feasible, but a lot of research has to be done. Comprehensive algorithm verification with 
different forest and damage types would be required.          

 
7. Case study 1: Detection of talc dust contaminated forest areas 
 

The objective of this study was to evaluate how well talc dust contaminated forest areas can 
be detected using the various vegetation indices. Contamination is one of the major causes 
of deteriorated forest health. The level of contamination in forest areas can be influenced 
byrelated to industrial enterprises. Therefore, it is important to provide reliable forest health 
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5.5 Light Use Efficiency VIs 
The light use efficiency VIs are providing a measure of the efficiency with which vegetation 
is able to use incident light for photosynthesis. Light use efficiency correlates with carbon 
uptake efficiency and growth rate. Light use efficiency VIs can be used in precision forestry 
to estimate growth rate and production.  
The Photochemical Reflectance Index (PRI) is a reflectance measurement that is sensitive to 
changes in carotenoid pigments in canopy. The amount of carotenoid pigments indicates 
photosynthetic light use efficiency and the rate of carbon dioxide uptake (Gamon et al., 
1992). It can be used to estimate vegetation productivity and stress. PRI is defined according 
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The Structure Insensitive Pigment Index (SIPI) is a reflectance measurement designed to 
maximize the sensitivity to the ratio of bulk carotenoids to chlorophyll while minimizing the 
affects of variation in canopy structure (Penuelas et al., 1995). SIPI uses three bands: blue, 
NIR and the maximum chlorophyll peak at 680 nm. SIPI is defined according to the equation 
 

                                                             
680800

445800







SIPI .                                                        16) 

                                                               
The Red Green Ratio (RG Ratio) index is a reflectance measurement that indicates the 
relative expression of leaf redness caused by anthocyanin to that of chlorophyll. The Red 
Green Ratio has been used to estimate the course of foliage development in canopies. The 
RG Ratio index is an indicator of stress, leaf production and may also indicate flowering in 
some cases.  The ratio is calculated as the mean of all bands in the red range divided by the 
mean of all bands in the green range. RGRI is defined according to the equation 
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6. General forest health indices 
 

Forest health is likely to deteriorate due to climate change, pollution and increased human 
activities. This unfortunate development sets new demands for forest health assessment. 
There is a need to obtain a quantitative and reliable assessment of the general condition of 
forest health. Most of the VIs measure a certain property of forest that doesn’t necessarily 



Remote Sensing of Forest Health 39

 

represent the general condition of the forest. A general forest health index capable of 
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7.3 Methods 
In order to remove non-forest pixels from hyperspectral data, a mask image was 
constructed. Masked pixels were not accounted when test results were calculated. Non-
forest pixels were detected by calculating the forest discrimination index (FDI)  
 
                                                    )( 446714838  FDI                                                  (18)     
 
where x represents reflectance measured in the spectral band centred at x nm (Lucas et 
al., 2008). All pixels whose FDI-value was under certain threshold were removed from 
hyperspectral data. It is quite difficult to separate different types of green vegetation 
reliably. Therefore it was necessary to remove pixels representing green agricultural fields 
and grasslands manually when they were located near the sites where moss samples were 
collected. High albedo of the ore minerals causes an atmospheric scattering halo effect 
around the mining area, a halo which is clearly visible in HyMap imagery especially at 
VNIR-wavelengths. In order to avoid the influence of halo effect on the test results, 50 
meters wide buffer zone was masked around bright ore material. The mask image used to 
remove non-forest pixels is shown on the left panel of Figure 2. 
During the flight campaign 51 moss samples were collected from the test area around 
Lahnaslampi talc mine. Moss samples were collected by hand using contamination-free 
gloves. The samples were stored at low temperature and the concentrations of heavy metals 
were measured in the Geolaboratory of the Geological Survey of Finland 
(Helminen&Räisänen, 2002). Measurements of nickel concentration were utilized in this case 
study. Sample sites were divided into six classes according to measured nickel concentration 
as follows: 
 

- Class 1 Ni concentration 0-5 mg/kg 
- Class 2 Ni concentration 6-16 mg/kg 
- Class 3 Ni concentration 17-30 mg/kg 
- Class 4 Ni concentration 31-60 mg/kg 
- Class 5 Ni concentration 61-90 mg/kg 
- Class 6 Ni concentration 91-130 mg/kg 

 

 

reflect the amount of precipitated talc dust along the prevailing wind direction 
(Helminen&Räisänen, 2002). Another source of environmental impact is constituted by the 
seepage of acid waters through rock piles and tailing ponds. Generally, the level of 
vegetation stress around the Lahnaslampi mine is low, i.e. the mine does not restrict forestry 
or other utilization of nature except in the mining area itself. Although talc is not the only 
source of contamination, it can be assumed that there is strong correlation between Ni 
concentration and forest stress level.  
 

 
Fig. 1. Geographic location of the test area (Kuosmanen et al., 2004) (left), true colour image 
of the test area (right). 

 
7.2 Data acquisition 
The data acquisition was part of the EU-funded MINEO project, which aimed at the 
development advanced methods for the extraction of information and knowledge from 
earth observation data. This study utilized imagery from the HyMap airborne hyperspectral 
scanner recorded at 28th of July 2000. During the data acquisition  cloud cover was non-
existent. The HyMap sensor collects reflected solar radiation in 126 bands covering the 
wavelengths from 420 to 2480 nm. This includes visible, near infrared and short-wave 
infrared regions of the electromagnetic spectrum. The ground resolution of one pixel was 
5*5 meters (Kuosmanen et al., 2004). Hyperspectral data was atmospherically corrected 
using ATCOR software. ATCOR uses MODTRAN 4 atmospheric model and parameters 
describing atmospheric type, solar geometry and hyperspectral sensor.     
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where i and j  denote the classes. Separability values for the vegetation indices are shown 
in table 1. 
 

Vegetation Index    R^2     S 
Normalized Difference Vegetation Index (NDVI) 0.9027 0.4866 
Enhanced Vegetation Index (EVI) 0.6405 0.2953 
Red Edge Normalized Difference Vegetation Index (RENDVI) 0.8135 0.3110 
Area Normalized to Maximum Band depth (ANMB) 0.8101 0.3036 
Water Band Index 0.4092 0.1514 
Normalized Difference Water Index (NDWI) 0.2403 0.0925 
Moisture Stress Index (MSI) 0.40141 0.2026 

Anthocyanin Reflectance Index 700 (ARI_700) 0.8704 0.3242 

Anthocyanin Reflectance Index NIR (ARI_NIR) 0.8098 0.1653 

Carotenoid Reflectance Index 550 (CRI_550)  0.7490 0.2868 
Carotenoid Reflectance Index 700 (CRI_700)  0.7785 0.3223 

Normalized Difference Lignin Index (NDLI) N/A N/A 

Cellulose Absorption Index (CAI) N/A N/A 

Photochemical Reflectance Index (PRI) 0.8141 0.2707 

Red Green Ratio Index (RGRI) 0.6258 0.1411 

Structure Intensive Pigment Index (SIPI) 0.0023 0.1146 
Table 1. Coefficients of determination and separability values for different vegetation indices 
(N/A means not applicable). 
 
In general, correlation and separability values obtained for greenness VIs were relatively 
high. Highest correlation and separability values were obtained for the NDVI index. Narrow 
band indices (RENDVI, ANMB) produced better results than the broad band EVI. Test 
results of water content indices were rather poor. Among these indices best separability of 
classes was achieved by the MSI index. The separability of NDWI index was the worst of all 
tested VIs. The value of the WBI index is almost the same for all classes; this can clearly be 
seen from Figure 3 where the median as well as upper and lower quartiles values are shown 
for each class.    
 

 

 
Fig. 2. Mask image used to eliminate non-forest pixels (left), ground truth map indicating 
Ni-content (mg/kg) of collected moss samples (right). 
 
It is safe to assume that Ni concentration varies slowly within immediate neighborhood of 
the sampling site. Circular neighborhoods (radius 50 m) were created around each sampling 
site. These circular areas were color coded according to their Ni concentration levels. 
Resulting color coded map was used as a ground truth map in the testing process of 
Vegetation Indices. Color coded ground truth map is shown on the right panel of Fig 2. 
Correlation between the values of VIs and the measured Ni concentration as well as 
separability of the classes were considered as the evaluation criteria for Vegetation Indices. 
Both measures were calculated for each VI using all pixels situated within the 50 m circular 
neighborhood around the sample sites. Computation of tested VIs is described in section 5.    

 
7.4 Results and discussion 

The coefficients of determination 2r  for each VI are shown in table 1. Separability between 
two classes was calculated using the following simple and robust measure 
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where mu and sigma are the mean and standard deviation of the particular class, 
respectively (Landgrebe, 2003).  
 
Overall separability between all different class combinations is then 
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where mu and sigma are the mean and standard deviation of the particular class, 
respectively (Landgrebe, 2003).  
 
Overall separability between all different class combinations is then 
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usually representing canopy, shadow and soil. In this Boreal test site the forest is so dense 
that soil is not present in the pixels normally. The basic problems of the VIs i.e., non-
linearity and saturation at high levels can be seen when the test results are analyzed. When 
Fig 4. is studied, it is easier to detect stressed forest areas by analyzing the spatial 
distribution of the ARI_700 index, although the NDVI index had better correlation and 
separability values in the test. This is due to non-linearity and high-end saturation of the 
NDVI index. The carbon concentration Vis, the CAI and the NDLI failed to produce any 
meaningful test results. It is understandable because Ni contamination is not assumed to 
increase carbon content of the tree unless the contamination level is very high.  
 

 
Fig. 4. Spatial distribution of the NDVI and the ARI_700 indices. 
 
VIs estimating canopy water content had only very weak correlation with Ni concentration. 
Water absorption regions of hyperspectral data are very difficult to measure as often data in 
those regions is just noise. Light use efficiency indices produced mixed results. PRI had 
rather good correlation and separation values, but SIPI did not have any correlation with Ni 
concentration. A probable cause of this is the high noise level in one channel in the blue 
region of the spectrum. Test results of SIPI index were not excluded from this study, but 
they should be interpreted with cautious mind. As an overall conclusion from this study it 
can be said that the deterioration of forest health due to Ni contamination can be detected 
using carefully selected VIs. 
 
8. Case study 2: Detection of pest inflicted defoliation  
 

The objective of this study was to evaluate how well defoliated tree crowns can be separated 
from healthy tree crowns using different vegetation indices. Pest inflicted stress is globally 
one of the most important threats to forest health. Pest inflicted damages can be sometimes 
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Fig. 3. Median, upper and lower quartile values of classes for tested vegetation indices.  
Leaf pigment indices that measure the carotenoids and anthocyanins concentration 
produced quite good test results. Among these indices the best separability and correlation 
values were obtained by the ARI_700 index. The separability of classes was poor using the 
ARI_NIR index. VIs designed to provide an estimate of the amount of carbon, i.e., NDLI and 
CAI were totally useless in the detection of Ni contaminated forest areas. The test results of 
VIs used to estimate light use efficiency varied a lot. The PRI index produced good results 
while the results of the SIPI index were very poor. 

 
7.5 Conclusions 
Most of the tested VIs could not detect Ni contaminated forest areas with adequate 
accuracy. However, three VIs, the NDVI, the ARI_700, and the PRI, produced good results. 
When the spatial distribution of the ARI_700 index is studied from Figure 4, it is easy to see 
that the more contaminated areas are stretched into North East direction from the mine. 
From this we can correctly conclude that North East is the prevailing wind direction in the 
area as the dust emitted from the talc plant and mine is transported by the wind. Poor 
separability of classes was the common problem for almost all VIs. This can be seen clearly 
in Figure 3. The major cause of poor separability is the mixed pixel problem. One pixel is 
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Leaf pigment indices that measure the carotenoids and anthocyanins concentration 
produced quite good test results. Among these indices the best separability and correlation 
values were obtained by the ARI_700 index. The separability of classes was poor using the 
ARI_NIR index. VIs designed to provide an estimate of the amount of carbon, i.e., NDLI and 
CAI were totally useless in the detection of Ni contaminated forest areas. The test results of 
VIs used to estimate light use efficiency varied a lot. The PRI index produced good results 
while the results of the SIPI index were very poor. 
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that the more contaminated areas are stretched into North East direction from the mine. 
From this we can correctly conclude that North East is the prevailing wind direction in the 
area as the dust emitted from the talc plant and mine is transported by the wind. Poor 
separability of classes was the common problem for almost all VIs. This can be seen clearly 
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were still without leafs. The point density of the LIDAR data was 0.76 points per sq. m. 
Measurement accuracy of elevation data was 0.15 m. 

 
8.3 Methods 
Ground truth data was collected by doing an extensive field study in the test area. 
Moderately defoliated tees were located using visual inspection. Heavily defoliated trees 
were excluded because in this case most of the reflected radiation actually comes from the 
soil. Geo-coordinates of promising candidates were recorded using a GPS-instrument. 
Candidates for healthy trees were also collected. Final selection of the trees included in the 
study was done using LIDAR data. 
 

     
Fig. 6. True colour image of the hyperspectral data(left), DSM image from the same 
area(right).    
 
The reason for using LIDAR data is mixed pixel problem. Usually spectral signature imaged 
from the test area represents the mixture of canopy, soil, shadow and maybe some other 
materials too. In order to test VIs reliably it was necessary to select final tree crown using 
digital surface model (DSM). DSM was generated by rasterizing and interpolating raw 
LIDAR data using ENVI software. DSM was geo-referenced to same coordinate system as 
the hyperspectral data using polynomial triangulation of ERDAS software. Both data sets 
were linked in ENVI software and the neighborhood of each tree crown candidate were 
studied. The tree crowns for which the DSM of the tree top neighborhood showed full 
canopy coverage in the corresponding hyperspectral pixel were chosen for VI testing. Geo-
referenced DSM image is shown on the right panel Fig 7. White pixels show laser beam 
returns from tree tops. As a result altogether 20 hyperspectral pixels representing 10 healthy 
tree crowns and 10 partly defoliated tree crowns were selected for the analysis. 

 
8.4 Results and discussion 
VIs were calculated for all 20 test pixels. Mean and standard deviation values for both 
healthy and defoliated classes are shown in table 1. Separability S between healthy and 
defoliated classes was calculated using the formula 

 

avoided or reduced with proper countermeasures. Therefore it is important to be able to 
monitor and detect early stage pest damages in forest areas.    

 
8.1 Test area 
The test area constituted a sand soiled boreal forest area in South-West Finland. Forest in the 
test area is dominated by Pine with some occasional Spruce and Birch trees. In the summer 
of 2006 a seriously damaged pine forest area was found in South-West Finland.  
 

 
Fig. 5. Geographic location of the test area(left), true colour image of the test area(right).   
 
Studies showed that the cause of the damage was the great webspinning pine sawfly 
(acantholyda posticalis). Great webspinning pine sawflies have been found in Finland 
before, but they have not caused any forest damage before. This time recent warm weathers 
and sandy soil of the area have made it possible for the sawflies to reproduce and cause 
damage. It is very possible that forest damage caused by great webspinning pine sawfly will 
be more frequent due to climate change. The tree mortality in the area was so high that is 
was necessary to clear cut 30 hectares of forest. 10 hectares were burned in order to decrease 
future damage. Most of the damaged trees were successfully clear cut, but there were still 
some left.    

 
8.2 Data acquisition 
This study utilized data from the AISA dual airborne hyperspectral scanner recorded at 13th 
of July 2008. During the acquisition the cloud cover was non existent. The AISA dual 
spectrometer collects reflected solar radiation in 481 bands covering the wavelengths from 
399 to 2452 nm. This includes the visible, near infrared and short-wave infrared regions of 
the electromagnetic spectrum. The ground resolution of one pixel was 2.5*2.5 meters. 
Hyperspectral imagery was atmospherically corrected using ATCOR software. This study 
utilized also LIDAR data acquired on May 1st, 2008, by a small aircraft carrying Leica 
ALS50-II LIDAR scanner. Acquisition was carried out in early spring, so deciduous trees 
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some of the VIs can detect defoliated tree areas rather reliably. Results also indicated that 
reduced chlorophyll content and increased anthocyanoid pigment levels are good indicators 
of defoliation.     

 
9. The future of forest health related remote sensing  
 

High spatial resolution remote sensing for forestry applications has reached an almost 
mature phase with wide range of applications available. However, numerous opportunities 
and challenges remain. The robustness of the data processing methods is one of the issues to 
be considered. Processing methods currently in use often need extensive calibration and 
adjustment for each new imaged forest area. Processing methods should be able to handle 
different types of forest areas in routine fashion despite the variation of climate zone, soil 
type or forest structure. A lot of research has still to be done to fully utilize the potential of 
high spatial and spectral resolution data. 
In the forest health assessment, most studies are characterized by a limited geographic 
extent concentrating on test sites were the complexity of forest environment is low. The 
methods are mostly empirical and require local calibration. Expanding forest health studies 
over wide geographic regions is a challenge because the added complexity of varying 
vegetation types can hide the relatively weak signal feature associated with forest stress. 
One possible solution to overcome this problem is to identify forest health change using 
data obtained at different times as it may be easier to identify stress from spectral change, 
rather than from the spectral properties of stress itself (Brandberg & Warner, 2006).        
It would be highly desirable to be able to use satellite data, instead of airborne data for 
remote sensing of individual trees. Airborne remote sensing campaigns are very costly 
limiting the accessibility of data. Airborne hyperspectral instruments offer superior signal 
quality and spatial resolution, however, wide coverage multi-temporal forest health 
monitoring using airborne data is not feasible. Satellite data has the advantage of a relatively 
uniform illumination and view angle over large regions, thus minimizing problems 
associated with combining data from individual flight lines. Satellite-borne high spatial 
resolution hyperspectral data is not available at the moment, but can be anticipated in the 
future as the development of space technology continues. Spatial resolution of the 
hyperspectral imager currently in space (EO1 Hyperion), at 30 m, is too coarse for studying 
individual trees. OrbView-4 which failed to reach orbit after launch in 2001, would have 
offered 250 band hyperspectral data at 8 m spatial resolution. Specifications of Orbview-4 
provide some kind of reference on what can be expected from the capability of future 
sensors (Castro-Esau & Kalashka, 2008). 
Data fusion where several data sources are used together has the potential for revolutionary 
impact on forest health measurement. For example, with LiDAR data it is possible to 
directly measure the structural attributes of trees. The data fusion of high spectral resolution 
LiDAR and high spectral resolution hyperspectral data can raise forest health studies on a 
new level: precise information on foliar chemistry pin pointed to a single tree. Data fusion of 
LiDAR and hyperspectral data has already showed promising results (Solberg et al., 2005).            
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where mu and sigma are the mean and standard deviation of the particular class, 
respectively. 
 

Vegetation index Healthy   Defoliated   

  Mean std. 
 
Mean std. S 

NDVI 0.934 0.0219 0.791 0.035 2.513 
EVI N/A N/A N/A N/A  N/A 
RENDVI 0.502 0.0139 0.4823 0.01844 0.5820 
ANMB 232.7 50.69 139.8 28.79 1.168 
WBI N/A N/A N/A N/A  N/A 
NDWI N/A N/A N/A N/A  N/A 
MSI 0.3865 0.0810 0.2805 0.0872 0.6302 
ARI_700 0.0059 0.0011 0.0030 0.0009 1.4500 
ARI_NIR 1.654 0.433 3.487 0.611 1.7471 
CRI_550 0.0101 0.0144 0.0023 0.0031 0.7936 
CRI_700 0.0143 0.0021 0.0177 0.0024 0.7348 
NDLI N/A N/A N/A N/A  N/A 
CAI N/A N/A N/A N/A  N/A 
PRI N/A N/A N/A N/A  N/A 
RGRI 0.8574 0.1078 0.70838 0.1540 0.5692 

SIPI 1.003 0.0174 1.0280 0.0189 0.6887 
Table 2. mean, standard deviation and separability values for each tested Vis (N/A means 
not applicable). 
 
Many of the tested VIs did not produce any meaningful results. PRI used one wavelength 
channel that appeared to be noisy and therefore the results for this index are not valid. NDLI 
and CAI probably failed because they use SWIR channels. Most VIs were calculated using 
ENVI software VI calculator and some using MATLAB codes. Best separability value was 
obtained using NDVI. NDVI correlates well with reduced chlorophyll content, so its good 
performance could be expected the result is understandable. ARI_700 and ARI_NIR 
produced also rather good results. Recently published ANMB produced clearly better 
separability than the well established EVI and RENDVI VIs      

 
8.5 Conclusions 
The objective of this study was to determine if defoliated tree crowns can be detected using 
vegetation indices. Widely used and tested NDVI proved to be the best VI in detection of 
defoliation. Separability was calculated using standard deviation. The number of tested 
pixels in each class was rather small for accurate statistical analysis. The results show that 
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1. Introduction     
 

This chapter describes the design of a high-resolution wireless sensor network to monitor 
infrasonic signals from volcanic activity. A prototype system is constructed and tested. The 
system is based on the ultra low power microcontroller MSP430 with the requirements of 
energy-awareness and high sensor node autonomy. The infrasonic signals are measured at 
200 Hz using 12 bit resolution and the result is buffered on SD cards in case of a lack of 
bandwidth. The implementation of a cost-table driven network routing protocol allows a 
radio sleep schedule of almost 97% when no data has to be transmitted. Furthermore, the 
sensors need to be time-synchronized for later event localization. This work shows that it is 
feasible to have a synchronization accuracy of less than 1 ms using a GPS receiver that is 
powered on only a few seconds per hour. 
In recent years the installation of infrasound sensors at seismic measuring stations has 
become common and now researchers can obtain large and heterogeneous infrasound signal 
data-sets generated in near real-time. However, most current infrasound stations are still 
using expensive infrasound microphones and traditional data acquisition systems which 
limit the deployment of new infrasound stations.  To improve on this, we propose in this 
work a wireless data acquisition system based on FreeWave FGR09CSU 900 MHz radio 
modem and a Wireless sensor networks (WSN). 
Infrasound is defined as the range of frequencies between 0.001-20 Hz. It is generated by a 
variety of events, both man-made and natural. Among the latter type, active volcanoes are 
efficient sources of infrasound. Volcanic eruptions are characterized by the acceleration of 
hot fluids from subsurface reservoirs into the atmosphere generating acoustic waves in the 
1-20 Hz frequency range. Infrasonic airwaves produced by active volcanoes provide 
valuable insight into the eruption dynamics and related phenomena. Infrasound also 
provides a special opportunity for the comparison of eruptive activity among different 
volcanoes because atmospheric pressure records are mostly independent of site-specific 
propagation effects (Chilo 2008). 
However, infrasound propagating long distances is a complex phenomenon. It is strongly 
influenced by the detailed temperature and wind profiles. The infrasonic signal detected by 

3



Geoscience and Remote Sensing54

 

2. Hardware and requirements 
 

The platform used is the Modular Sensor Board MSB-430 shown in Figure 1 (left). In this 
figure the top part (MSB-430S) is the sensor module; the middle part (MSB-430) is the core 
module; and the bottom part (MSB-430T) is the base module. The base module MSB430T 
carries three AAA batteries, has a JTAG and serial/USB socket and is available with a GPS 
receiver FALCOM Smart Antenna FSA01. It should be noted that this platform can easily be 
exchanged to a more suitable platform. The features and capabilities of the MSB430 
concerning our proposal are summarized in Table 1.  

 

 
Fig. 1. Title Photo of MSB-430 (left) and the MCE-200 microphone with pertinent 
preamplifier and filter mounted on a PCB (right) 
 

Microcontroller MSP430F161216bit RISC 
100 kHz - 8MHz 
55 kB Flash-ROM 
5 kB RAM 
256B Infomemory 

Transceiver Chipcon CC1020 
868MHz 
8.6 dBm, max 1km (tuneable to more than 5 km) 
19.2 kbit/s using Manchester encoding 

Mass storage        SD card (max 4 GB) 
ADC                  12 Bit, unipolar [0-3 V] 
Sensors on board        

humidity and temperature sensor Sensirion SHT11 
Supply voltage  2.7-3.6V 
Energy              Active Mode: 330 μA at 1 MHz, 2.2 V 

Standby Mode: 1.1 μA 
Off Mode (RAM Retention): 0.2 μA 

 
Table 1. MSB-430 features 
 
For infrasound recording the electret condenser element microphone MCE-200 from 
Panasonic was used. The details listed in Table 2 are given by the manufacturer. The 

 

traditional infrasound systems contains the combination of the source’s infrasound power 
spectrum and the distortions introduced by the atmosphere. In order to extract the source 
characteristics the data should be collected at close range: from a few meters to a few km 
distances. At short distances, the atmosphere is a homogeneous medium that preserves the 
infrasonic waveform as it is generated by the source. We need to seek new ways to enhance 
the capability of monitoring volcanic activity close to the source. Wireless sensor networks 
have the potential greatly benefit studies of volcanic activity. 
A wireless sensor network is a collection of small devices having sensors, computational 
processing ability, wireless receiver and transmitter technology and a power supply (Culler, 
Estrin and Srivastava 2004). Typical WSNs communicate directly with centralized controller 
or a satellite, thus communication between the sensor and controllers is based on a single 
hop. Another kind of WSN could be a collection of autonomous nodes that communicate 
with each other by forming a multi-hop radio network and maintaining connectivity in a 
decentralized manner by forming an ad hoc network. 
The last few years, the WSN has been used by a number of authors for volcanic eruptions 
monitoring. In references (Werner-Allen, Johnson, Ruiz, Lees and Welsh 2005; Werner-
Allen, Welsh, Locrincz, Johnson, Marcillo, Ruiz and Lees 2006) a WSN was used together 
with infrasound microphones and seismometers for geophysical studies in the area of the 
volcano Tungurahua, Ecuador. The infrasound signals were sampled by 102 Hz, 10 bits 
resolution and transmitted over a 9 km wireless link to a remote base station. For the time 
synchronization a single GPS receiver was used in combination with the Flooding Time 
Synchronization Protocol (FTSP). The archived accuracy was 10 ms with an error of more than 
six milliseconds. The data transport was controlled by the remote base station. 
In this approach we present a high-resolution WSN for long-term monitoring. The 
infrasonic signals are sampled and converted to digital data at a frequency of 200 Hz and a 
resolution of 12 bit. The proposed WSN requires a time stamp per infrasonic sample with an 
accuracy of one millisecond. Therefore, an algorithm was developed and evaluated which 
synchronizes the sensor nodes under the support of an equipped GPS device. The algorithm 
needs to be powered on the GPS device only a few seconds per hour. The collected data is 
handled under the concept of unlimited virtual data memory, whereby the data is swapped 
out to an SD card or, if the radio is switched on, transmitted towards the observatory. The 
used and evaluated routing protocol is the first implementation of the data-centric data 
dissemination protocol (D3). We extended this cost-based ad hoc routing protocol for the 
usage of radio time slots. This approach allows a sleep scheduled radio of almost 97% of the 
time. 
The proposed WSN is planned to be deployed at University of San Agustin observatory 
station (ARE) in Southern Perú. The station is located 12.7 km south-east of Arequipa city, 
latitude S 16° 27’56.67443”, longitude W 71° 29’35.23676” and elevation 2450 m. The ARE 
station provides a unique laboratory for studying regional infrasound and seismic wave 
propagation. The ARE station is located in the shadow of three giant volcanoes: Chachani 
(6075m), Misti (5821m) and Picchu Picchu (Chilo, Jabor, Liszka, Lindblad and Persson 2006). 
Furthermore, the most active volcano of Perú, volcano Ubinas, is situated 65 km from the 
ARE station which will be the focus for our infrasonic studies. 
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station (ARE) in Southern Perú. The station is located 12.7 km south-east of Arequipa city, 
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propagation. The ARE station is located in the shadow of three giant volcanoes: Chachani 
(6075m), Misti (5821m) and Picchu Picchu (Chilo, Jabor, Liszka, Lindblad and Persson 2006). 
Furthermore, the most active volcano of Perú, volcano Ubinas, is situated 65 km from the 
ARE station which will be the focus for our infrasonic studies. 
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3. System design 
 

3.1 System overview 
The data transport requirements (about 65km distance) affect materially the hardware 
selection and distribution. The transmission range of the MSB-430 mounted radio goes 
about 5000 m, but only under special circumstances like a clear line of sight. Hence the node 
has to be combined in a multi hop network a more powerful transmitting devices must be 
used. The FreeWave FGR09CSU 900MHz radio modem (http://www.freewave.com) could 
be used for this task.  
According to the manufacturer specifications the FGR09CSU modem reaches a range of 95 
km in a clear line of sight. If no line of sight is possible, then either a modem can be used as 
a repeater or additional intermediates allow a more suited gateway position. An example 
deployment using the FreeWave modem is sketched in Figure 2. In the example seven 
infrasonic sensor nodes (green) are used for the data acquisition, one gateway node 
(magenta) is connected to a workstation located in the ARE observatory and one 
intermediate node (blue) pass the data from the sources to the sink, the gateway node, 
which finally delivers the data to a workstation.  
 

 
Fig. 2. Spatial system arrangement of a hybrid network; red line represents a long range link; 
black lines accords a radio coverage between two nodes 
 
As aforementioned, Figure 2 contains seven infrasonic sensors, one more than needed. Not 
all sensors have to be simultaneously active. So, one can rest and maybe recover energy. Not 
every infrasonic sensor in the figure is inside radio coverage of an intermediate. In order to 
transport the data of the outer infrasonic sensors all of these must be intermediate nodes 
simultaneously. To assure sufficient CPU power for the data acquisition this double role 
needs to be controlled. 
It is also vitally important that a failure of one or two nodes must not impact the whole 
system, thus the architecture shall actualize highly autonomous behaviour of the nodes not 
just for the day-to-day business but also for the handling of exceptions like malfunctions of 
some nodes. Furthermore, low power consumption and energy conservation strategies shall 
be taken into account, which is essential for a long term operation.  

 
3.2 Architecture 
The applied method for the system decomposition covered both: the partitioning of the 

 

mentioned frequency range is peculiar and seems not to cover the infrasonic range. 
Nevertheless, in contrast with the manufacturer specification, this microphone operates 
sufficiently in the infrasonic range according to the experiences of the authors (Chilo and 
Lindblad 2007). 
The MCE-200 microphone is also available from Extronic AB (http://www.extronic.se/) 
mounted on a PCB, Fig 1, right part. A specially designed version includes a filter providing 
two bipolar output signals, one for infrasound and one for audible sound. The power 
supply is about 3-12 V. The PCB doesn't suit to be used as a sensor caused by high power 
consumption of more than 1 mA. We planned to use the microphone without this PCB, 
therefore, a tailor -made circuit needs to be designed including a low pass filter, a gain 
amplifier and an antialiasing filter. 
 

Frequency range                   20-16000 Hz 
Sensitivity    7.9mV/Pa/kHz ±2 dB 
Output impedance   1-2 kΩ 
Signal-to-noise    ratio < 58 dB 
Couple capacitor   0.1-4.7μF 
Working temperature   0-40 °C 
Power supply    1.5-10V DC /0.5mA 
 

Table 2. Nominal MCE-200 Microphone specifications 
 
The following incomplete enumeration briefly sketches the requirements of the application 
domain.  
1) An event classification requires the complete signal opening of each infrasonic record.  
2) The record of an infrasonic event per microphone shall be automatically transported 

from volcano Ubinas to the University of San Agustin observatory station (ARE).  The 
distance is about 65 km. 

3) The operating time of the monitoring system is weeks or permanent. 
4) The system shall automatically handle the failure of sensor nodes. The system will 

continue at least under a restricted operating mode following the malfunction of 
multiple nodes. It means that a complete system breakdown should be avoided. 

The third requirement is in contradiction to the first one, because it forces a continuous AD 
conversion. Therefore, the sensor nodes will quickly run out of power. A trade-off is the 
continuous conversion by just a single node. The remaining nodes could use a more energy 
conserving comparator.  
To analyze the wave propagation and in order to localize the infrasonic source six time 
synchronized signals recorded from different positions are required: 
5) At least six microphones shall be deployed close to the volcano. They shall be spatially 

separated. 
6) The chronological, accurate to a millisecond, and spatial position, accurate to 10 meters, 

of all records per microphone of an infrasonic event shall be available.  
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(ACLK, 32768 Hz). In order to provide a stable main clock the DCO is watched and 
controlled according to the more reliable crystal oscillator (dcoChecker). 
The second Timer_B register in compare mode is used to create the signal for the ADC. The 
third register is used to measure the GPS pps. In detail, the GPS signal captures the Timer_B 
counter value, stores it into the third register and wakes up the CPU, i.e. an interrupt service 
routine (ISR) of the Time component. 
For scheduling tasks like a periodically GPS synchronization the functionality of software 
timers is needed. Software timers shall run either after a defined delay or at a defined point 
in time. For an accurate scheduling two values are required, the number of Timer_B cycles 
and the desired value of Timer_B, i.e. ACLK cycles. When the defined Timer_B cycles of a 
software timer expires, the desired watch oscillator cycles are written to the sixth compare 
register, which produces an interrupt if Timer_B reaches the value and the software timer is 
executed. 
 

 
Fig. 4. The diagram shows time synchronization via crystal watch. Green objects are 
interrupting service routines; red objects are available only on sensor nodes 

 
4.2 GPS-ACLK synchronization 
The idea of the ACLK synchronization is to let the timer count from zero to exactly the 
ACLK frequency decreased by one. Though, the exact ACLK frequency, about 32678 Hz, 
needs to be measured by using the GPS pulse-per-second (pps) as reference which provides 
an accuracy of 1 μs. The real ACLK frequency depends to the environment temperature. The 
interrupt TBCCR0 (for TBR=32767) and CAP2 (for pps capture) occur simultaneously. This 
fact complicates the deviation detection. The execution of an interrupt service routine may 
not follow the real chronological event order. Therefore, it is wise to move the pps capture 
reference from zero to (TBCCR0+1)/2. Thus, the interrupts are separated by 0.5 s, but only if 
the system is synchronous. In other words, if the Timer_B is synchronized, the pps is caught 
exactly by (TBCCR0+1)/2.  Moreover, the ACLK ticks between the first and the second pps 
capture are counted, what should be close to 32768. This is the first synchronization stage.  
To illustrate the procedure in detail we sketched a simplified example in Figure 5. In this 
figure each timer counting step is visible. One relevant detail is the fact that if the timer 
counts to TBCCR0 it altogether counts TBCCR0+1 ticks; as the timer value is in the range of 
[0..TBCCR0]. Before the first capture occurred, the timer was initialized by 9=
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system according to the system functionality (distinction of concerns), and to map the 
components to the required hardware. 
Figure 3 shows the component dependencies of a sensor node. Time synchronization using 
GPS and periodical signalization form the Time component. For instance, the analog-digital-
converter (ADC) is controlled by a periodical signal. The converted data is evaluated by the 
DataProcessing component (DP) in order to detect events of interest. The component gathers 
all needed data for an infrasonic record including the time and position information 
provided by the Time component and hands it to the Network component. Both 
components, DP and Network, require major RAM parts, as they handle the same data. The 
VirtualDataMemory component (VDM) manages RAM and SD card blocks. The current 
voltage level is periodically watched by EnergyController. Depending to the remaining 
energy and in collaboration with the neighboring nodes the component set the node into a 
low-power mode by stopping the Network, the Time and indirectly the DP component.  The 
hardware abstraction functionality is pooled within the System component.  
 

 
Fig. 3. The diagram gives an overview of the system architecture. Arrows symbolize 
interface access 
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4.1 Hardware Mapping 
The MSP430 version F1216 provides two timers, Timer_A and Timer_B. Timer_A has three 
(TACCR0–TACCR2), Timer_B has seven independent capture/compare registers (TBCCR0–
TBCCR6). A timer register can be used in two different ways. Either the register's content is 
compared to the current counter value of the timer and creates an interrupt on equality 
(compare mode), or on an external signal, e.g. the rising edge of the GPS pulse, the current 
counter value is stored in the register (capture mode). Timer_A is configured to count the 
oscillations of the sub-main clock (SMCLK), which itself will be fed by the digitally 
controlled oscillator (DCO, Figure 4) and Timer_B counts the crystal watch oscillations 
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As a corrective the places after the decimal point for the rational ACLK frequency are 
approximated by measuring the average deviation for seconds . Through the usage of the 
integer frequency ACLKf  the deviation accords the fractional part of the rational ACLK 

frequency multiplied seconds . The fraction calculation is done within the second stage of 
synchronization. First after the third capture the GPS device is switched off and the 
captured values (captured ticks and local time in seconds) are stored. When for instance tens 
of minutes elapsed the GPS device is activated again and the fourth capture is awaited. 
Equation 3 calculates the average fraction, whereby 1=  nnn capturecaptureticks . 
 

n

n
n seconds

ticksfraction

=           (3) 

 
The frequency correction can be simply done by adding uniquely nticks  every nseconds  
to TBCCR0 and restoring the original value of TBCCR0 one second later.  
However, this approach would lead to unwanted steps within the time response. Much 
better is the method of equally distributing nticks  within nseconds . The resulting value 
for TBCCR0 is calculated on each timer overflow event like in equation 4. The variable t  is 
the time in seconds after the last phase shift ( st 0= ). 
As nfraction  always is within the range (-1..1), the timer border )0(tTBCCR  equals either 

1
nACLKf  or 11

nACLKf . In other words: the correction of nticks  within seconds  is 

implemented as an equal distribution of atomic corrections for the timer period. 
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On the fifth pps the captured values needed for the next GPS adjustment are stored and the 
device is powered down for maximum 16* nseconds  (on a constant frequency). One open 

point is the measuring of nfraction  while concurrently the timer is adjusted by 1nfraction . 
Equation 3 needs to be extended to equation 5 to take a concurrent adjustment into account. 
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First tests showed a non acceptable result. A failure analysis discovered a dependency of the 
watch crystal on the environment temperature. Within a couple of hours the oscillator 
slowed down almost linear. The third synchronization stage forecasts the expected ACLK 
frequency taking the gradient of the frequency response into account. 
The gradient is calculated in equation 6. The gradient goes into equation 4 and equation 5 to 
form equation 7 and equation 8. 

 

TBCCR0 = 8. After two seconds 3=1capture  and 1=2capture  are measured. 
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Now, the more exact frequency can be computed by equation 1, with result 7=

2ACLKf . 

Before the register TBCCR0 is adjusted by 
2ACLKf , it is phase shifted, i.e. it is set to 

4=shift . The shift is determined by the elapsed time since the last timer overflow plus the 
expected amount of ticks to the desired timer overflow, equation 2. This happens still in the 
ISR of the second capture. 
On the next timer overflow (Figure 5, third TBIFG event) the timer border is set to the 
calculated value 6=1

1
ACLKf . The third and fourth capture occurs exactly on TBR=3. The 

real time clock is synchronous. Furthermore, the local time is adjusted to the UTC time. The 
UTC time was written by the GPS device to the COM port between the first and second 
capture and must be mapped to the first capture; i.e. the first pps is the exact point in time 
given in the following NMEA record. The GPS device could be switched off after the second 
capture for a time period depending on the allowed time deviation. 
 

 
Fig. 5. Example of phase shift and period correction via ACLK 
 
The allowed deviation of ms0.5  accords ticksfms ACLK*5 , which is about 16 ticks. Even 
by a stable frequency in the worst case it could happen that each second the ACLK deviates 
almost one tick. It is caused by the fact, that the frequency is calculated as an integer and the 
fraction is dropped. In case of a fraction close to one the ACLK exceeds the allowed 
deviation after 16 s. 
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As a corrective the places after the decimal point for the rational ACLK frequency are 
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almost one tick. It is caused by the fact, that the frequency is calculated as an integer and the 
fraction is dropped. In case of a fraction close to one the ACLK exceeds the allowed 
deviation after 16 s. 



Geoscience and Remote Sensing62

 

signal is gained to the required voltage, Figure 7. This approach avoids an overmodulation 
by disturbing frequencies. 
To date there are not ideal low-pass filter, i.e. passing the signal below 20 Hz and 
eliminating the frequencies above. Real filters are approximations, for instance the Bessel, 
Chebyshev, and Butterworth filter.  
 

 
Fig. 7. Data acquisition pipeline 
 
A Butterworth filter was designed in our case. The quality of an active filter, for instance a 
steeper attenuation, is improved by cascading filter stages by combining multiple single 
filters. A 4th order low-pass filter was realized which will require two operation amplifiers 
on the PCB.  

 
5.2 Local event detection 
To detect a supposed volcanic eruption a simple approach is watching the signal amplitude. 
If it passes a threshold one can assume an eruption occurred. The maximum of the 
amplitude is searched in time window wT . For the detection of a 1 Hz signal wT  must be at 
least 500 ms. If the threshold is to high, the amount of false negatives, i.e. missing an event, 
increases. If it is to low, more false positives will be detected, for instance short-term 
fluctuations or wind. 
Short-term fluctuations can be smoothed out by calculating a moving average. The EWMA-
detector implemented by (Werner-Allen, Johnson, Ruiz, Lees and Welsh 2005) supplied more 
reliable events than their implemented threshold based detector. The EWMA (exponential 
weighted moving average) function 
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computes the averages by fading older samples. The variable [0..1]  determines the 
fading factor of old samples. A high   fades off more. The elimination of long-term trends 
can be done by maintenance two averages, by name a short-term saverage  and a long-term 

average laverage . If saverage  exceeds laverage  by the amount of div  an event is 
triggered. 
The state machine in Figure 8 maps the distributed event detection. To trigger the data 
acquisition two independent events must occur within a time window. The elapsing of a 
timeout without an event always leads back to the initial state. 

 

n

nnACLKnnACLK
n seconds

fractionffractionf
gradient



 
)()(

=
11   (6) 

 
 nn

nnnACLK

gradientttfraction

gradienttfractiontftTBCCR
2

2

                    

1)(1)(1)(0




  (7) 

 
n

nnnnn
n seconds

gradientsecondsfractionsecondsticksfraction


  1
2

1=  (8) 

 
The synchronization stages are sketched in the activity diagram in Figure 6. Stage one 
happens after the second capture but only for the first time a node is activated. Between the 
third and fourth capture the GPS is powered down for a long time. For the best trade off 
between energy consumption and accuracy the time duration is determined by test series. 
On the fourth capture stage one and two are executed. The calculation of the gradient results 
zero, hence a prior fraction is missing in the current state. The next occurring capture is 
treated as the third capture again. The second time a fourth capture happens, the gradient 
can be determined. 
 

 
Fig. 6. Final activity diagram of handling CAP2 events 

 
5. Data Acquisition 
 

5.1 Infrasound data 
The infrasound sensor is realized by the electret condenser element microphone (ECEM) 
MCE-200 from Panasonic. A PCB will connect the microphone to the ADC12. Therefore, the 
signal needs to be transformed to a unipolar signal up to 3V. 
The complete data pipeline is arranged in a way that first the analog signal produced by the 
ECEM  is filtered to pass only frequencies below the cutoff frequency and afterwards the 
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signal is gained to the required voltage, Figure 7. This approach avoids an overmodulation 
by disturbing frequencies. 
To date there are not ideal low-pass filter, i.e. passing the signal below 20 Hz and 
eliminating the frequencies above. Real filters are approximations, for instance the Bessel, 
Chebyshev, and Butterworth filter.  
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count distance to the data-sink, i.e. cost, need to use the same slots. 
Figure 10 shows the general idea of the D3 protocol. First the gateway, the sink, broadcasts 
an interest message, Figure 10(a). Each node updates its own cost, i.e. it stores the smallest 
received cost plus one and forwards one-time the INT message with the node's own cost. 
The data sink labels the interest message by a sequence number. If a node receives an INT 
message with a new sequence number, it overwrites its cost value even with a higher cost. 
In this way a changing node topology can be recognized by regular INT messages. 
Before a node transmits a data message, it advertises the data by broadcasting an ADV 
message in the ADV slot before the next TXDATA slot, node E in Figure 10(b). The message 
contains the cost of the node (here two for node E) and the segment_key_t values of all 
unconfirmed packets in the memory. In the original D3 protocol the message also includes 
the time of data transmission, i.e. here the duration to the next data slot in ACLK ticks. 
However, the transmitted duration should be ideally the time between the first byte 
received by an interested node and the beginning of the data slot. To approach this value as 
close as possible the time of transmitting the first ADV byte needs to be measured by the 
initiating node and the duration should be computed according this value. This is only 
possible by transmitting the duration by a different message immediately after an ADV 
message; called Time message. To map a Time message to the responding ADV message, 
both messages need the node network address. 
 

 
Fig. 9. Sequence diagram of D3 timeslots 
 
Each neighbour with lower costs than the cost of a received ADV message schedules the data 
reception (node C and D). All other nodes just switch off their radio in the next RXDATA slot 
(node F and G). The data is transmitted at the beginning of the RXDATA slot, Figure 10(c). 

 

 
Fig. 8. State machine for distributed event detection 
 
All state transitions are briefly described in Table 3. The demand message is put into 
brackets because of the following: if a sensor does not receive two votes it is probably to far 
away, that it could sample meaningful data, hence, the demand message could be 
discarded. However, the implementation efforts for this functionality are not high and may 
still finally benefit. 
 
 

State 
Transition Description 

local event  local event detected 
vote dialog message received by a neighbour who detected an local event 
(demand) dialog message forces the start of data acquisition  
timeout time without any event elapsed 

Table 3. List of state transitions used in Figure 8 

 
6. Data transport 
 

The implemented routing protocol D3 (Ditzel and Langendoen 2005) is a cost table and data 
centric routing protocol, i.e. no network addresses are used and the data is “floating” down 
a gradient. Therefore, only broadcasts are used.  In respect to energy conservation, the 
medium is accessed in time slots, small ones for negotiation and large timeslots for the data 
transfer whereby only the participating nodes are active.  The problems of hidden and 
exposed stations are no more solvable by the classical MACA protocol. Instead we used 
three different data timeslots: TXDATA for transmission, RXDATA for reception, and IDLE 
for a powered down radio.  An example is given in Figure 9. All nodes with the same hop-
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7. Results and conclusions 
 

7.1 Data processing component 
A prototype node is equipped with a specially designed PCB containing the infrasonic 
microphone, a 4th-order Butterworth active low-pass filter, and an amplifier. For the power 
supply a 3 V source is used. A function generator is connected to the couple capacitor and 
ground. It produces a sinus wave with an amplitude of maxiU  = 344 mV. The PCB output 
pin and ground is connected to a voltage oscillograph. The amplitude of the PCB output 
signal maxoU   is measured. The output signal swings around 1.5 V. 

The gain PCBG  of the circuit depending to the input frequency if  is computed by the 
equation 10, Figure 11, green curve. 
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Fig. 11. The response of the amplifier. Red, theoretical 4th-order Butterworth; blue, filter 
without amplifier and green, filter plus amplifier 
 
To measure the gain of the AC amplifier we used a frequency which is passed by the filter 
with unity gain. In other words we searched the output voltage maximum depending to the 
input frequency, what is by f=2.2 Hz and maxoU  =2.844 Hz. The gain at this point is: 
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The calculated value is G=4.25. To get the gain filterG  assigned to the filter the amplifier 

gain must be undone, Figure 11, blue curve: 

 

 
Fig. 10. The D3 routing protocol. Initially the gateway floods an INT message. A node 
forwards data by advertising the new data and after transmitting the data itself 
 
The next data slot is an IDLE slot for the prior transmitter (node E) and a TXDATA slot for 
the prior receiving nodes (node C and D). Those nodes initiate a random backoff delay at 
the beginning of the ADV slot foregoing its TXDATA slot. The node for which the backoff 
delay expires first, node D in Figure 10(d), immediately broadcasts an ADV, which lets all 
other nodes with an advertisement intention cancel their backoff delay. Again, the message 
contains the nodes own cost (one for node D) and all segment identifications of the packets 
in the memory, which includes also the quite recently received packets. Furthermore the 
prior forwarding node (node E) takes that ADV message as a virtual acknowledgment 
(vACK). 
Finally, the data message reaches the gateway, Figure 10(e). The gateway also advertises its 
data in its according ADV slot, Figure 10(f). Of course, in its following TXDATA slot it does 
not forward the data by the radio, but by the COM port to a gateway client. 
The usage of explicit acknowledgments (eACK) is need fully to avoid the retransmission of 
plenty big data packets. The eACKs are transmitted immediately when a neighbour node 
advertises already confirmed packets. 
Another scenario is the reseting of a node or the adding of a new node to the network. The 
ADV messages do not suffice for the integration of the node into the topology, because the 
following could happen: Let's assume a new node has the cost of five, but before the node 
doesn't receive an ADV message of a neighbour with the cost four, its cost is unknown. 
Now, this node receives an ADV message with the cost six and assumes a cost seven, i.e. the 
cost plus one. This lets also confirm all advertised packets in its history. In the case the node 
receives an ADV message with cost four; it updates its cost to five. If now the node who first 
advertised data needs to advertise the data twice, the new node assumes the data to be 
already confirmed and wrongly transmits an eACK. The data packets will be lost. A solution 
is the usage of interest request messages, which are transmitted the first time a node enters 
the network or frequently until the node is added to the network. All neighbours answer on 
an interest request with its last received interest message. However, the requesting node can 
use the ADV messages together with the time messages to synchronize to the network time 
slots, so it could transmit the request within an ADV slot. 
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7. Results and conclusions 
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Fig. 11. The response of the amplifier. Red, theoretical 4th-order Butterworth; blue, filter 
without amplifier and green, filter plus amplifier 
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The calculated value is G=4.25. To get the gain filterG  assigned to the filter the amplifier 

gain must be undone, Figure 11, blue curve: 
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Fig. 12. State 15 hour test result of the RTC deviation; three staged GPS synchronization 
happened about every 45 minutes 
 
Incontestable is the dependence of the deviation between the expected and the real 
frequency response to the RTC deviation. A bend in the frequency response leads to a 
deviation. However, the idea to take the second derivation into account would worsen the 
prediction of the frequency. One can appreciate this, if the expected frequency response is 
imaginary extended by the turns of the real curve. The mathematically unpredictable bends 
can maybe be physically predictable, if for instance the temperature is monitored. A future 
investigation of dependence of the frequency and temperature could pay off. 
Summarized, 33.7% of the time the RTC exceeds the allowed limit (ignoring the first three 
hours, 22.1%). 
For the experimental assurance of the desired accuracy the time OFFGPSt _  needs to be 

defined according to the highest gradient, what is = 648 s, equation 14, ignoring the first 
three hour. 
 

sgradientmst maxOFFGPS 648|=|/0.5=_   (14) 

 
The average gradient, equation 15, of the deviation takes both into account: long periods of 
small deviations and the percentage part of peeks of high deviations. A fixing of the time 

OFFGPSt _  according to the average gradient, equation 16, allows an exceeding of the allowed 

deviation for a small time. For the average gradient without the first hour the result 
is st OFFGPS 2150=_ . 

Very optimistic but energy conserving is to take only 75% of the smallest gradients into 
account. The resulting value according to the average gradient of 75% of the best values 
is st OFFGPS 4168=_ . 
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The amplitude response of a 4th-order Butterworth filter is plotted for comparison, Figure 
11 red curve. Two obvious deviations are visible. The first one below 1 Hz is explained by 
the high-pass effect of the couple capacitor and maybe even by the high-pass effect of the 
capacitor of the AC amplifier. The second one close to 100 Hz can be a measurement error 
caused by the fact that the output voltage in this range is nearly the offset DC of 1.5 V. 

The cutoff frequency is defined as the frequency for which the filter returns 1/2  of the 
pass-band voltage. The cutoff frequency cf  can be experimentally determined by finding 
the frequency which fulfils following equation: 
 

)(=1.51=10*)1/2( cfilter fGdBdBlog    (13) 

 
The realized cutoff frequency is lowcf  =19 Hz. The cutoff frequency of the high-pass effect 

can be determined in the same way and is highcf  =0.14 Hz which is acceptable. 

 
7.2 Time component 
The three staged GPS synchronization allows a switched off GPS device for long periods 
( OFFGPSt _ ). The time period impacts not only the energy consumption but the RTC 

accuracy. To find the best trade-off between energy consumption and accuracy test series 
with different OFFGPSt _  values are accomplished. The board is simply made of a single 

sensor node equipped with a GPS device. It is configured to start the stage one 
synchronization immediately, stage two after ten minutes, and stage three after further ten 
minutes. Firstly now, the time period OFFGPSt _  is used. Hence, the GPS device needs 

between 45 s and about 165 s to provide a valid pps signal, the synchronization period is 

OFFGPSt _  plus the fluctuating GPS startup time. 

Figure 12 shows the result for 45=_OFFGPSt  min. The test runs more than 15 hours. One 

can extract different assumptions by interpreting the responses. The first fact is that within 
the first three hours the synchronization is unacceptable. The reason could be the 
temperature difference between the office and outside, thus the node needs some time to 
acclimatize to the outside temperature. Furthermore, the outside temperature declined in 
the evening hours. 
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The amplitude response of a 4th-order Butterworth filter is plotted for comparison, Figure 
11 red curve. Two obvious deviations are visible. The first one below 1 Hz is explained by 
the high-pass effect of the couple capacitor and maybe even by the high-pass effect of the 
capacitor of the AC amplifier. The second one close to 100 Hz can be a measurement error 
caused by the fact that the output voltage in this range is nearly the offset DC of 1.5 V. 

The cutoff frequency is defined as the frequency for which the filter returns 1/2  of the 
pass-band voltage. The cutoff frequency cf  can be experimentally determined by finding 
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synchronization immediately, stage two after ten minutes, and stage three after further ten 
minutes. Firstly now, the time period OFFGPSt _  is used. Hence, the GPS device needs 

between 45 s and about 165 s to provide a valid pps signal, the synchronization period is 
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can extract different assumptions by interpreting the responses. The first fact is that within 
the first three hours the synchronization is unacceptable. The reason could be the 
temperature difference between the office and outside, thus the node needs some time to 
acclimatize to the outside temperature. Furthermore, the outside temperature declined in 
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For both tests the command cost was implemented on the gateway node in order to simulate 
a cost distribution. The first parameter of the command addresses a node. The second one 
specifies the desired cost of the node. By receiving a dialog message containing the 
command the destination node adjusts its cost accordingly. While the test application is 
running, the node ignores messages transmitted by nodes whose cost difference is greater 
than one. 
Unfortunately, a second node equipped with a second GPS device was not timely available. 
Due to the fact that the network time slots are seeded by time synchronized nodes, the tests 
can only be done with a single data source. However, the intermediate nodes don't care for 
the packet originator and multiple data sources are not essentially required to test the 
functionality.  
Four different configurations for the breadboard were realized. Different network depths 
and different numbers of nodes on the same level were tested. Of course the data sink was 
always on level zero. The data rates are measured by the GatewayClient. 

 
data rate 
[kbit/s] 

Volume 
[kB] 

cost level 1 cost level 2 cost level 3 

2.35 530 one data 
source 

  

2.26 502 one 
intermediate 

one data 
source 

 

1.37 292 two 
intermediates 

one data 
source 

 

2.09 524 one 
intermediate 

one 
intermediate 

one data 
source 

Table 4. Test results of routing a continuous data stream 
 
Table 4 shows the data rates measured for the different network topologies. The packet loss 
rate (not listed in the table) for all topologies was 0%. The rate for the two node topology 
(line one in the table) complies exactly the theoretical value of equation 17 (one RAM block 
of 512 Bytes contains four network packets; one network packet carries a payload of 110 
Bytes). The data rate is the measured value for two intermediates on the same cost level. 
Obviously, the small value is reasoned by collisions. This indicates a small value for the 
used backoff delay. Anyhow, the results still fulfil the requirements.  
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By the following test case the reliability of the network synchronizations is measured. 
During the periods of no network traffic, no synchronization of the time slots happens. The 
network topology was linear with a depth of three, i.e. the data source was on cost level 
three. The size of the records was randomly created. 
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An adjustment every 30 minutes, Figure 13, doesn't show a considerable improvement. It 
needs two hours to acclimatize and to calculate the gradient to the realistic temperature 
response. After the first two hours the time of exceeding the limit deviation of 0.5 ms is 
about 19.9%. A shorter time period for the GPS adjustment doesn't solve sufficiently the 
deviation problem caused by the turns in the frequency response. 
 

 
Fig. 13. 18 hour test result of the RTC deviation; three staged GPS synchronization happened 
about every 30 minutes; pink cycles - GPS timeout caused by rain 
 
For a complete evaluation of the measurement the knowledge of an outstanding fact is 
required. The pink cycles mark long time periods of a deficient GPS signal, which lasts 
respectively about an hour. Both GPS timeouts were caused by rain. Rain impedes the 
synchronization process twice. On the one hand, it induces GPS timeouts and on the other 
hand, it comes together with an increasing of temperature, which itself speeds up the ACLK. 
Nevertheless, excluding these values would result a violation of the accuracy requirements 
for about 12% of the time. 

 
7.3 The network layer 
The issues for the network layers are the capacity, the reliability, and the robustness. Two 
types of test scenarios were accomplished: the transmission of a continuous data stream and 
a sparse transmission of data records over a long time period. 
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a sparse transmission of data records over a long time period. 
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The time synchronization was one of the big challenges. We showed the feasibility of 
achieving the required accuracy by a rare use of the GPS device. The implemented approach 
comprises a high potential to get improved. In view of the measurement results, the 
prediction of the crystal oscillator frequency by taking the current temperature into account 
is promising. Even the usage of an external and more stable oscillator would be an 
enhancement. The maximum achievable accuracy is determined by the GPS receiver and lies 
in the range of microseconds. 
The time synchronization greatly benefits the data acquisition. On the one hand, the 
synchronized hardware timer controls the sampling frequency through the pulse-width 
modulation, what assures the desired sampling frequency. On the other hand, the timer 
determines the beginning of the sampling. So, the mapping of the samples to the UTC time 
is reliably done. 
The conflict of the high CPU demands of both, the data acquisition and the data 
transmission, is solved by applying a mutex for the CPU. Anyhow, considering a long-term 
usage it is recommended to implement a hardware trigger and start the data acquisition 
only if a threshold is passed. Therefore, the requirement of the signal opening needs to be 
discarded. A trade-off is the continuously sampling by just a single node. 
The presented strategies for the local and the distributed event detection can be applied and 
expediently tested firstly, when several infrasonic sensor nodes are available. Again, the 
missing of an adequate reference signal complicates a contingently ongoing development. 
Future work should concentrate on the remote parameterizing of the thresholds. The event 
detection is an own field of research. An improvement here would payoff by reducing the 
power consumption of the network. 
Another big challenge was the implementation of the routing protocol in respect to the time 
slots. The procedure was very time consuming and the test results didn't show a sufficient 
behaviour. Anyhow, we showed the functioning in principle and submitted possible 
adjustments. The most promising approach is the scanning of the time slots in the case of 
asynchrony. The benefit of the sleep scheduled radio for almost 97% of the time still reasons 
such an approach. A detailed analyze and proving of the routing protocol can fill an own 
study. 
The implemented concept of the virtual data memory was highly optimized to the demands 
of the accessing components. The SD card read/write operations are only performed when 
it is absolutely required. For the data acquisition a free memory block is always assured. The 
Network component finds enough free memory in the reception time slot, while in the 
transmission time slot the memory is filled by the packets to be forwarded. In order to serve 
gateway requests of missing packets a history maps the packets to SD card addresses. The 
thereby required trade-off between the history size and the SD card address limitation can 
be solved by considering the swapping out the entire history to the SD card. 
Finally, designing a circuit for the regeneration of chargeable batteries by solar panels could 
be the essential step towards a real long-term usage. 
Wireless sensor networks present many exciting opportunities. The developed system is 
easily to customize in order to operate in different applications. For instance, the orthogonal 
usage of the infrasonic microphones can be used to measure the resonance frequency of high 
buildings. The implementation of a burglar alarm is another example, as well as tracing of 

 

test duration 
[min] 

record separation 
[min] 

volume 
[kB] 

records 

124 15 51 8 
185 30 33 7 

Table 5. Test results of routing periodically single records 
 
A delay of 15 minutes between the record transmissions results a stable time slot behavior of 
the network, Table 5. However, for the delay of 30 minutes the networks got asynchronous 
after the 7th record. Another test with a delay of one hour (not listed) failed after the first 
record. It implies, that the time slot deviation after 30 minutes can exceed at least the 
duration of the half of the ADV slot duration, i.e. 94 ms or 3072 ACLK ticks. In other words, 
if the crystal oscillators of the intermediates deviates about 3.4 ticks per second, the ADV 
slot duration is exceeded after 30 minutes. 
In order to increase the allowed deviation the ADV slots could simply be extended. Even, 
periodical transmissions of ADV messages would synchronize the nodes again. However, 
both approaches would increase the network energy consumption. 
Another solution is the flooding of the measured frequency and its expected trend by the 
sensor nodes immediately after a sensor node synchronized to the GPS device. Therefore, it 
is assumed, that the oscillators of all nodes work under the same conditions. 
Considering very long time periods without any network traffic, following strategy is 
promising: If the nodes got asynchronous it firstly matters in the case of transmission 
purposes. To synchronize again the acting node transmits its slot time multiple times with a 
delay, which assures that the message is received in at least one ADV slot by a child node. A 
delay of about the half of the ADV slot duration would suit. The acting node is scanning the 
time slots. 
Though the unsatisfying result the implemented D3 routing protocol works in principal. A 
detailed analyzes and thereby the adjustment of the protocol parameters is the direction of 
future work, as well as large scale tests. 

 
7.4 Conclusion and outlook 
The system presented in this chapter has the potential of a full-fledged application. The 
analysis of the requirements, as well as the design of the system architecture, was done 
using common and well proven software engineering techniques. Whereby, the balancing 
act between the reutilization and the easy interchange ability in opposite to the high 
application awareness succeeded for the most parts. Though the not entirely satisfying 
results and the open questions, the design is reasoned and self contained. 
In order to connect the microphone to the MSB a sensor module was created. The circuit 
covers a fourth-order Butterworth low-pass filter and an amplifier. Furthermore, the signal 
is transformed from bipolar to unipolar. The comparison of the measured frequency 
response and the expected theoretical response shows acceptable results. A direction for 
future work is to design a digitally controlled amplifier. This would open the possibility to 
remotely adjust and fine tune the event detection on hardware level. In the same way, the 
problem of a missing infrasonic reference source for the best suiting amplifying factor could 
be avoided. 
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if the crystal oscillators of the intermediates deviates about 3.4 ticks per second, the ADV 
slot duration is exceeded after 30 minutes. 
In order to increase the allowed deviation the ADV slots could simply be extended. Even, 
periodical transmissions of ADV messages would synchronize the nodes again. However, 
both approaches would increase the network energy consumption. 
Another solution is the flooding of the measured frequency and its expected trend by the 
sensor nodes immediately after a sensor node synchronized to the GPS device. Therefore, it 
is assumed, that the oscillators of all nodes work under the same conditions. 
Considering very long time periods without any network traffic, following strategy is 
promising: If the nodes got asynchronous it firstly matters in the case of transmission 
purposes. To synchronize again the acting node transmits its slot time multiple times with a 
delay, which assures that the message is received in at least one ADV slot by a child node. A 
delay of about the half of the ADV slot duration would suit. The acting node is scanning the 
time slots. 
Though the unsatisfying result the implemented D3 routing protocol works in principal. A 
detailed analyzes and thereby the adjustment of the protocol parameters is the direction of 
future work, as well as large scale tests. 

 
7.4 Conclusion and outlook 
The system presented in this chapter has the potential of a full-fledged application. The 
analysis of the requirements, as well as the design of the system architecture, was done 
using common and well proven software engineering techniques. Whereby, the balancing 
act between the reutilization and the easy interchange ability in opposite to the high 
application awareness succeeded for the most parts. Though the not entirely satisfying 
results and the open questions, the design is reasoned and self contained. 
In order to connect the microphone to the MSB a sensor module was created. The circuit 
covers a fourth-order Butterworth low-pass filter and an amplifier. Furthermore, the signal 
is transformed from bipolar to unipolar. The comparison of the measured frequency 
response and the expected theoretical response shows acceptable results. A direction for 
future work is to design a digitally controlled amplifier. This would open the possibility to 
remotely adjust and fine tune the event detection on hardware level. In the same way, the 
problem of a missing infrasonic reference source for the best suiting amplifying factor could 
be avoided. 
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moving objects by the time synchronized nodes. Nevertheless, exchanging the microphones 
to other sensors opens a broad spectrum of possibilities. 
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1. Introduction 
 

In recent years, there has been an increasing interest in remote sensing with bistatic SAR. 
Among the advantages bistatic SAR imaging offers in comparison to monostatic SAR 
imaging are that additional information can be exploited (specific bistatic angles can be 
chosen, and additional information is obtained from the bistatic reflectivity of targets and 
because of a reduction of di- and polyhedral effects), that SAR imaging along along-track 
direction will be feasible, that a cost reduction, as well as reduced size, weight, energy 
consumption can be achieved for passive receive-only systems, and that passive systems 
have a reduced vulnerability.  
Several experiments have been carried out to prove the feasibility of remote sensing with 
bistatic SAR. While in the first experiments a stationary receiver or transmitter was involved 
or two airplanes (with almost parallel flight trajectories) have been used, so called hybrid 
experiments with Germany’s national remote sensing satellite TerraSAR-X as illuminator 
and with an airborne SAR receiver system have been performed recently, and first 
processing results have been presented (cf. (Rodriguez-Cassola et al. 2008) or (Ender et al. 
2006; Walterscheid et al. 2009) (where a larger bandwidth and a double sliding spotlight 
mode have been used)).  
Among the research challenges in remote sensing with bistatic SAR are the derivation of 
proper processing algorithms (that yield focused images even in the most general case of 
arbitrary flight trajectories) and the position and attitude determination of the SAR antennas 
(with the accuracy and real-time ability required, and at relatively low cost).  
Accurate position and attitude knowledge of the involved SAR antennas is required at 
several steps: It is an important issue in footprint chasing, that is, to obtain overlapped 
transmitter and receiver antenna footprints (by appropriate antenna steering) during the 
mission. In the hybrid experiments, the magnitude of the satellite velocity is about 76 times 
higher than that of the airplane.  The overlap of the antenna footprints will be a few seconds 
in maximum (the operation in a double sliding spotlight mode is recommended). The 
aircraft has to fly over the target scene in time. Antenna steering can be used to compensate 
for smaller errors. The aircraft’s trajectory and the attitude of its SAR antenna have to be 
known in real-time and typically absolute information is required (independent from the 
satellite (because the related information is not completely available from the satellite)). For 
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footprint chasing in such hybrid bistatic SAR experiments an antenna pointing error of 
about 0.5° in all the three angles is acceptable. The positioning requirements are even less 
strict. 
Furthermore, accurate absolute position and attitude information is required for motion 
compensation and for parameter estimation (with respect to a0 = time difference parameter, and 
a2 = slant range ratio parameter (required during raw data processing)). Recently, in (Wang 
et al. 2009), the effect of uncompensated errors on the bistatic point target reference 
spectrum has been analyzed for the airborne/airborne case.  
Absolute position and attitude information with highest accuracy is (in several applications) 
required for geo-referencing.  
Moreover, in SAR interferometry the baseline (the vector between the antenna phase centers) 
has to be known. Depending on the parameters (e.g., wavelength, orbit) of illuminator and 
receiver, the baseline has to be estimated very accurately (e.g., with mm/cm (length) and 
arcsec (angle) accuracy, respectively) to obtain height errors smaller than 1 m. Here it is 
relative position and attitude information that is required (relative with respect to the carrier 
platforms), and here it is often not required in real-time. 
The aforementioned position and attitude information can be obtained using inertial 
navigation or global navigation satellite systems (GNSS). In the following section, some 
fundamentals regarding these kinds of navigation are introduced, and the data fusion of 
corresponding measurements is considered. Example data fusion approaches for low cost 
position and attitude determination are given and analyzed in Section 3.  

 
2. Introduction to GNSS/INS integration 
 

2.1 Inertial navigation, satellite navigation, and its complementary characteristics 
In inertial navigation, usually, gyroscopes and accelerometers are used, and they are mounted 
in triads so that the sensitive axes of the sensors are mutually orthogonal, setting up a 
Cartesian reference frame. In an inertial measurement unit (IMU), which contains the inertial 
sensor assembly, the raw data provided by the inertial sensors is converted to angular rates 
(from gyroscopes) and specific forces (from accelerometers), and typically an integration of 
the raw data over a certain time and also a calibration is performed. The output of an IMU 
are angular rates b

ibω  of the body-fixed frame (b-frame) with respect to the inertial frame (i-

frame) (see subscript) given in the b-frame (superscript) and specific forces b
iba  (or, because 

of the integration, also delta-theta’s and delta-V’s, respectively). See Figure 1. These data can 
be processed yielding position, velocity, and attitude, which, in case of systems where the 
inertial sensor assembly is strapped down to a body frame of the host platform, has been 
coined strapdown processing. That is, starting from a known initial position, velocity, and 
attitude, dead reckoning is performed using the measurements of the inertial sensors. A 
system that contains an IMU and an appropriate processing unit has been coined inertial 
navigation system (INS). Strapdown inertial navigation is in detail explained in the literature.  
With an INS autonomous navigation (almost independent of the environment) at a high 
data rate (e.g., 100 Hz) can be realized. The full attitude information is available. However, 
the system has to be initialized, and information about the local gravity is required. 
Furthermore, due to the dead reckoning principle the errors are growing unbounded with 

 

time. That is, even if expensive systems (e.g., with a price tag of 50.000$–100.000$) are used, 
position errors of about 1 km/h result if no calibration and external aiding is applied. 
 

 
Fig. 1. Simplified block diagram of an inertial navigation system 
 
Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) can 
be used to determine position, velocity, and time of a point on a platform. By measuring the 
time of arrival (TOA) and by using the transmission time, which can be extracted from the 
received signal, the propagation time and finally the range, the receiver-satellite distance, 
can be derived. By trilateration the receiver position can be determined. Typically, four or 
more simultaneous measurements are required to solve for the 3D receiver position and 
clock bias. The carrier phase/frequency and the code phase of the received signals are 
tracked by appropriate phase/frequency and delay lock loops. There is a correlation of the 
inphase (I) and quadrature phase (Q) components with replica signal quadrature 
components, and the I,Q samples are integrated and dumped. Phase/frequency of the 
replica carrier and phase of the replica code are the raw measurements of a GNSS receiver; 
and from these raw measurements pseudorange, delta range (or Doppler, carrier phase) and 
accumulated delta range (integrated Doppler) observations can be derived, and finally in a 
navigation processor (typically a Kalman filter) position, velocity, and time can be estimated 
based on the observations and a model of the dynamics (cf. Figure 2). More information 
about the systems, the signals, the error sources, the positioning methods (e.g., differential 
GNSS), and augmentation systems and services can be found in the literature. 
GNSS based navigation is non-autonomous. Usually, at least 4 GNSS satellites have to be 
continuously in view. It is depending on the environment and there is a high vulnerability. 
On the other hand, one obtains absolute position, velocity and time information which is 
long-term stable. The output rate is relatively low (e.g., 1 Hz), and regarding the carrier 
phase measurements, the ambiguity resolution and the cycle slip detection and repair is 
challenging.  
 

 
Fig. 2. Simplified block diagram of a GNSS receiver 
 
As indicated above, GNSS based navigation and inertial navigation and the corresponding 
navigation solutions have complementary characteristics. Hence, GNSS/INS integration (in the 
sense of data fusion) is useful to obtain a complete and continuous navigation solution with 
high accuracy and high bandwidth at relatively low cost.  
 
 



On Position and Attitude Estimation for Remote Sensing with Bistatic SAR 77

 

footprint chasing in such hybrid bistatic SAR experiments an antenna pointing error of 
about 0.5° in all the three angles is acceptable. The positioning requirements are even less 
strict. 
Furthermore, accurate absolute position and attitude information is required for motion 
compensation and for parameter estimation (with respect to a0 = time difference parameter, and 
a2 = slant range ratio parameter (required during raw data processing)). Recently, in (Wang 
et al. 2009), the effect of uncompensated errors on the bistatic point target reference 
spectrum has been analyzed for the airborne/airborne case.  
Absolute position and attitude information with highest accuracy is (in several applications) 
required for geo-referencing.  
Moreover, in SAR interferometry the baseline (the vector between the antenna phase centers) 
has to be known. Depending on the parameters (e.g., wavelength, orbit) of illuminator and 
receiver, the baseline has to be estimated very accurately (e.g., with mm/cm (length) and 
arcsec (angle) accuracy, respectively) to obtain height errors smaller than 1 m. Here it is 
relative position and attitude information that is required (relative with respect to the carrier 
platforms), and here it is often not required in real-time. 
The aforementioned position and attitude information can be obtained using inertial 
navigation or global navigation satellite systems (GNSS). In the following section, some 
fundamentals regarding these kinds of navigation are introduced, and the data fusion of 
corresponding measurements is considered. Example data fusion approaches for low cost 
position and attitude determination are given and analyzed in Section 3.  

 
2. Introduction to GNSS/INS integration 
 

2.1 Inertial navigation, satellite navigation, and its complementary characteristics 
In inertial navigation, usually, gyroscopes and accelerometers are used, and they are mounted 
in triads so that the sensitive axes of the sensors are mutually orthogonal, setting up a 
Cartesian reference frame. In an inertial measurement unit (IMU), which contains the inertial 
sensor assembly, the raw data provided by the inertial sensors is converted to angular rates 
(from gyroscopes) and specific forces (from accelerometers), and typically an integration of 
the raw data over a certain time and also a calibration is performed. The output of an IMU 
are angular rates b

ibω  of the body-fixed frame (b-frame) with respect to the inertial frame (i-

frame) (see subscript) given in the b-frame (superscript) and specific forces b
iba  (or, because 

of the integration, also delta-theta’s and delta-V’s, respectively). See Figure 1. These data can 
be processed yielding position, velocity, and attitude, which, in case of systems where the 
inertial sensor assembly is strapped down to a body frame of the host platform, has been 
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sense of data fusion) is useful to obtain a complete and continuous navigation solution with 
high accuracy and high bandwidth at relatively low cost.  
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2.2 GNSS/INS integration approaches 
Raw measurements and derived observations available from inertial navigation and GNSS 
based navigation, respectively, have been briefly mentioned in the preceding section. 
From an information-theoretical point of view, it would be optimal if the raw measurements 
would be processed in a single centralized filter using, for example, a total state space model 
for the state space modelling. Especially if the I,Q components at the output of the 
correlators in the tracking loops are utilized, and if there is a feedback of the estimated 
Doppler from the fusion filter to the numerically-controlled oscillator (NCO) – which has 
been coined INS aiding GNSS – it is known as deeply coupled (or ultra-tightly coupled) 
GNSS/INS integration. (However, there is no commonly agreed definition of it). In that 
case, because of the INS aiding GNSS, only the residuals of the receiver dynamics have to be 
tracked in the tracking loops. The bandwidth is reduced, accuracy, and robustness can be 
improved, and the tracking can be faster. In practice, deeply coupled GNSS/INS integration 
is usually not applied. Access to the tracking loops of the GNSS receiver is usually not 
given. Moreover, there is a relatively high computational burden (e.g., from theory, a total 
state space model has to operate at a relatively high data rate) and relatively poor fault-
tolerance. However, depending on the application (and specific requirements) it could 
outperform other approaches. In (Wagner and Wieneke 2003), the incorporation of the 
strapdown processing into the fusion filter and the use of a total state space filter have been 
proposed.  
On the other hand, a decentralized, a distributed, estimation architecture can be considered 
which exploits the outputs of a GNSS receiver and of an INS. It is called a loosely coupled 
GNSS/INS integration architecture. Systems off-the-shelf can be used, and with the GNSS 
receiver and the INS independent and redundant navigation solutions are available. 
Drawbacks of a loosely coupled GNSS/INS integration are that typically four satellites have 
to be in view to obtain information from the GNSS receiver and that in case of a Kalman 
filter in the GNSS receiver (denoted by navigation processor in Figure 2) time correlated 
estimates of position and velocity are the input for the fusion filter (there are cascaded 
filters) which has to be accounted for (e.g., by considering this information only every >10 s 
or by using a federated filter with high computational load). Moreover, cross correlations 
between position and velocity estimates exist, which can in practice often not be considered 
– because the belonging measurement noise covariance matrices are often not or not 
completely provided by the GNSS receiver – yielding a decreased performance. 
Finally, one can distinguish a tightly coupled integration from the aforementioned 
approaches where pseudoranges and delta ranges or carrier phases (which are outputted by 
many GNSS receivers) are exploited. Different definitions of a tightly coupled GNSS/INS 
integration (e.g., with or without feedback to the GNSS receiver) can be found in the 
literature. In general, a tightly coupled filter is more complex (the fusion filter) than the 
loosely coupled filter but the estimation is more robust, and it is especially when signals 
from less than four satellites can be received superior. 
Regarding the state space modelling, an error state space model is usually applied, which is 
also known as indirect filtering, cf. (Maybeck 1982). The strapdown processing based on the 
measurements of the inertial sensors is done separately at a high rate. It provides a reference 
trajectory. Measurements for the fusion filter are differences between GNSS receiver 
measurements and predicted measurements based on the INS output. The fusion filter 
operates at a relatively low rate at which GNSS based measurements are available. The 

 

dynamics are given by the inertial error differential equations which can be well modelled 
as being linear. 
The estimated errors are usually fed back to correct the IMU measurements yielding errors 
at the output of the INS which do not grow unbounded with time but remain small so that 
the assumption of a linear system model remains reasonable.  
An exemplary GNSS/INS indirect feedback tightly coupled integration architecture is 
shown in Figure 3.  
 

 
Fig. 3. GNSS/INS tightly coupled indirect feedback integration principle (example) 
 
In general, the development of a proper GNSS/INS integration approach depends on the 
application. For example, the dynamics of the platform have to be taken into consideration 
(e.g., orbiting satellite versus unmanned aerial vehicle (UAV)) – not only for a possible 
modelling of the dynamics but also for a proper derivation and consideration of expected 
errors (e.g., with respect to multipath), required bandwidth and update rates, possible 
positioning or initialization methods, etc. Furthermore, among others, the structure of the 
platform has to be considered, the environment has to be considered, constraints can de 
derived and incorporated, and the grade of the inertial sensors and the GNSS receivers 
available has to be taken into consideration.  
More details regarding GNSS/INS integration are given in the literature (e.g., (Farrell and 
Barth 1999). 

 
3. Low-cost GPS/INS integration with multiple GPS antennas 
 

In this section, an example for GNSS/INS integration is given. GNSS/INS integration for 
position, velocity, and attitude estimation of an antenna mounted on an aircraft will be 
considered. The focus is on low cost. That is, a low-cost microelectromechanical system 
(MEMS) based IMU and L1 GPS receivers (that can output pseudorange, delta range, and 
carrier phase measurements) are supposed to be available.  
Tightly coupled GPS/INS indirect feedback sensor data fusion approaches will be considered. 
Different proposals to integrate additional, redundant attitude information are compared.  

 
3.1 Preliminary considerations 
The data fusion approaches are formulated with respect to the n-frame (with axes pointing 
locally north, east, down, respectively).  
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The error is defined as usual, that is, as observed or estimated value – true value.  
The state vector for the tightly coupled integration is chosen to be 
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That is, the state vector comprises 17 states.  
Accelerometer levelling can be used to determine the initial bank angle (roll) and elevation 
angle (pitch) of the platform from the accelerometer measurements as follows 
 

( )2 2
, , ,arctan / ( ) ( )b b b
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( )2 , ,arctan /b b
ib y ib za aϕ =  (3) 

 
The MEMS-based IMU with a typical bias instability between several 100°/h and several 
10000°/h can not sense Earth’s rotation. Hence, gyro-compassing for alignment in azimuth 
can not be performed. Other sensors, such as a magnetometer, can be used to derive 
heading. Heading information can, for example, also be derived from GPS velocity 
measurements according to 
 

2arctan ( / )E Nv vψ =  (4) 
 
or from a priori knowledge.  
It can be shown by an observability analysis that only with additional redundant attitude 
information the states are completely observable (independent of the manoeuvre of the 
platform, dependent on the number of satellites in view).  
This redundant attitude information can be provided by a multi-antenna GNSS receiver 
system. Here we use a non-dedicated system consisting of the master GPS receiver 
(including antenna) and two more (independent) GPS receivers (with antennas). 
Because of an approximately straight and level flight, that can be assumed for a remote 
sensing experiment, the size effect related to the accelerometer triad can be neglected. 
Moreover, because of the low-cost IMU, in addition to other approximations (e.g., no Euler 
acceleration, that is, Earth’s rotation rate assumed to be constant), the transport rate and 
Coriolis terms can be neglected in the strapdown processing and in the system model. 
In subsequent sections, continuous-time models are provided. The appropriate discrete-time 
models can be derived as shown in the literature, e.g., in case of a time-variant system the 
state transition is described as  
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where T is the sampling period. That is, if the continuous-time state transition matrix F(t) is 
time-invariant or only slightly varying with time, one can approximate  
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3.2 Strapdown mechanization 
With aforementioned simplifications due to the characteristic of a low-cost IMU, the 
mechanization can be expressed as 
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It is performed with the specific force vector b

iba , related to the measurement of the 

accelerometer triad, with the angular rate vector  b
ibω , related to the measurement of the 

gyroscopes, with the local gravity vector resolved in the n-frame ˆ n
lg , and where x (or x̂ ) is 

(computed) position, v (or v̂ ) is (computed) velocity, and where the frame rotation from b-

frame to n-frame is described by the computed direction cosine matrix ˆ n
bR . The computed 

platform rotation rate with respect to the inertial frame, ˆ n
inω , is the sum of Earth’s rotation 

rate (depending on latitude) and the transport rate (depending on the speed of the 
platform). Both contributions can be easily computed. Moreover, in some cases, depending 
on the application (gyroscope bias instability, velocity of the platform), these terms can be 
neglected. Note that the products in Eq. (9) are quaternion products as defined by Hamilton. 

 
3.3 Error state system model 
Because of the low-cost IMU, the uncompensated systematic error Δba and Δbω in the 
measurements of the inertial sensors are considered as states, and they are modelled as 
random walk processes. The receiver clock drift (related to the frequency error) is modelled 
as constant plus a random walk process, and the clock bias cΔtr (related to the phase error) is 
the integral of it.  
With the aforementioned constraints and simplifications, the n-frame error state system 
model for the tightly coupled integration is set up as  
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That is, the state vector comprises 17 states.  
Accelerometer levelling can be used to determine the initial bank angle (roll) and elevation 
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where O and I denote a 3×3 identity and 3×3 zero matrix, respectively, and the sub-matrix 
F23 is a skew-symmetric matrix that contains the specific force components transformed to 
the n-frame 
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3.4 Observation models 
In the tightly coupled integration the measurement vector contains the differences in 
predicted (based on strapdown solution for position and velocity) and measured 
pseudorange ρ and delta range vρ , respectively. Moreover, if redundant attitude information 
is available, e.g., derived from an independent GPS multiple-antenna system, the difference 
between predicted (from INS) and true attitude measurement can be included in the 
measurement vector. With respect to satellite number m, we have (in the n-frame) 
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In the tightly coupled integration, the states are nonlinearly mapped into the observation 
space. Hence, an extended Kalman filter can be used for the estimation of the states. The 
Jacobian has to be computed. The resulting observation matrix, that maps the 17 state vector 
components (Eq. (1)) into observation space, is  
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where ( ),m n
tl  is the unit vector in the line of sight from receiver (master GPS antenna A0) to 

satellite number m, resolved in the n-frame, and where R is a frame rotation matrix for the 
transformation from body-axes angular rates to the Euler angle angular rates. 
The matrix has the dimension (3 + ν ∙ 2) × 17, where ν is the number of satellites in view. 
Sequential processing has to be performed to avoid inversion of a huge matrix. 
If the redundant attitude information is obtained from a multi-antenna GPS receiver system 
we can, instead of first computing the attitude, directly exploit the double-difference carrier 
phase measurements of the system. This kind of integration of the attitude information from 
a GPS multiple-antenna system has been proposed in (Hirokawa and Ebinuma 2009). In the 
measurement vector we have then rather differences of predicted and present double-
difference carrier phase measurements (related to antennas A0, A1, and A2) than the 
difference in attitude. In case of two satellites, m and n, the measurement vector is given as 
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where the symbols in parentheses represent satellites (and where the time index has again 
been neglected for convenience). The true double-difference carrier phase observation can 
be expressed as shown by the following example: 
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and the measured double-difference carrier phase can be modelled as 
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where besides the integer ambiguity N∇∆ , only the non-common mode errors multipath 

MP∇∆  and receiver noise eϕ∇∆  have to be considered. 
As soon as there is another satellite in view, the measurement vector is augmented by four 
more rows (pseudorange and delta range differences to the new satellite, respectively, and 
new double-difference carrier phase measurements related to the master satellite m).  
In case of ν > 1 satellites in view, we obtain obviously a (2 + (ν − 1) ∙ 4) × 17 matrix that relates 
the 17 state vector components to the observations. The Jacobian, the observation matrix, 
corresponding to Eq. (14) (2 satellites in view) is 
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where O and I denote a 3×3 identity and 3×3 zero matrix, respectively, and the sub-matrix 
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where ( ),m n

tl  is the unit vector in the line of sight from master antenna (A0) to satellite m, 

resolved in the n-frame, and 0
b

il  is the lever arm (baseline) between the phase centers of 

master antenna (A0) and antenna number i, known in the b-frame. 

 
3.5 Further remarks to the integration approach 
Derivations of the Kalman filter and its augmentations for nonlinear models as well as the 
resulting algorithms are not repeated here. The reader is for example referred to (Maybeck 
1982), (Simon 2006).  
The measurements from the IMU or from the inertial navigation system can be expected 
with a high data rate (e.g., 100 Hz), which is much higher than the data rate of the 
measurements derived from GPS. Hence, to reduce the computational burden, to obtain a 
filter that operates at a relatively low rate, the measurements from the inertial sensors are 
not incorporated as measurements (cf. Section 3.4). Instead, they are directly used in the 
strapdown processing to predict position, velocity, and attitude. In addition, only the a priori 
error covariance matrix P−(k) has to be predicted as usual (in the prediction step, and not 
necessarily at the high data rate).  
As soon as a new measurement vector can be computed, that is, as soon as information from 
GPS is available, the error state is estimated, and the state vector is corrected. In case of small 
rotations there is approximately no difference between the components of the rotation 
vector and the Euler angles. That is, the estimated attitude error can be interpreted as 
rotation vector, and the correction of the a priori attitude quaternion is done by computing 
the quaternion product , ,

, ,ˆ ˆn n n
kb k b kq q q+ −= , where the n-frame rotation quaternion is computed 

with ˆ= −∆ψφ , Tφ = φ φ  and with [ ]cos( /2) sin( /2) Tnq φ φ φ= φ/  (using a Taylor series 
approximation). The correction of the other states is straightforward (subtraction of the 
appropriate estimated error state). After the correction, the errors state is zeroed.  

 
3.6 Simulation setup and results 
For the following experiments a hardware-in-the-loop system has been used for the GPS part. 
It consists of the RF GPS signal simulator system NavX-NCS from Ifen GmbH and Novatel 
DL-4 plus GPS receivers. Synthetic inertial measurements (as obtained from a low-cost IMU) 

 

have been generated using the parameters of a typical consumer grade IMU (cf. Table 1). A 
straight and level flight with a nominally constant velocity of 110 m/s in east has been 
modelled. The parameters describing the experiment are given in Table 1.  
 

Trajectory 

Velocity (ENU) [m/s] [ ]110 0 0 TE =v  

Initial Position (φ, λ, h) [ ]51 N 8 E 3 km Te = ° °x  

Angles (φ, θ, ψ) [°] [ ]= 0 0 90 Tψ  
Start Time (UTC) October 29, 2006, 00:11:27  
Duration 180 s 
GPS measurements 
Update rate 1 Hz 
Measurements Depending on integration approach: code pseudo-

range, delta range, (double-differenced carrier phase) 
Method Point positioning, and attitude determination from a 

non-dedicated multiple antenna system (3 antenna-
receiver pairs with baselines of 2 m each) 

Error modelling Tropospheric delay is estimated and corrected for; 
The small ionospheric delay is estimated and corrected 
for; No multipath (calibrated out); Ambiguities 
resolved and cycle slips repaired (assumed) 

Satellites in view 2–8 (as depicted in Figs. 4–5) 
Elevation angle ≥ 5° 

IMU measurements 
Update rate 100 Hz 
Error modelling Gyroscope (Angular rates) 

Bias stability [°/h] 360 
Scale factor [ppm] 10000 
Noise (ARW) Hz[°/h/ ]  180 
Accelerometer 
Bias stability [μg] 2400 

 Scale factor [ppm] 10000 
 Noise (VRW) [μg/ Hz ]  1000  

Table 1. Nominal parameters describing the setup 
 
An extended Kalman filter has been used for the GPS/INS integration which is based on the 
state space modelling provided in Sections 3.1–3.5. An ideal time-synchronization has been 
assumed, time-delayed measurements have not been taken into consideration. An 
initialization has been performed as described in Section 3.1. 
The attitude estimation results are depicted in Figure 4.  
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It consists of the RF GPS signal simulator system NavX-NCS from Ifen GmbH and Novatel 
DL-4 plus GPS receivers. Synthetic inertial measurements (as obtained from a low-cost IMU) 

 

have been generated using the parameters of a typical consumer grade IMU (cf. Table 1). A 
straight and level flight with a nominally constant velocity of 110 m/s in east has been 
modelled. The parameters describing the experiment are given in Table 1.  
 

Trajectory 

Velocity (ENU) [m/s] [ ]110 0 0 TE =v  

Initial Position (φ, λ, h) [ ]51 N 8 E 3 km Te = ° °x  

Angles (φ, θ, ψ) [°] [ ]= 0 0 90 Tψ  
Start Time (UTC) October 29, 2006, 00:11:27  
Duration 180 s 
GPS measurements 
Update rate 1 Hz 
Measurements Depending on integration approach: code pseudo-

range, delta range, (double-differenced carrier phase) 
Method Point positioning, and attitude determination from a 

non-dedicated multiple antenna system (3 antenna-
receiver pairs with baselines of 2 m each) 

Error modelling Tropospheric delay is estimated and corrected for; 
The small ionospheric delay is estimated and corrected 
for; No multipath (calibrated out); Ambiguities 
resolved and cycle slips repaired (assumed) 

Satellites in view 2–8 (as depicted in Figs. 4–5) 
Elevation angle ≥ 5° 

IMU measurements 
Update rate 100 Hz 
Error modelling Gyroscope (Angular rates) 

Bias stability [°/h] 360 
Scale factor [ppm] 10000 
Noise (ARW) Hz[°/h/ ]  180 
Accelerometer 
Bias stability [μg] 2400 

 Scale factor [ppm] 10000 
 Noise (VRW) [μg/ Hz ]  1000  

Table 1. Nominal parameters describing the setup 
 
An extended Kalman filter has been used for the GPS/INS integration which is based on the 
state space modelling provided in Sections 3.1–3.5. An ideal time-synchronization has been 
assumed, time-delayed measurements have not been taken into consideration. An 
initialization has been performed as described in Section 3.1. 
The attitude estimation results are depicted in Figure 4.  
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Fig. 4. Attitude estimation result using tightly coupled GPS/INS integration approaches 
 
Because of the proper initialization (including an estimation of the gyroscope bias instability 
and an appropriate correction) of the IMU, the errors are relatively small, that is, after 3 
minutes (180 s) the heading error is in case of the stand-alone IMU still smaller than 3°. 
Without initialization and calibration the error would be larger than 20°. As expected, in 
case of the stand-alone IMU, the largest error can be observed in heading. 
In the tightly coupled GPS/INS integration without redundant attitude information the 
attitude errors (and sensor biases) are not directly mapped into observation space. However, 
these error states will also be updated with every new position and velocity measurement. 
These quantities are related to each other as shown by the system model, and this is 
reflected in the predicted error covariance matrix (used for computing the Kalman gain). It 
is therefore no surprise that the attitude estimation results using a tightly coupled GPS/INS 
integration (represented by the black, dashed curves in Figure 4) are better than using a 
similar INS alone.  
A much more accurate attitude estimation result is obtained using additional redundant 
attitude information (shown by blue dotted lines in Figure 4). The measurement vector is 

 

then given by Eq. (12). The redundant attitude information is here obtained from a multiple 
antenna GPS receiver system. In case of less than 4 satellites in view, the system can not 
provide attitude information. Hence, the errors become much larger during such periods.  
Finally, if the double-difference carrier phase measurements from the non-dedicated multi-
antenna system are used (with the observation matrix given by Eqs. (17) (for the case of two 
satellites)) the results are comparable in case of four or more satellites in view, but if only 
two or three satellites are in view still a robust and accurate attitude information is obtained. 
In Figure 5, the obtained position, velocity, and attitude errors are shown.  
 

 
Fig. 5. Navigation solution using tightly coupled GPS/INS integration approaches 
 
The large stand-alone IMU related position and velocity errors (about 1 km and 15 m/s after 
3 minutes, respectively) are not included in the figure. In general, if only two satellites are in 
view, the position and velocity errors grow remarkably. During the period where only three 
satellites are in view, the position and velocity errors are bounded (which is not the case in a 
loosely coupled GPS/INS integration). Again, the incorporation of the double-difference 
carrier phase measurements into the integration approach yields the best results.  
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3.7 Conclusions 
Tightly coupled indirect feedback GNSS/INS integration approaches have been compared 
in Section 3. Required additional redundant attitude information can be derived from GNSS 
using three antenna-receiver pairs. In that case, the double-difference carrier phase 
measurements should be directly incorporated into the integration approach, as has been 
shown by looking at approaches for low-cost GPS/INS integration and appropriate 
simulation results. Such approaches and low-cost sensors can for example be used for 
footprint chasing in bistatic SAR.  
Carrier phase measurements have to be exploited to achieve the required attitude estimation 
accuracy. The detection and repair of cycle slips and the rapid integer ambiguity resolution 
are challenging. It is easier if shorter baselines are used (because of a reduced search space), 
however, the longer the baselines the better the expected attitude accuracy.  
The lever arm between specific force origin of the IMU and phase center of the main GNSS 
antenna can be easily incorporated. 
Depending on the application, the assumptions have to be proven. For example, delayed 
measurements have to be considered, and depending on the platform (e.g., UAV) multipath 
errors that can not be calibrated are an issue, and unconsidered flexure and vibrations can 
remarkably decrease the accuracy.  
Constraints, such as that an airplane is in straight and level flight during a remote sensing 
experiment, can be easily incorporated into the estimation approach.  
A novel GNSS/INS direct integration approach that exploits direction cosine matrix 
orthogonality constraints and that incorporates a model of the dynamics has been proposed 
recently (Edwan et al. 2009). 
The redundant attitude information required can possibly also be derived from a 
comparison of a quick-look SAR image with an existing digital map.  
To obtain more accurate position and attitude estimates, an IMU of a higher grade and 
precise point positioning can be exploited.  

 
4. Summary 
 

The importance of accurate and reliable attitude and position information for remote 
sensing with bistatic SAR has been pointed out in the introduction. In the following section, 
inertial navigation and navigation based on global navigation satellite systems have been 
mentioned. Reasons for GNSS/INS integration have been provided, and appropriate data 
fusion architectures have been briefly introduced and discussed. In the main section, low-
cost tightly coupled GPS/INS integration approaches with and without additional 
redundant attitude information have been presented, and simulation results have been 
discussed.  
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1. Introduction 
 

The remote sensing community is increasingly turning to Unmanned Aircraft Systems 
(UAS) for integration of sensors to support scientific and applications-oriented airborne 
missions. These UAS platforms are seen as providing support capabilities for applications 
that require long observation dwell times and/or require operations in regions that are 
generally too dangerous for manned aircraft to operate efficiently and effectively. One of the 
most viable utilities for UAS as remote sensing platforms is in supporting rapidly evolving 
disaster events, be they natural (wildfires, etc) or anthropogenic (chemical releases, etc). 
Civilian land, resources and disaster management agencies in the United States are critically 
examining the role of UAS for use in long-duration monitoring over disaster events. Some of 
the critical elements that must be included in the analysis are the availability or 
development of autonomous operating sensor systems for integration on these platforms, 
near-real-time data delivery capabilities from the platform sensor to the ground 
management teams, and data / information integration into strategic disaster mitigation / 
management activities. Additionally, there are a number of issues regarding adaptation of 
UAS in the National Airspace System (NAS) and how those UAS interact with manned 
airborne assets in an increasingly congested airspace. Advances in UAS platforms, sensor 
systems, data telemetry capabilities and data manipulation / visualization enhancements 
have been developed, demonstrated, and evaluated for wildfire situational use in the United 
States (Ambrosia, et al., 2008). Those capabilities will be described and will form a 
foundation from which to look towards future improvements to utilizing UAS to support 
the disaster mitigation / remote sensing community. An assessment of the critical 
operational and integration challenges are also addressed. 

 
1.1 Background: Current Fire Observation Capabilities 
Wildfires are highly dynamic phenomenon, and their progression, consumption rates, and 
intensity are not easily modeled or predicted. Varying vegetation composition, age class, 
and moisture content of a fire-prone region are key factors that affect rates of spread. 
Additionally, terrain, coupled with solar exposure and wind dynamics are key elements to 
predicting how and where fire will advance. Given the dynamic conditions of these 

5
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reduce the instrument engineer interaction. Further, automation of instrument collections 
and on-board image processing can yield significant time savings over “manual” operations 
of the same functions. UAS, with their long-flight-durations, provide an efficiency 
improvement over manned aircraft, by allowing either long-term lingering over a single fire 
event, or by allowing multiple fires to be imaged over the 24-hour duration capability of the 
platform. The remote / long-duration operations capabilities and tools developed to 
support those operations are described in the following sections. 

 
1.1.1 NASA Involvement in Fire Observations  
- The National Aeronautics and Space Administration (NASA) and the United States Forest 
Service (USFS) have been collaborating to develop, demonstrate and utilize innovative 
airborne and satellite remote sensing tools and capabilities for gathering, distributing and 
analyzing near-real-time wildfire information (Ambrosia, et al., 2009). NASA has been at the 
forefront of aeronautics research in UAS technologies and has added both small and large 
UAS platforms to its portfolio of science / research aircraft. UAS platforms, like the 
Northrop-Grumman Global Hawk, and the General Atomics Aeronautical Systems, Inc. (GA-
ASI), Ikhana (MQ-9 Predator-B), are operated by NASA to support the agency’s science 
mission objectives, which includes earth and atmospheric research, telecommunications, 
autonomous sensor operations and applied science missions in support of other partner 
agency goals. NASA is also at the forefront of satellite-derived autonomous data processing 
of sensor system information sets, and those same capabilities can be designed for cross-
cutting use on UAS. Autonomous processes of sensor-derived spectral information reduces 
the “data-to-information” lag time common with standard manual processing streams. 
Autonomous image processing and manipulation allows the derivation of Level II 
information to be created from baseline spectral data through the development of complex 
spectral algorithms. Autonomous geo-rectification processes greatly reduce the amount of 
time for the information to be ingestible in a digital spatial context. Developments and use 
of both “line-of-sight” (LOS) and OTH data telemetry systems improve space-borne and 
airborne science mission data-sharing capabilities. On-board data telemetry systems allow 
the distance-sharing of data sets collected remotely to be transmitted from the UAS to a 
disparate investigator or science community. These capabilities are critical to support near-
real-time image utility by disaster managers on rapidly changing events, such as wildfires 
and have been integrated and demonstrated and are described in the context of the 
following sections. 

 
1.2 Wildfire Research and Applications Partnership (WRAP) 
The Wildfire Research and Applications Partnership (WRAP) is a joint effort between the 
National Aeronautics and Space Administration (NASA) and the U.S. Forest Service to 
explore innovative technologies to improve remote sensing observations of fire events. Since 
2003, the WRAP project demonstrates and transitions emerging observation and 
information technologies to operational utility by wildfire management agencies. Because of 
this unique partnership between wildfire personnel and the NASA, academia, and industry 
science and technology community, the wildfire management agencies are better poised to 
utilize and integrate the demonstrated capabilities to improve wildfire intelligence and 
reduce wildfire losses and mitigation expenditures. The WRAP project effort focuses on the 

variables over the course of a wildfire event, it is critical to have current and timely 
intelligence on the fire location and condition of the fire-front, and unburned vegetation in 
the fire’s path. This information, if provided frequently, allows the fire management team to 
plan fire attack appropriately, saving resources, time and possibly lives. A wildfire 
management team cannot attack or manage a fire without “intelligence” about the fire 
condition, location, speed, vegetation composition, access routes or numerous other factors. 
A key factor to managing a wildfire event is the ability to access satellite or airborne remote 
sensing information, at an appropriate temporal and spatial scale. The wildfire management 
agencies in the United States currently utilize satellite data provided by NASA’s Moderate 
Resolution Imaging Spectroradiometer (MODIS) sensor data to provide synoptic, 2-4 times-
daily hot-spot detection of fire at continental scales (Giglio, et. al, 2003; Justice, et. al, 2002;  
Kaufman, et. al, 1998; Morisette, et. al, 2005; NASA  – Goddard Space Flight Center, 2009; 
U.S. Forest Service 2009). The spatial resolution of MODIS is low / moderate (1000 meters), 
and is used to derive a regional estimate of fire distribution. Multiple daily observations 
allow some estimate of fire movement at large scales. Although the temporal frequency of 
the MODIS data is sufficient for individual incident management uses, the spatial resolution 
is insufficient for tactical fire management operations. 
 
The U.S. fire management agencies cohesively manage national fire events through the 
National Interagency Fire Center (NIFC), located in Boise Idaho. The multi-agency 
operations coordinate the distribution of fire fighting assets for all major wildfire events in 
the U.S., and will assist in international operations when requested. As part of the NIFC 
operations, the organization maintains the National Infrared Operations (NIROPS). The 
NIROPS operate two manned aircraft, a Cessna Citation Bravo II and a Beechcraft King Air 
B-200, which employ thermal imaging systems onboard for wildfire mapping support 
nation-wide. During manned mission operations the NIROPS relies on night-time thermal 
infrared data capture to minimize hot spots false detects from thermally “bright” objects 
that may be evident during daytime missions. The two NIROPS aircraft operate at similar 
data capture attitudes (3050 meters (10,000 feet) Above Ground Level (AGL)), and have 
similar mission endurance capabilities (4-6 hour missions). During extended distance 
missions, the aircraft and crew will deploy to other bases of operation in the fire vicinity for 
multiple mission days.  
 
The NIROPS have experimented with various data transfer capabilities including “drop tubes” 
containing hard copy image maps generated on the aircraft, as well as landing and handing off 
digital data storage media (USB “thumb” drives”, etc) containing the thermal infrared (TIR) 
fire hot spot detection data. Recently, with the advent of moderate cost over-the-horizon 
(OTH) telemetry technology, transferring of data from an acquiring sensor on an aircraft is 
attainable. In 2009, both NIROPS aircraft will have near-real-time data telemetry capability 
from the thermal infrared sensor, but prior to that installation, fire crews relied on a data 
handoff following the plane landing after TIR acquisition. The process then required manual 
spatial data transfer of hot spot detections to incident team map bases. The process, from 
acquisition over fire to map generation of hot-spots, took over one hour. 
 
The NIROPS aircraft operate with an instrument engineer on-board to maintain the 
instrument and provide the necessary processing of the data for telemetry distribution to 
ground incident managers. Each of these processes can be streamlined or automated to 
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reduce the instrument engineer interaction. Further, automation of instrument collections 
and on-board image processing can yield significant time savings over “manual” operations 
of the same functions. UAS, with their long-flight-durations, provide an efficiency 
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event, or by allowing multiple fires to be imaged over the 24-hour duration capability of the 
platform. The remote / long-duration operations capabilities and tools developed to 
support those operations are described in the following sections. 
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- The National Aeronautics and Space Administration (NASA) and the United States Forest 
Service (USFS) have been collaborating to develop, demonstrate and utilize innovative 
airborne and satellite remote sensing tools and capabilities for gathering, distributing and 
analyzing near-real-time wildfire information (Ambrosia, et al., 2009). NASA has been at the 
forefront of aeronautics research in UAS technologies and has added both small and large 
UAS platforms to its portfolio of science / research aircraft. UAS platforms, like the 
Northrop-Grumman Global Hawk, and the General Atomics Aeronautical Systems, Inc. (GA-
ASI), Ikhana (MQ-9 Predator-B), are operated by NASA to support the agency’s science 
mission objectives, which includes earth and atmospheric research, telecommunications, 
autonomous sensor operations and applied science missions in support of other partner 
agency goals. NASA is also at the forefront of satellite-derived autonomous data processing 
of sensor system information sets, and those same capabilities can be designed for cross-
cutting use on UAS. Autonomous processes of sensor-derived spectral information reduces 
the “data-to-information” lag time common with standard manual processing streams. 
Autonomous image processing and manipulation allows the derivation of Level II 
information to be created from baseline spectral data through the development of complex 
spectral algorithms. Autonomous geo-rectification processes greatly reduce the amount of 
time for the information to be ingestible in a digital spatial context. Developments and use 
of both “line-of-sight” (LOS) and OTH data telemetry systems improve space-borne and 
airborne science mission data-sharing capabilities. On-board data telemetry systems allow 
the distance-sharing of data sets collected remotely to be transmitted from the UAS to a 
disparate investigator or science community. These capabilities are critical to support near-
real-time image utility by disaster managers on rapidly changing events, such as wildfires 
and have been integrated and demonstrated and are described in the context of the 
following sections. 

 
1.2 Wildfire Research and Applications Partnership (WRAP) 
The Wildfire Research and Applications Partnership (WRAP) is a joint effort between the 
National Aeronautics and Space Administration (NASA) and the U.S. Forest Service to 
explore innovative technologies to improve remote sensing observations of fire events. Since 
2003, the WRAP project demonstrates and transitions emerging observation and 
information technologies to operational utility by wildfire management agencies. Because of 
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utilize and integrate the demonstrated capabilities to improve wildfire intelligence and 
reduce wildfire losses and mitigation expenditures. The WRAP project effort focuses on the 

variables over the course of a wildfire event, it is critical to have current and timely 
intelligence on the fire location and condition of the fire-front, and unburned vegetation in 
the fire’s path. This information, if provided frequently, allows the fire management team to 
plan fire attack appropriately, saving resources, time and possibly lives. A wildfire 
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daily hot-spot detection of fire at continental scales (Giglio, et. al, 2003; Justice, et. al, 2002;  
Kaufman, et. al, 1998; Morisette, et. al, 2005; NASA  – Goddard Space Flight Center, 2009; 
U.S. Forest Service 2009). The spatial resolution of MODIS is low / moderate (1000 meters), 
and is used to derive a regional estimate of fire distribution. Multiple daily observations 
allow some estimate of fire movement at large scales. Although the temporal frequency of 
the MODIS data is sufficient for individual incident management uses, the spatial resolution 
is insufficient for tactical fire management operations. 
 
The U.S. fire management agencies cohesively manage national fire events through the 
National Interagency Fire Center (NIFC), located in Boise Idaho. The multi-agency 
operations coordinate the distribution of fire fighting assets for all major wildfire events in 
the U.S., and will assist in international operations when requested. As part of the NIFC 
operations, the organization maintains the National Infrared Operations (NIROPS). The 
NIROPS operate two manned aircraft, a Cessna Citation Bravo II and a Beechcraft King Air 
B-200, which employ thermal imaging systems onboard for wildfire mapping support 
nation-wide. During manned mission operations the NIROPS relies on night-time thermal 
infrared data capture to minimize hot spots false detects from thermally “bright” objects 
that may be evident during daytime missions. The two NIROPS aircraft operate at similar 
data capture attitudes (3050 meters (10,000 feet) Above Ground Level (AGL)), and have 
similar mission endurance capabilities (4-6 hour missions). During extended distance 
missions, the aircraft and crew will deploy to other bases of operation in the fire vicinity for 
multiple mission days.  
 
The NIROPS have experimented with various data transfer capabilities including “drop tubes” 
containing hard copy image maps generated on the aircraft, as well as landing and handing off 
digital data storage media (USB “thumb” drives”, etc) containing the thermal infrared (TIR) 
fire hot spot detection data. Recently, with the advent of moderate cost over-the-horizon 
(OTH) telemetry technology, transferring of data from an acquiring sensor on an aircraft is 
attainable. In 2009, both NIROPS aircraft will have near-real-time data telemetry capability 
from the thermal infrared sensor, but prior to that installation, fire crews relied on a data 
handoff following the plane landing after TIR acquisition. The process then required manual 
spatial data transfer of hot spot detections to incident team map bases. The process, from 
acquisition over fire to map generation of hot-spots, took over one hour. 
 
The NIROPS aircraft operate with an instrument engineer on-board to maintain the 
instrument and provide the necessary processing of the data for telemetry distribution to 
ground incident managers. Each of these processes can be streamlined or automated to 
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requirements-driven as defined by the TFRSAC. The primary focus was to streamline the 
process and increase the quality and efficiency of wildfire characterization to incident 
personnel. The project leveraged NASA emerging technologies in UAS, sensor systems, 
communications, autonomous intelligent systems operations, and sensor-web expertise. 
 
To meet the goals, an operational concept was developed to test and evaluate the following 
capabilities:   

• Broad-area UAS coverage with long-duration day / night capability, and near-real-
time broad-band communications telemetry capabilities; 

• A calibrated multi-spectral visible through thermal-infrared sensor with onboard 
processing for near-real-time geometric image correction, geo-location,  image 
analysis, and communications management; 

• A Wildfire - Collaborative Decision Environment (W-CDE) for data visualization, 
mission planning, and situational awareness; 

• A real- time, GIS data-base of selected derived wildfire sensor products (GeoTIFF, 
multi-band imagery, on-board derived hot spot detection products); 

• Training and outreach to fire management personnel and data analysts. 
 
The WSFM architecture concept is shown in Figure 1. 
 

 
Fig 1. The Western States Fire Mission operational concept highlights the communications 
architecture for UAS sensor imaging over wildfire disaster events. This configuration 
integrates additional information sources into a Wildfire - Collaborative Decision 
Environment (W-CDE), and allows sharing of data elements with a disparate disaster 
management community. 

fire management community providing the requirements and metrics for improving 
wildfire observational strategies. The NASA and USFS team members then develop / 
mature technologies that meet the metrics and requirements defined by the fire community. 
This process is formalized in the WRAP project’s Tactical Fire Remote Sensing Advisory 
Committee (TFRSAC) creation, which is described in the following sub-section. 

 
1.2.1 Tactical Fire Remote Sensing Advisory Committee (TFRSAC) - The technology 
transfer successes of the WRAP project are the result of an innovative technical and scientific 
team structure that marries fire management personnel with science and engineering team 
members from NASA, academia and industry. The Tactical Fire Remote Sensing Advisory 
Committee (TFRSAC), chaired by partners from the US Forest Service meet twice annually 
to discuss and highlight critical wildfire observational technology- and information-gaps. 
The TFRSAC group engages the NASA / academia / industry members to design new 
solution sets to fill those gaps within that disaster management community. The partners 
engage in technology development, enhancement, maturation, demonstration, and 
technology transfer to that wildfire community to ensure that the capabilities meet the 
requirements of the fire community. The TFRSAC members become technology enablers, 
allowing rapid operational integration, meeting the specific requirements of wildfire 
managers and wildfire technologists. This partnership group has been highly successful in 
maturing, demonstrating and integrating NASA-derived capabilities in UAS utility, sensor 
system design, telecommunications systems improvements, image-processing algorithm 
development, intelligent systems design, inter-sensor systems coordination (sensor-web) 
and data visualization capabilities. 
 
The objectives of the WRAP and TFRSAC-led efforts were to: 

• Demonstrate the efficiency of long-duration observational capabilities of a UAS for 
disaster management support; 

• Develop and demonstrate new sensor design concepts for multi-mission operations 
on UAS platforms. This includes maturing system architecture to allow long-duration 
autonomous operations (+24 hours), high altitude operations, and large data 
collection and storage capabilities; 

• Develop and demonstrate new sensor capabilities that utilize increased spectral 
domains to improve autonomous fire-characterization. 

• Demonstrate over-the-horizon data telemetry capabilities that allow efficiency in 
provision of critical, near-real-time sensor information from a remote UAS platform; 

• Provide sensor-derived, GIS-compatible, geo- and terrain-rectified, Level II processed 
data on wildfire conditions to incident management teams within 15-minutes of 
acquisition. 

 
2. Western States Fire Mission Configuration Overview 
 

The Western States Fire Mission (WSFM) demonstrations, a major component of the WRAP 
project, is a multi-agency collaborative effort to explore, develop and evaluate emerging 
technologies for possible adaptation by fire and other disaster response agencies. This 
configuration was not developed with a focus on any particular business or cost model, but 
was driven by scientific and technical needs assessments. The WSFM approach was 
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requirements-driven as defined by the TFRSAC. The primary focus was to streamline the 
process and increase the quality and efficiency of wildfire characterization to incident 
personnel. The project leveraged NASA emerging technologies in UAS, sensor systems, 
communications, autonomous intelligent systems operations, and sensor-web expertise. 
 
To meet the goals, an operational concept was developed to test and evaluate the following 
capabilities:   

• Broad-area UAS coverage with long-duration day / night capability, and near-real-
time broad-band communications telemetry capabilities; 

• A calibrated multi-spectral visible through thermal-infrared sensor with onboard 
processing for near-real-time geometric image correction, geo-location,  image 
analysis, and communications management; 

• A Wildfire - Collaborative Decision Environment (W-CDE) for data visualization, 
mission planning, and situational awareness; 

• A real- time, GIS data-base of selected derived wildfire sensor products (GeoTIFF, 
multi-band imagery, on-board derived hot spot detection products); 

• Training and outreach to fire management personnel and data analysts. 
 
The WSFM architecture concept is shown in Figure 1. 
 

 
Fig 1. The Western States Fire Mission operational concept highlights the communications 
architecture for UAS sensor imaging over wildfire disaster events. This configuration 
integrates additional information sources into a Wildfire - Collaborative Decision 
Environment (W-CDE), and allows sharing of data elements with a disparate disaster 
management community. 
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wildfire observational strategies. The NASA and USFS team members then develop / 
mature technologies that meet the metrics and requirements defined by the fire community. 
This process is formalized in the WRAP project’s Tactical Fire Remote Sensing Advisory 
Committee (TFRSAC) creation, which is described in the following sub-section. 
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team structure that marries fire management personnel with science and engineering team 
members from NASA, academia and industry. The Tactical Fire Remote Sensing Advisory 
Committee (TFRSAC), chaired by partners from the US Forest Service meet twice annually 
to discuss and highlight critical wildfire observational technology- and information-gaps. 
The TFRSAC group engages the NASA / academia / industry members to design new 
solution sets to fill those gaps within that disaster management community. The partners 
engage in technology development, enhancement, maturation, demonstration, and 
technology transfer to that wildfire community to ensure that the capabilities meet the 
requirements of the fire community. The TFRSAC members become technology enablers, 
allowing rapid operational integration, meeting the specific requirements of wildfire 
managers and wildfire technologists. This partnership group has been highly successful in 
maturing, demonstrating and integrating NASA-derived capabilities in UAS utility, sensor 
system design, telecommunications systems improvements, image-processing algorithm 
development, intelligent systems design, inter-sensor systems coordination (sensor-web) 
and data visualization capabilities. 
 
The objectives of the WRAP and TFRSAC-led efforts were to: 

• Demonstrate the efficiency of long-duration observational capabilities of a UAS for 
disaster management support; 

• Develop and demonstrate new sensor design concepts for multi-mission operations 
on UAS platforms. This includes maturing system architecture to allow long-duration 
autonomous operations (+24 hours), high altitude operations, and large data 
collection and storage capabilities; 

• Develop and demonstrate new sensor capabilities that utilize increased spectral 
domains to improve autonomous fire-characterization. 

• Demonstrate over-the-horizon data telemetry capabilities that allow efficiency in 
provision of critical, near-real-time sensor information from a remote UAS platform; 

• Provide sensor-derived, GIS-compatible, geo- and terrain-rectified, Level II processed 
data on wildfire conditions to incident management teams within 15-minutes of 
acquisition. 

 
2. Western States Fire Mission Configuration Overview 
 

The Western States Fire Mission (WSFM) demonstrations, a major component of the WRAP 
project, is a multi-agency collaborative effort to explore, develop and evaluate emerging 
technologies for possible adaptation by fire and other disaster response agencies. This 
configuration was not developed with a focus on any particular business or cost model, but 
was driven by scientific and technical needs assessments. The WSFM approach was 
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2.2 Command / Control / Data Communications Telemetry 
The aircraft flight controls, payload system controls, and the payload sensor data are 
operated through a communications linkage with the GCS. There are two kinds of ground 
communications to the aircraft: LOS and satellite OTH systems. A portable ground data 
terminal provides two-way control and sensor communication when the aircraft is within 
radio line-of-sight (approximately 130 kilometers (70 nautical miles)). A geo-synchronous 
communications satellite, operating at Ku-band frequencies, provides OTH uplink and 
downlink between the UAS and GCS. The Ku-band system has bandwidth capacity of 3.0 
megabits-per-second (Mbs), where 1.0 Mbs is used for data transmission, and 2.0 Mbs is 
used for video data transmission, a small bandwidth is required for platform command and 
control. This telemetry link allows data from the onboard imaging sensor (described in the 
next section) to be sent from the UAS to the GCS and then redistributed through the Internet 
to the community. 

 
2.3 Autonomous Modular Scanner – Wildfire (AMS-Wildfire) Sensor 
The AMS-Wildfire sensor is an airborne multi-spectral imaging line scanner capable of high-
altitude autonomous operations on both manned and unmanned aircraft (Figure 3). The 
sensor is a highly modified Daedalus AADS-1268 scanning system that can support 
resolutions of 1.25 milliradian and 2.5 milliradian, with an angular field of view of 43° or 86° 
respectively. Spatial resolution is determined by altitude and the primary aperture size (1.25 
mrad or 2.5 mrad). Operating from an example altitude of  7011 km (23,000 feet) mean sea 
level (MSL); ~20,000 feet Above Ground Level (AGL)), with a 2.5 mrad setting, the pixel 
spatial resolution would be 15 meters (50 feet). The system is configured with twelve 
spectral channels ranging from the visible through short-wave-, mid-, and thermal-infrared 
(VIS-IR-TIR) (Table 1). The thermal-infrared (TIR) channels have been calibrated for accurate 
(~0.5° C) temperatures discrimination of hot targets, up to ~1000°C. 
 

 
Fig. 3. The NASA AMS-Wildfire instrument arranged in the sensor payload pod tray. The 
scan-head is located under the cylindrical white thermal blanket at the top-left of the pod 
tray, while the white pressure vessel in the center contains the digitizer and electronics. 
Other components include the power supply and various controlling electronics. 

This configuration allows the WSFM team to observe critical fire components, develop a 
process flow for autonomous data intelligence management, develop a simplified common 
operating picture, plan missions within the framework of the COP (the W-CDE), monitor 
flight operations on UAS aircraft, and provide near real-time fire intelligence to the Incident 
Command system. The following sections will explore these technologies in greater detail. 

 
2.1 UAS 
Our fire mission requirements and expectations for UAS performance included broad-area 
access to the NAS, with long-duration day / night capability, and near-real-time broad-band 
satellite telemetry capabilities for remote command / control of the sensor payload and 
sensor data telemetry. The new NASA Ikhana UAS had all these key attributes and made it a 
capable platform to demonstrate support of disaster incident monitoring. 
 
The NASA Ikhana UAV is a modified General Atomics – Aeronautical Systems, Inc. 
Predator-B (MQ-9) Unmanned Aerial Vehicle (UAV), designed specifically for supporting 
NASA science missions. “Ikhana” is a Native American Choctaw word meaning intelligence, 
conscious or aware. The name is descriptive of the research goals NASA has established for 
the aircraft and its related systems. The Ikhana is capable of ~24-hour duration, 150-200 knots 
airspeed, ~13720 meters (45,000 feet) altitude, and flight legs of over 7408 kilometers (4000 
nautical miles) (Figure 2). The platform is remotely controlled by a pilot on the ground 
seated at a console located in the Ground Control Station (GCS). The sensor system 
operator, seated at a console located in the GCS can monitor and control the AMS-Wildfire 
sensor payload carried aloft by the Ikhana. The Ikhana home base is NASA-Dryden Flight 
Research Center (DFRC) at Edwards Air Force Base (EAFB), California. The Ikhana was first 
put into service for NASA in January 2007, and flew its first science missions in support of 
wildfire observations in August 2007. The Ikhana is ideally suited to support long-endurance 
/ duration missions, where critical observation-time over a dynamic event is required. 
Special coordination with the Federal Aviation Administration (FAA) was required to safely 
operate the Ikhana UAV in the National Airspace (NAS).  
 

 
Fig. 2. The NASA Ikhana UAS with the sensor pod mounted under the left wing. 
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(~0.5° C) temperatures discrimination of hot targets, up to ~1000°C. 
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scan-head is located under the cylindrical white thermal blanket at the top-left of the pod 
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Other components include the power supply and various controlling electronics. 

This configuration allows the WSFM team to observe critical fire components, develop a 
process flow for autonomous data intelligence management, develop a simplified common 
operating picture, plan missions within the framework of the COP (the W-CDE), monitor 
flight operations on UAS aircraft, and provide near real-time fire intelligence to the Incident 
Command system. The following sections will explore these technologies in greater detail. 
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sensor data telemetry. The new NASA Ikhana UAS had all these key attributes and made it a 
capable platform to demonstrate support of disaster incident monitoring. 
 
The NASA Ikhana UAV is a modified General Atomics – Aeronautical Systems, Inc. 
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conscious or aware. The name is descriptive of the research goals NASA has established for 
the aircraft and its related systems. The Ikhana is capable of ~24-hour duration, 150-200 knots 
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Ceccato, 1996, and Cahoon, et al. 1992). The CCRS algorithm was originally developed for 
use with satellite (AVHRR) imagery (Li, et al., 2000b), but has been adapted for use on 
various airborne sensor systems, including the AMS-Wildfire sensor. 
 
The fire hot-spot detection algorithm uses the 3.6μm channel of the AMS-Wildfire sensor to 
define a fire temperature threshold, and two or more additional channels to further refine 
this classification. Multi-channel thresholding improves commission errors encountered 
when using a single mid-wave thermal infrared channel-derived temperature value alone. 
The threshold values used in the algorithm (AMS channels 11 and 12 and, for daytime 
missions, channel 7; see Table 1) are parameters which can be variably set by the operator 
during a mission. The fire hot-spot detection algorithm is calculated as: 

If: 
Band 11 (3.60- 3.79 µm) > Band 11minimum temperature (e.g. 380° K) and 
Band 12 (10.26-11.26µm) > Band 12 minimum temperature (e.g. 240° K) and 
Band 11 – Band 12 > Difference minimum (e.g. 14° K),  
And (if available), 
Band 7(0.76- 0.90µm) < Reflectance maximum (e.g. 0 .3) (to screen high-reflectance 
commission errors), 
Then, 
Pixel is classified as a fire hot-spot 
 

The hot-spot algorithm-defined vector data set is provided as an additional data product 
transmitted over the telemetry link. 

 
2.3.1.2 Geo-Rectification – Image data sets from the AMS-Wildfire sensor are 
autonomously geo-rectified on-board the Ikhana on a processor. The fully automated geo-
rectification processing utilizes meta-data from an Applanix Position and Orientation 
System for Airborne Vehicles (POS AV) model 310 system. The POS AV-310 integrates 
precision Global Positioning Satellite (GPS) data with inertial technology to provide near-
real-time and post-processed measurements of the position, roll, pitch and heading of 
airborne sensors. Photogrammetric projective transformation equations are used to 
determine the position of each pixel in the scanline as projected to the ground, with 
“ground” being determined by the on-board digital elevation model (DEM) data for the area 
being over-flown. The onboard DEM consists of a composite data set of one-arc-second 
Shuttle Radar Topographic Mission (SRTM)  30-meter spatial resolution elevation “tiles” 
which are mosaiced real-time as needed, creating a seamless DEM for the entire western 
United States (USGS SRTM website, 2008). The SRTM DEM data are used to define the 
geospatial context (latitude / longitude, elevation) reference for geo-rectification of the 
sensor line-scanner data. Each of the AMS-Wildfire data pixels are geo-referenced based 
upon the relationship between the location of the sensor / platform (which defines the 
pointing vector of the line-scanner pixel at acquisition time) and the latitude, longitude, and 
elevation of the terrain (from the SRTM data).  
 
The on-board product generation, algorithm processes, and geo-rectification processes takes 
approximately 30-seconds (0.5 minutes) per image-file frame (1200 lines of AMS-Wildfire 
spectral data). With the additional data transmission time (via satellite telemetry) and 

Spectral Band Wavelength, µm 
1 0.42- 0.45 
2 0.45- 0.52   (TM1) 
3 0.52- 0.60   (TM2) 
4 0.60- 0.62 
5 0.63- 0.69   (TM3) 
6 0.69- 0.75 
7 0.76- 0.90   (TM4) 
8 0.91- 1.05 
9 1.55- 1.75   (TM5) 
10 2.08- 2.35   (TM7) 
11 3.60- 3.79   (VIIRS M12) 
12 10.26-11.26  (VIIRS M15) 

 
Total Field of View:  42.5 or 85.9 degrees (selectable) 

IFOV: 1.25 mrad or 2.5mrad ( selectable) 
Spatial Resolution:  3 – 50 meters (variable based on alt) 

Table 1. AMS-Wildfire 12-channel scanner specifications. 
 
Major hardware and software modifications to the AMS-Wildfire instrument allow 
autonomous or remote operations of the sensor aboard a UAS platform during extended 
mission profiles.  
 
As the AMS line scanner collects a series of scanlines over a wildfire event, the raw spectral 
data are sent to a computer processor on-board the platform to further process into useful 
information data sets for delivery to a telemetry system and distribution to receiving nodes 
on the ground. The on-board autonomous data processing is described in the following 
section. 

 
2.3.1 On-Board Data Processing – The on-board data processing system was designed to 
autonomously complete the acquisition, pre-processing, information extraction, and output 
product generation from the raw spectral data collected by the AMS-Wildfire sensor system. 
The on-board processing includes fire detection “hot spot” algorithm processing, image 
generation, and geo-rectification of all data sets. Each of these processes is automated, 
requiring an initiation by the sensor engineer operating from the GCS. AMS-Wildfire sensor 
data are first autonomously converted to temperature/radiance data, and the thermal 
channels are further converted to a “brightness temperature measurement. An appropriate 
fire detection algorithm is applied to those derived image data sets. The resultant data sets 
are then autonomously processed to create geo-rectified visual raster products and hot-spot 
detection vector files. The vector and raster products are transmitted via the Ikhana Ku-band 
SatCom telemetry system to the ground. 

 
2.3.1.1 Fire Hot-Spot Detection Algorithm - For fire hot-spot detection, a multi-channel 
temperature threshold algorithm, based on that developed by the Canadian Center for 
Remote Sensing (CCRS), was implemented (Li, et al., 2000a, Li, et al., 2000b, Flasse and 
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Ceccato, 1996, and Cahoon, et al. 1992). The CCRS algorithm was originally developed for 
use with satellite (AVHRR) imagery (Li, et al., 2000b), but has been adapted for use on 
various airborne sensor systems, including the AMS-Wildfire sensor. 
 
The fire hot-spot detection algorithm uses the 3.6μm channel of the AMS-Wildfire sensor to 
define a fire temperature threshold, and two or more additional channels to further refine 
this classification. Multi-channel thresholding improves commission errors encountered 
when using a single mid-wave thermal infrared channel-derived temperature value alone. 
The threshold values used in the algorithm (AMS channels 11 and 12 and, for daytime 
missions, channel 7; see Table 1) are parameters which can be variably set by the operator 
during a mission. The fire hot-spot detection algorithm is calculated as: 

If: 
Band 11 (3.60- 3.79 µm) > Band 11minimum temperature (e.g. 380° K) and 
Band 12 (10.26-11.26µm) > Band 12 minimum temperature (e.g. 240° K) and 
Band 11 – Band 12 > Difference minimum (e.g. 14° K),  
And (if available), 
Band 7(0.76- 0.90µm) < Reflectance maximum (e.g. 0 .3) (to screen high-reflectance 
commission errors), 
Then, 
Pixel is classified as a fire hot-spot 
 

The hot-spot algorithm-defined vector data set is provided as an additional data product 
transmitted over the telemetry link. 

 
2.3.1.2 Geo-Rectification – Image data sets from the AMS-Wildfire sensor are 
autonomously geo-rectified on-board the Ikhana on a processor. The fully automated geo-
rectification processing utilizes meta-data from an Applanix Position and Orientation 
System for Airborne Vehicles (POS AV) model 310 system. The POS AV-310 integrates 
precision Global Positioning Satellite (GPS) data with inertial technology to provide near-
real-time and post-processed measurements of the position, roll, pitch and heading of 
airborne sensors. Photogrammetric projective transformation equations are used to 
determine the position of each pixel in the scanline as projected to the ground, with 
“ground” being determined by the on-board digital elevation model (DEM) data for the area 
being over-flown. The onboard DEM consists of a composite data set of one-arc-second 
Shuttle Radar Topographic Mission (SRTM)  30-meter spatial resolution elevation “tiles” 
which are mosaiced real-time as needed, creating a seamless DEM for the entire western 
United States (USGS SRTM website, 2008). The SRTM DEM data are used to define the 
geospatial context (latitude / longitude, elevation) reference for geo-rectification of the 
sensor line-scanner data. Each of the AMS-Wildfire data pixels are geo-referenced based 
upon the relationship between the location of the sensor / platform (which defines the 
pointing vector of the line-scanner pixel at acquisition time) and the latitude, longitude, and 
elevation of the terrain (from the SRTM data).  
 
The on-board product generation, algorithm processes, and geo-rectification processes takes 
approximately 30-seconds (0.5 minutes) per image-file frame (1200 lines of AMS-Wildfire 
spectral data). With the additional data transmission time (via satellite telemetry) and 
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Table 1. AMS-Wildfire 12-channel scanner specifications. 
 
Major hardware and software modifications to the AMS-Wildfire instrument allow 
autonomous or remote operations of the sensor aboard a UAS platform during extended 
mission profiles.  
 
As the AMS line scanner collects a series of scanlines over a wildfire event, the raw spectral 
data are sent to a computer processor on-board the platform to further process into useful 
information data sets for delivery to a telemetry system and distribution to receiving nodes 
on the ground. The on-board autonomous data processing is described in the following 
section. 

 
2.3.1 On-Board Data Processing – The on-board data processing system was designed to 
autonomously complete the acquisition, pre-processing, information extraction, and output 
product generation from the raw spectral data collected by the AMS-Wildfire sensor system. 
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data (Figure 4). Incident command teams were provided access to the W-CDE through a 
network link to the data “mash-up” service.  
 

 
Fig. 4. Components of the Collaborative Decision Environment. The visualization element of 
the W-CDE employs GoogleEarth. The critical fire data elements (left side) that compose the 
additional visualization components are a “mash-up” of data from various web served data 
locations. The W-CDE also allows integration of instant messaging (IM) and provision of 
streaming video data from the acquiring UAS platform, in addition to the 3-D visualization 
of the AMS-Wildfire sensor-acquired data. 

 
3. WSFM Missions 
The WSFM focus is getting the right information, to the right people, at the right time. 
Missions planning was done in partnership with the NIFC National Incident Coordination 
Center (NICC) and the California state fire agency (CalFire) to ensure useful fire data 
products were generated on-board and transmitted to ground servers for distribution to 
web-supported Incident command teams in minutes. Highlights of WSFM UAS mission 
execution steps and results are summarized in the following sections. 

 
3.1 Mission Planning 
Mission planning requires knowledge of where the image targets (fires, incident infrared 
data requests, fire science targets, etc.) are. Additionally, operational constraints (aircraft 

ground-based quality control assessment, the total process time (to final delivery to a server 
for Internet distribution) is within fifteen minutes defined as a metric for near-real-time data 
delivery.  
 
The geo-rectified data sets and imagery are sent from the on-board link module image-
processing computer to the telemetry system. The GeoTIFF files are moderate file sizes (-1 – 
3 Mb per frame), allowing for minimal transmittance time through the telemetry link to the 
GCS, where they are then sent to servers at NASA for redistribution through the Internet. 

 
2.4 Ground Services 
The geospatial processing services for the serving of the near-real-time AMS-Wildfire 
derived data products were implemented utilizing open standards, promulgated primarily 
by the Open Geospatial Consortium (OGC). The pointers to the image data were of five 
types: 

• A pointer to the raw spectral data availability via anonymous file transfer protocol 
(FTP);  

• A pointer to the data via an OGC-compliant Web Map Server (WMS), used by 
Geographic Information System (GIS) clients (such as ESRI ARC users); 

• A pointer to the data via an OGC-compliant Web Coverage Service (WCS), used 
primarily by other processing services, including fire and smoke modeling teams; 

• A pointer to a GoogleEarth Keyhole Markup Language (kml) file; and, 
• A pointer to a thumbnail-sized version of the file for quick-look viewing of the 

data. 
 
The AMS-Wildfire data can therefore be accessed and ingested into a desktop GIS, WMS- or 
WCS-accessed system, or be visualized using any standard web browser, or Google Earth. 

 
2.5 Wildfire - Collaborative Decision Environment (W-CDE) 
A simplified, fire data integration and visualization solution tool was developed using 
NASA and Commercial-Off-The-Shelf tools. The Wildfire Collaborative Decision 
Environment (W-CDE) was developed originally to support data and sensor sharing for the 
NASA’s Mars Exploration Rover program, and was modified to allow use as a data- and 
information-sharing tool for wildfire disaster managers. The W-CDE allows the integration 
of numerous web-enabled data sources to be collaboratively viewed and implemented to aid 
in determining appropriate fire management strategies. Simplifying the fire data 
visualization capabilities, NASA expanded the capabilities of the GoogleEarth® free-ware 
package as a “front-end” to allow the integration of multiple, pertinent fire-related data 
elements into a single package. These elements included the integration of real-time satellite 
weather information, predicted and actual cloud cover, predicted winds, satellite-derived 
fire “hot-spot” detections, Remote Automated Weather stations (RAWS) throughout the 
western US, National Weather Service Fire Critical Weather information, Ikhana aircraft 
tracking positional information, sensor information and real-time imagery feeds, Federal 
Aviation Administration (FAA) flight restrictions data, maps and information, airspace 
information, National Interagency Fire Center’s Large Fire Location data, wildfire 
management team’s Infrared mission support requests, and real-time lightning detection 
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NASA’s Mars Exploration Rover program, and was modified to allow use as a data- and 
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in determining appropriate fire management strategies. Simplifying the fire data 
visualization capabilities, NASA expanded the capabilities of the GoogleEarth® free-ware 
package as a “front-end” to allow the integration of multiple, pertinent fire-related data 
elements into a single package. These elements included the integration of real-time satellite 
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areas (circular operational areas, typically 15-nm radius). This preliminary plan was used by 
the FAA to alert FAA flight sector controllers to the NASA Ikhana UAS activity in their 
assigned areas of responsibility. For this preliminary plan, targets are selected from the W-
CDE, with coordinated input from the National Interagency Fire Center (NIFC), or other 
responding agencies such as Cal Fire. Additional requests for imaging (science targets, 
satellite calibration/validation coincident collections) are also considered. Operational 
radiuses are assigned to each target, considering extent of imaging, and required 
maneuvering room. A route of flight is then generated to efficiently transit to each target, 
while avoiding keep out zones. Take off times are planned to optimize imaging times, and 
are often modified to address operational constraints (Figure 6). 
 

 
Fig. 6. Flight Plan for FAA defining Ikhana fire imaging mission route (black line), UAS turn 
/ linger points (small black circles), tertiary landing locations along flight route (purple 
circles), restricted-flight / no flight zones (yellow / red polygons), and major lingering 
imaging locations (fire areas) (blue circles). Data displayed on a digital air navigation chart. 

performance, FAA- and NASA-imposed keep-out (no fly) zones, FAA Certificate of 
Authorization (COA) requirements and weather constraints, etc…) impact mission 
planning. To efficiently perform the WSFM series, it was imperative to assemble and real-
time-update the image target information and mission constraint criteria into the W-CDE 
(Figure 5). 
 

 
Fig. 5. Graphic of Ikhana UAS flight planning for operations over emerging wildfire events. 
Planned flight route displayed as black line; turn points of UAS defined as small black 
circles along flight plan route. Large red circles represent 400 nm distance range of potential 
secondary emergency landing locations (three identified for western U.S. Purple smaller 
circles represent tertiary emergency landing locations (50-mile radius along flight track). 
Yellow and red polygon areas on map represent population density centers where certain 
UAS operations are restricted or not allowed as per the FAA regulations. 
 
The WSFM planning efforts begin two to three days before a mission, and results in two 
mission plans being developed. A preliminary mission plan filed with the FAA 48-72 hour 
prior to take off, highlighted the route of flight and denoted imaging targets as various loiter 
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During mission operations, fire management personnel and the mission management team 
can make requests to adjust flight parameters to allow for shifting fire locations or target 
modifications. The modifications can include both flight parameters and sensor 
configurations (band combinations, changing algorithms, etc). The mission manager notifies 
the Ikhana pilot of “mid-mission” modifications to the flight parameters, who would request 
such flight modification from the FAA controller via radio. In almost all cases, the requested 
flight modifications were allowed. Mid-mission sensor configuration modifications are 
made through the sensor operator, monitoring the system operations. 

 
3.2 Fire Data Products 
The AMS-Wildfire sensor data products delivered from the UAS through the satellite 
telemetry link to the ground include a geo-rectified 3-band color visual product and a vector 
file of hot-spot-detect “fire” polygons. Imaging smaller fires may only require the collection 
of a single “segment” of image data (defined earlier as a section of ~1200 lines of scanner 
data). An investigator can choose any three channels to form an image data set composite as 
can be seen in Figure 8. 
 

   
Fig. 8. Image on left represents a single segment image of a geo-rectified three-band 
composite of AMS-Wildfire visible-band spectral data collected over the Zaca Fire, southern 
California, 16 August 2007. Fire is obviously not visible in this color composition, but the 
attenuating smoke clearly is visible and obscures the terrain and fire location. The right-side 
image is the same region (Zaca Fire), but displays a 3-band color composition that includes 
both reflected infrared and thermal infrared data. The intense fire locations can be easily 
seen, even through the dense smoke plume. 
 
For most fire events, a multi-segment / multi-flight line fire data collection mission is flown. 
Since the imagery and vector files are geo-rectified, the mosaics automatically orient and 
display correctly into any GIS mapping tool or in the W-CDE (GoogleEarth). The fire 
management personnel can display the images and overlay the hot-spot detection vector 

Hours before an Ikhana fire imaging mission is initiated, a detailed mission plan, showing 
the route of the flight (avoiding the FAA / NASA Flight Safety-imposed restricted / keep 
out areas) and a detailed imaging plan for operations around the imaging targets was 
completed. The pilots use this detailed plan during the mission to methodically image the 
target areas. Detailed mission plans build on the preliminary plan, by adding imaging way 
points (start/stop points for imaging runs) in each of the fire imaging areas. For the WSFM, 
the entire mission planning was done in the W-CDE. Waypoints (latitude/longitude) for all 
the targets and turning points, are generated, saved as a kml file, and compiled into both a 
text and a Microsoft EXCEL® file highlighting all waypoints, with distance between 
waypoints and duration of mission through the waypoint series. A completed Mission Plan 
includes waypoint files and a graphic of the mission plan for visual verification (Figure 7). 
 

 
Fig 7. Detailed mission plan indicating sensor data collection flight line locations for an 
Ikhana UAS fire mission. The teal lines represent the flight line plan for regular-spaced flight 
segments over a complex of fires in Northern California, 8 July 2008. The yellow, orange and 
red dots represent near-real-time MODIS satellite hot-spot detects, which allow the Ikhana 
sensor team to design flight profiles over the most currently active fire areas for detailed 
imaging. 
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Fig. 10. AMS-Wildfire sensor data collected 8 July 2008 over Basin Fire Complex, California. 
The hot-spot vector file data (yellow polygons) are shown overlain with the recent fire 
perimeter polygon (teal). All layers draped in GoogleEarth for visualization. The yellow hot-
spot fire fronts can be seen extending outside the fire perimeter. 
 
The AMS-Wildfire sensor data can also be visualized in 3-D within the W-CDE. Since all 
data are geo-rectified, the mosaic imagery and any additional data layers can be draped on 
the terrain and various visualization perspectives can be rendered. The 3-D visualization 
capability can be critical for determine rates of fire spread with various terrain slope or 
aspect conditions (Figure 11). 
 

files on the same data sets. This can provide an indication of both the burned and unburned 
areas surrounding the hot-spot active fire areas (Figure 9). 
 

 
Fig. 9. AMS-Wildfire sensor near-real-time processed image “segment” mosaic for the Basin 
Fire Complex, Big Sur, California, collected on 8 July 2008. Data was processed and 
mosaiced in “real-time” from 5 flight lines of 22 segments of AMS data. The fire hot-spot 
detection algorithm shape-file information, shown draped in yellow, on the 3-channel 
composite mosaic (which is draped on the GoogleEarth W-CDE). 
 
W-CDE users can “turn-off” the 3-band image files and display just the vector file hot-spot 
detections, in order to reduce image clutter and focus on identifying critical small hot-spot 
locations (Figure 10). By having simple functionality built into the data visualization, the 
wildfire management teams can make effective use of the UAS sensor-derived data. 
Additionally, the wildfire managers can make sensor data requests for “alternative” band 
and data sets to be collected and rendered in near-real-time, allowing true sensor-web-
enabled functionality. 
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3.3 Western States Fire Mission Flight Summary 
The Western States Fire Missions (WSFM) in 2006, 2007, and 2008 demonstrated the 
integration of the technologies detailed in the previous section. The missions, flown over 
wildfire events in the western United States served as a test-bed and model for improving 
disaster data delivery to disaster incident management teams. The 2006-2008 Western States 
Fire Missions are briefly summarized, to provide context for employment of the integrated 
tools during operational missions. 

 
3.3.1 2006 Mission Series - The Western States Fire Mission Series began on 24 October 
2006, when the AMS-Wildfire instrument on the Altair UAS (predecessor to Ikhana) collected 
and delivered near-real-time data over prescribed burns on the eastern flanks of the Sierra 
Nevada Mountain Range in California, USA. The mission demonstrated long duration UAS 
and sensor operations and was the first National Airspace System (NAS) operations for the 
UAS. On 28 October 2006, the Altair supported data collection / delivery over the Esperanza 
Fire in southern California, USA, providing near-real-time information on fire location and 
progression to the Incident Command Team. During the 16-hour mission, the AMS-Wildfire 
scanner system provided multiple image data sets of the fire progression. Data were 
delivered as GeoTIFF files and served in the fire management camp on the W-CDE through 
GoogleEarth as well. An integration team was embedded at the fire camp to assist in data 
management and training. In 2006, approximately 40 hours of UAS / sensor operations 
occurred over fires. 

 
3.3.2 2007 Mission Series - The 2007 mission series were the first flights of the new NASA 
Ikhana UAS, which was delivered in January 2007. The 2007 Western States Fire Mission 
series began in August following the FAA Certificate of Operation for the Ikhana. A total of 
eight fire data collection missions occurred during the fire season in 2007. The first four 
missions demonstrated long-duration / range capabilities, with data collection over fires 
located in eight western states. Mission operations were between 10-22 hours with 2593-5926 
kilometers (1400-3200 nautical miles) mission ranges. During those first four flights, a total 
of 27 fires were flown and imaged with near-real-time geospatial fire data relayed to 
Incident Command Centers (ICC). To assist in information integration, WRAP team 
members were embedded at various ICCs. 

 
3.3.2.1 Southern California Firestorm Support Missions – October 2007 - In late 
October 2007, over eleven major Santa Ana wind-driven fires erupted in the Los Angeles 
and San Diego areas of Southern California, USA. The NASA Ikhana / AMS sensor flew on 
24, 25, 26 and 28 October 2007, and provided near-real-time imagery of those eleven 
complexes to the fire management teams. The FAA facilitated operations through the 
issuance of an emergency COA for operations in the densely populated area of the fires. 
Flight endurance each day was between 7-9 hours with ~ 2500 kilometers (1350 nm) mission 
ranges. Many of the fires were imaged twice a day to provide up-to-date fire progression 
information. Team members were again embedded in various Incident Command Centers 
(ICC) and county-level Emergency Operations Centers (EOC). A summary of the 2007 
missions is shown in Table 2. 
 

 
Fig. 11. Three-dimensional view of AMS-Wildfire sensor imagery collected on 8 July 2008 
over Basin Fire Complex, California. This eastward looking view shows the hot-spot fire 
detects (yellow polygons) overlain on the three-band color composite, which is draped on 
the GoogleEarth background data base. Note the locations of the fire on the south-facing 
(sun-intense) slopes at this data collection time. 
 
All of these various W-CDE-enabled capabilities were available to fire management teams 
during the 2006, 2007 and 2008 western U.S. wildfire season. Additionally, project team 
members were embedded at fire camps and multi-agency and multi-fire coordination 
centers to provide W-CDE assistance. In 2008, numerous fire personnel were familiar with 
the UAS, sensor, and W-CDE capabilities to work seamlessly on data utility for wildfire 
event management. The additional GIS-enabled web-served data sets (GeoTIFF, etc) were 
used extensively by the various GIS teams to further map and update fire perimeter 
information on numerous fires in the U.S. using various image processing and GIS software 
systems. The 2006-2008 mission series flights, data collections and data utility are 
highlighted in the following section. 
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complexes to the fire management teams. The FAA facilitated operations through the 
issuance of an emergency COA for operations in the densely populated area of the fires. 
Flight endurance each day was between 7-9 hours with ~ 2500 kilometers (1350 nm) mission 
ranges. Many of the fires were imaged twice a day to provide up-to-date fire progression 
information. Team members were again embedded in various Incident Command Centers 
(ICC) and county-level Emergency Operations Centers (EOC). A summary of the 2007 
missions is shown in Table 2. 
 

 
Fig. 11. Three-dimensional view of AMS-Wildfire sensor imagery collected on 8 July 2008 
over Basin Fire Complex, California. This eastward looking view shows the hot-spot fire 
detects (yellow polygons) overlain on the three-band color composite, which is draped on 
the GoogleEarth background data base. Note the locations of the fire on the south-facing 
(sun-intense) slopes at this data collection time. 
 
All of these various W-CDE-enabled capabilities were available to fire management teams 
during the 2006, 2007 and 2008 western U.S. wildfire season. Additionally, project team 
members were embedded at fire camps and multi-agency and multi-fire coordination 
centers to provide W-CDE assistance. In 2008, numerous fire personnel were familiar with 
the UAS, sensor, and W-CDE capabilities to work seamlessly on data utility for wildfire 
event management. The additional GIS-enabled web-served data sets (GeoTIFF, etc) were 
used extensively by the various GIS teams to further map and update fire perimeter 
information on numerous fires in the U.S. using various image processing and GIS software 
systems. The 2006-2008 mission series flights, data collections and data utility are 
highlighted in the following section. 
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COA process and COA allowance are needed. Regulatory guidelines must be established to 
allow emergency support mission operations in areas of critical need. 

 
4.2 COA Restrictions for UAS to Remain Clear of GPS Testing / Jamming 
The WSFM encountered some mission delays and rescheduling due to GPS testing / jamming 
exercises at military bases in the vicinity of the WSFM routes. These testing / jamming areas 
were defined as consisting of an inverted cone centered at the GPS test site, with increasing 
radius with increasing altitude. When flying at 25,000 ft, Ikhana could be affected at a range of 
up to 300 nm from the testing / jamming origin. Since the Ikhana is restricted to a specified 
flight altitude, no deviation could be made to allow the UAS to avoid those regions during 
potential missions. When testing / jamming occurred (or was even planned), the Ikhana was 
grounded from operations. This had a detrimental effect on supporting some national 
emergency mission requests over the northern California wildfires in 2008. 

 
4.3 Access to LOS Communications Frequencies 
For flights within approximately 70 nm of Ikhana’s base of operations (Edwards Air Force 
Base, California), the UAS is controlled via a direct line-of-sight radio link. Significant DOD 
UAS operations in the same general area required prioritization of the limited number of 
attainable frequencies. The Ikhana was restricted therefore to secondary priority status which 
postponed or cancelled mission operations. This became a critical issue when emergency 
data collection flights were requested to support wildfire teams battling conflagrations. This 
issue is solvable by negotiating a sharing of frequencies and reprioritization of frequency 
allocation given national or state-level emergency requests for mission support. 

 
4.4 Unexpected Weather Along Flight Route 
The Ikhana COA restricted flight from areas of adverse turbulence, convection and icing. 
During the 72-hour advanced flight planning process, it was difficult to predict weather 
occurrences or timing along a planned mission route with any certainty. Since the FAA 
required flight planning route information 72-hours prior to UAS launch, weather forecasts 
for the day of flight were not meaningful. During one mission in 2007, a significant flight 
deviation was allowed by FAA flight traffic controllers to avoid several rapidly developing 
convective cells. This was a major breakthrough for the Ikhana team, as we would have y 
had to abort the mission and return to base if not granted the near-real-time deviation. 
Additionally, flight restrictions and mission aborts occurred due to the “potential” for 
clouds to be at operations altitude during missions or in the vicinity of the Base of 
Operations (Edwards AF Base) during planned take-off or landings. If cloud cover was 
predicted, the mission was cancelled. These weather-related mission issues require further 
refinement to allow a go- / no-go decision to be made much closer to mission take-off than 
72-prior to operations. 

 
4.5 Staffing Requirements 
Long-duration flights (>10 hours) for the WSFM required multiple crewmembers for all 
operational positions due to crew duty day limitations (generally 8-hour duty limits). When 
missions longer than 12-hours were conducted, multiple shifts were implemented and crew-

Flight Date Duration Fires Flown Mission Mileage 
16 Aug 10 hrs 4 2993 km (1400 nm) 
29 Aug 16.1 7 4630 km 2500 nm) 
7 Sept 20 12 5926 km (3200 nm) 

27 Sept 9.9 4 3333 km (1800 nm) 
24 Oct 9 11 2500 km (1350 nm) 
25 Oct 8.7 11 2500 km (1350 nm) 
26 Oct 7.8 11 2500 km (1350 nm) 
28 Oct 7.1 11 2500 km (1350 nm) 

Table 2. 2007 Western States Fire Mission Summary. 

 
3.3.3 2008 Mission Series - In late June 2008, lightning ignited hundreds of fires in 
northern California. When the California Governor (Swartzenegger) declared a State of 
Emergency, the NASA Ikhana and sensor were deployed to support data collection and near-
real-time delivery to the embattled fire management teams. The FAA provided an 
emergency COA-region extension to allow the Ikhana unfettered access to the NAS above 
those fire complexes  Four missions were flown during the mid / late summer in 2008, 
delivering near-real-time data over 16 wildfire events (Table 3). The missions focused on 
providing near-real-time fire information to the various ICC and well as to the State 
Operations Center (SOC), and the Multi-Agency Coordination Center (MACC), where data 
were integrated into the wildfire management decision process. 
 

Flight Date Duration Fires Flown Mission Mileage 
8 July 9.5 hrs 9 2593 km (1400 nm) 

19 July 5.0 4 1852 km (1000 nm) 
17 Sept 3 1 1482 km (800 nm) 
19 Sept 3.5 2 1482 km (800 nm) 

Table 3. 2008 Western States Fire Mission Summary. 

 
4. Operational and Integration Challenges 
 

Many of the procedural, operational, and technical challenges were overcome during the 
Western States Fire Mission series from 2006-2008. Still, it is imperative to highlight those 
issues, so that substantive efforts towards further improving and enabling the use of UAS 
and near-real-time sensor collection on emergency-support missions can be realized. Some 
of the significant operational issues are detailed in the following sub-sections. 

 
4.1 COA Limitations 
Over the three fire mission flight years, the FAA issued COAs for the Ikhana that ranged in 
complexity and operational area allowances. In 2008, the Ikhana COA allowable mission area 
was significantly reduced by the FAA. The allowable mission area was limited to flight 
operations within 50 nm of Restricted Airspace (RA) or a Military Operations Area (MOA). 
The 50 nm RA / MOA flight operations restriction limited access to airspace and precluded 
critical data collection over some wildfire events in both 2007 and 2008. The FAA did not 
provide an explanation for the change in the Ikhana COA status. Further refinement to the 



Unmanned Airborne Platforms For Disaster Remote Sensing Support 111

COA process and COA allowance are needed. Regulatory guidelines must be established to 
allow emergency support mission operations in areas of critical need. 

 
4.2 COA Restrictions for UAS to Remain Clear of GPS Testing / Jamming 
The WSFM encountered some mission delays and rescheduling due to GPS testing / jamming 
exercises at military bases in the vicinity of the WSFM routes. These testing / jamming areas 
were defined as consisting of an inverted cone centered at the GPS test site, with increasing 
radius with increasing altitude. When flying at 25,000 ft, Ikhana could be affected at a range of 
up to 300 nm from the testing / jamming origin. Since the Ikhana is restricted to a specified 
flight altitude, no deviation could be made to allow the UAS to avoid those regions during 
potential missions. When testing / jamming occurred (or was even planned), the Ikhana was 
grounded from operations. This had a detrimental effect on supporting some national 
emergency mission requests over the northern California wildfires in 2008. 

 
4.3 Access to LOS Communications Frequencies 
For flights within approximately 70 nm of Ikhana’s base of operations (Edwards Air Force 
Base, California), the UAS is controlled via a direct line-of-sight radio link. Significant DOD 
UAS operations in the same general area required prioritization of the limited number of 
attainable frequencies. The Ikhana was restricted therefore to secondary priority status which 
postponed or cancelled mission operations. This became a critical issue when emergency 
data collection flights were requested to support wildfire teams battling conflagrations. This 
issue is solvable by negotiating a sharing of frequencies and reprioritization of frequency 
allocation given national or state-level emergency requests for mission support. 

 
4.4 Unexpected Weather Along Flight Route 
The Ikhana COA restricted flight from areas of adverse turbulence, convection and icing. 
During the 72-hour advanced flight planning process, it was difficult to predict weather 
occurrences or timing along a planned mission route with any certainty. Since the FAA 
required flight planning route information 72-hours prior to UAS launch, weather forecasts 
for the day of flight were not meaningful. During one mission in 2007, a significant flight 
deviation was allowed by FAA flight traffic controllers to avoid several rapidly developing 
convective cells. This was a major breakthrough for the Ikhana team, as we would have y 
had to abort the mission and return to base if not granted the near-real-time deviation. 
Additionally, flight restrictions and mission aborts occurred due to the “potential” for 
clouds to be at operations altitude during missions or in the vicinity of the Base of 
Operations (Edwards AF Base) during planned take-off or landings. If cloud cover was 
predicted, the mission was cancelled. These weather-related mission issues require further 
refinement to allow a go- / no-go decision to be made much closer to mission take-off than 
72-prior to operations. 

 
4.5 Staffing Requirements 
Long-duration flights (>10 hours) for the WSFM required multiple crewmembers for all 
operational positions due to crew duty day limitations (generally 8-hour duty limits). When 
missions longer than 12-hours were conducted, multiple shifts were implemented and crew-
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Table 2. 2007 Western States Fire Mission Summary. 
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Emergency, the NASA Ikhana and sensor were deployed to support data collection and near-
real-time delivery to the embattled fire management teams. The FAA provided an 
emergency COA-region extension to allow the Ikhana unfettered access to the NAS above 
those fire complexes  Four missions were flown during the mid / late summer in 2008, 
delivering near-real-time data over 16 wildfire events (Table 3). The missions focused on 
providing near-real-time fire information to the various ICC and well as to the State 
Operations Center (SOC), and the Multi-Agency Coordination Center (MACC), where data 
were integrated into the wildfire management decision process. 
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4. Operational and Integration Challenges 
 

Many of the procedural, operational, and technical challenges were overcome during the 
Western States Fire Mission series from 2006-2008. Still, it is imperative to highlight those 
issues, so that substantive efforts towards further improving and enabling the use of UAS 
and near-real-time sensor collection on emergency-support missions can be realized. Some 
of the significant operational issues are detailed in the following sub-sections. 

 
4.1 COA Limitations 
Over the three fire mission flight years, the FAA issued COAs for the Ikhana that ranged in 
complexity and operational area allowances. In 2008, the Ikhana COA allowable mission area 
was significantly reduced by the FAA. The allowable mission area was limited to flight 
operations within 50 nm of Restricted Airspace (RA) or a Military Operations Area (MOA). 
The 50 nm RA / MOA flight operations restriction limited access to airspace and precluded 
critical data collection over some wildfire events in both 2007 and 2008. The FAA did not 
provide an explanation for the change in the Ikhana COA status. Further refinement to the 
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further reducing the critical labor and time requirements for delivery of accurate geospatial 
information.  
 
The employment of web-enabled GIS tools and systems, such as GoogleEarth, provide a 
user-friendly “platform” for display of geo-rectified imagery and information. Our goals 
were to ensure that the information products developed autonomously from the UAS sensor 
would integrate seamlessly into a multitude of geospatial visualization packages. We 
achieved that objective by providing autonomously-generated data products in Open 
Geospatial Consortium (OGC) standard formats. The W-CDE was used extensively as were 
the access to the various WMS data-formatted holdings. 
 
Following three years of system development and emergency support missions in the 
western United States, we have demonstrated that current off-the-shelf technologies can be 
integrated to provide the disaster management community with the data and “intelligence” 
that they require in near-real-time. We anticipate that the civilian use of UAS will increase 
dramatically, especially in support of disaster management and disaster relief efforts. The 
processes and technologies described here for the use of UAS platforms and enabling 
sensors and technologies should form the foundation for designing future disaster 
monitoring and observation capabilities. These integrated technologies have obvious cross-
cutting application to other disaster events in the United States and the world. As the 
National Academy of Science has reported, “UAVs provide increased range and flight time 
and the ability to penetrate environments that might be too hazardous for piloted aircraft. 
However, issues of cost, reliability, software, and proximity to urban areas have limited the 
use of UAVs to demonstration missions. For now, conventional aircraft remain more reliable 
and more cost-effective for Earth sensing, and agencies need to ensure an appropriate 
balance between these two types of platforms” (Henson 2008). 
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duty hours were strictly adhered to. In a few instances, General Atomics Aeronautical 
Systems Inc. provided supplemental engineering staff and pilots when needed on long-
duration missions. Non-standard flight schedules, intermittent sleep schedules, and 
extended on-call status have the potential to fatigue crew members. These staffing 
requirements will continue to be a significant issue for long-duration, non-scheduled flights 
that involve supporting and “chasing” dynamic disaster events, such as wildfires. Therefore, 
when planning such mission concepts, one must be aware of the additional staffing 
requirements needed to sustain safe operations. 

 
4.6 Air Traffic Control (ATC) Coordination 
The WSFM mission team coordinated airspace access for Ikhana flights with the FAA 
Unmanned Aircraft Program Office (UAPO) and Air Route Traffic Control Centers (ARTCC). 
Clearly, both NASA and FAA worked together as partners to facilitate the success of such 
demanding mission profiles and objectives. ARTCC personnel were open-minded and 
receptive to the prospect of Ikhana’s flights through their respective airspace. They 
communicated concerns and suggested resolutions. Fostering and promoting communication 
between UAS mission operations personnel and the FAA will continue to be required and a 
key component to successful operations in the future for any entity (Hall, et al., 2008). 

 
5. Summary 
 

We have demonstrated that various platform, sensor, communications, and geospatial 
technologies can be integrated to provide near-real-time intelligence to support of disaster 
management entities. In our work with the U.S. wildfire management agencies, we have 
developed and demonstrated technologies for providing near-real-time emergency 
geospatial data delivery, a significant advance over current capabilities. 
 
Large-capacity, long-duration, medium-altitude UAS can play a significant role in providing 
repetitive, lingering operations over disaster events, especially dynamic, evolving events 
like wildfires. The OTH satellite data telemetry systems on these platforms can be employed 
to control / command an imaging payload as well as to provide sensor data to ground team 
members. This telemetry capability allows near-real-time information to be in the hands of 
Incident Management Teams. 
 
Imaging sensor systems can be designed to collect critical spectral and thermal wavelength 
information, specifically “tuned” to the phenomenon that is being observed. The use of 
multispectral data for wildfire observations is necessary to characterize fire locations and 
movement. The spectral channels defined in this chapter are essential for wildfire 
observations, and multi-channel capabilities offer clear advantages over single-channel fire 
detection systems, as we have shown in this chapter. Image processing capabilities, to derive 
Level II information from sensors, can be automated and included as part of the payload 
processing package on an UAS platform. Complex algorithms can be integrated into the 
processing scheme to further reduce those labor / time-consuming, analysis tasks. By 
integrating sensor / platform IMU and positioning information with terrain DEM data, a 
fully geo-rectified image product can be developed autonomously on-board an aircraft, 
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further reducing the critical labor and time requirements for delivery of accurate geospatial 
information.  
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Geospatial Consortium (OGC) standard formats. The W-CDE was used extensively as were 
the access to the various WMS data-formatted holdings. 
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integrated to provide the disaster management community with the data and “intelligence” 
that they require in near-real-time. We anticipate that the civilian use of UAS will increase 
dramatically, especially in support of disaster management and disaster relief efforts. The 
processes and technologies described here for the use of UAS platforms and enabling 
sensors and technologies should form the foundation for designing future disaster 
monitoring and observation capabilities. These integrated technologies have obvious cross-
cutting application to other disaster events in the United States and the world. As the 
National Academy of Science has reported, “UAVs provide increased range and flight time 
and the ability to penetrate environments that might be too hazardous for piloted aircraft. 
However, issues of cost, reliability, software, and proximity to urban areas have limited the 
use of UAVs to demonstration missions. For now, conventional aircraft remain more reliable 
and more cost-effective for Earth sensing, and agencies need to ensure an appropriate 
balance between these two types of platforms” (Henson 2008). 
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1. Introduction     
 

Taiwan has a land area of 36000 m2. 26.68% of the land areas are covered by plain region, 
whereas 27.31% are hilly and 46.01% are mountainous. By official definition for the purpose 
of land conservation management, hilly lands refer to the area under 100m but with a slope 
more than 5% or the area between 100m and 1000m. Mountainous lands refer to the area 
with an altitude above 1000m. Therefore, 73.32% of the areas are under conservation 
management. The complicated landscape of Taiwan is characterized by small drainage 
basins, highly fractured rock, high relief, and steep stream gradients. Frequent earthquakes 
due to the collision of Eurasian Plate and Philippine Sea Plate in eastern Taiwan further 
loosen the top surface of the land. Rock formations are highly fractured and jointed. 
Therefore the lands are particularly sensitive to episodic events such as typhoons and 
earthquakes, and various types of anthropogenic disturbance. 
In addition, Taiwan is located in tropical and sub-tropical zones, often suffering from heavy 
rainfalls, especially in the summer seasons with typhoons. The average annual rainfall of 
Taiwan is 2500 mm which is about three times the world average. Landslides are easily 
induced by the heavy rainfall come along with typhoons. These physiographic settings 
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reliable. The core spirit of this approach is the synergy of human perception to include both 
2D and 3D features of the target and its environment. Any automated attempt should take 
this into account. Therefore, geomorphometric features of landslides constitute important 
ingredients in the automation process. 

 
2.1 Rainfall-induced Landslides in Taiwan 
For practical applications in the physiographic environments of Taiwan, the classification 
scheme of landslides developed by Varnes (1978) is simplified into five major categories, 
namely rock falls, shallow-seated landslides, deep-seated landslides, dip-slope and wedge 
slides, and debris flows. Thus, types of landslides can be differentiated by their physical 
appearance. It is especially useful for practical applications using remotely-sensed images.  
 

 
Type of Materials 

Bed rock Engineering Soils 
Debris Soils 

Falls Rock falls 
Shallow-seated slide Topples 

Slide Translational Dip-slope and 
wedge slide 

Rotational Deep-seated slide 
Flows (not applicable) Debris flow (not applicable) 

Table 1. A simplified classification scheme of landslides applied in Taiwan 
 
There are 270 events of natural disasters in Taiwan in 50 years from 1958 to 2007 including 
categories of typhoons (71.1%), flooding (15%), earthquakes (8.5%), torrential rainfalls 
(2.2%), wind-storms (1.5%), mountain flooding (0.7%), and landslides (0.7%) (NFA, 2008). As 
shown in Figure 1, the frequency of natural disasters is in a trend of increasing. In total, 89% 
of the events are concerning with rainfall hazards and 97% of them are directly or indirectly 
concerning with landslides. Rainfall-landslides become a critical issue in managing natural 
distasters. 
 

 
Fig. 1. Statistics of natural disasters in Taiwan from 1958 to 2007 
 
Remote sensing has been an important tool for landslide inventory. The physical appearance 
of landslides is the basis of the recognition of the boundary and the type of a landslide. 
However, the displaced materials of a rainfall-induced landslide are usually washed away 

 

make Taiwan a fragile land, especially vulnerable to rainfall-induced landslides. The 
consequence is the sedimentation of the reservoirs. And the turbidity of the water in 
reservoirs becomes a major factor impacting the sustainable operation of water supply 
reservoirs in Taiwan. Landslides have to be recovered and their hazards have to be 
mitigated. The necessity of landslide survey is obvious. 
Aerial photo interpretation has long been adopted for landslide inventory (Liu et al., 2001). 
This conventional method is based on visual perception of colour tone and 
geomorphometric features of landslides on the aerial photographs. Both manual 
interpretation and automatic recognition of satellite images are also used. Most of the recent 
automatic classification methods of landslides using images are based on spectral features 
other than topographic features. Therefore, landslides cannot be correctly recognized. A 
recent study is to establish an interactive approach with a software interface for assisting 
visual interpretation of landslides (Lau et al., 2006). Both spectral and spatial parameters are 
employed for the inputs of the software to assist the interpreter/operator to correctly 
recognize and delineate landslides. Automatic recognition of landslides solely on basis of 
spectral information of digital images is efficient in terms of time consumption, whereas the 
results usually can not meet the requirements for taking engineering measures (Parise, 2001). 
Nevertheless, manual interpretation is too slow to meet the requirements for emergency 
response. A hybrid approach is to combine the advantages of automatic processes with 
manual interpretation. The extraction of gemorphometric parameters from airborne LiDAR 
data is thus considered for integrating in the interactive interface to assist the interpreter. 
Airborne LiDAR is the state-of-the-art technology for efficiently taking high density and 
high resolution elevation data for a wide area. This feature is also suitable for emergency 
response or quick assessment of landslide disasters. Hsiao et al. (2005&2006) shows that the 
integration of multi-temporal airborne LiDAR and aerial photography can give detailed 
change information of large-scaled deep-seated landslide as demonstrated by the Jiu-fen-er 
earthquake landslide. For establishing an interactive interface for assisting visual 
interpretation of landslides, morphometric parameters derived from LiDAR are required for 
setting the internal defaults (Lau et al., 2006). In this interface, four primary parameters are 
selected, namely the greenness, the slope angle, the object height model, and surface 
roughness. Normalized Vegetation Index (NDVI) is taken for denoting the greenness if 
colour IR digital aerial photography is applied. 
For these purposes, surveys were carried out with airborne LiDAR and digital camera to 
obtain digital terrain models (DTM) and digital surface models (DSM) of 1m grid and colour 
orthophotos of 50cm grid. DTM, DSM and orthophotos are georeferenced and transformed 
into the local coordinate system with Taiwan Datum 1997 (TWD97). Subsequently, the 
geomorphometric features of the landslides are analyzed. In this study, the 
geomorphometric characteristics of three selected events will be examined and these will be 
taken as reference values for setting the defaults in the software interface. 

 
2. Conventional API Approach of Landslides and Its Implication 
 

Rainfall-induced landslides are in majority shallow-seated in the high relief terrains of 
Taiwan. Techniques of stereoscopic airphoto interpretation have been adopted for landslide 
inventory in Taiwan since 1973 when an aerial survey team was established under 
Agricultural Council of the government. Though it is labour intensive, it is believed to be 
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reliable. The core spirit of this approach is the synergy of human perception to include both 
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this into account. Therefore, geomorphometric features of landslides constitute important 
ingredients in the automation process. 
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namely rock falls, shallow-seated landslides, deep-seated landslides, dip-slope and wedge 
slides, and debris flows. Thus, types of landslides can be differentiated by their physical 
appearance. It is especially useful for practical applications using remotely-sensed images.  
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(2.2%), wind-storms (1.5%), mountain flooding (0.7%), and landslides (0.7%) (NFA, 2008). As 
shown in Figure 1, the frequency of natural disasters is in a trend of increasing. In total, 89% 
of the events are concerning with rainfall hazards and 97% of them are directly or indirectly 
concerning with landslides. Rainfall-landslides become a critical issue in managing natural 
distasters. 
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make Taiwan a fragile land, especially vulnerable to rainfall-induced landslides. The 
consequence is the sedimentation of the reservoirs. And the turbidity of the water in 
reservoirs becomes a major factor impacting the sustainable operation of water supply 
reservoirs in Taiwan. Landslides have to be recovered and their hazards have to be 
mitigated. The necessity of landslide survey is obvious. 
Aerial photo interpretation has long been adopted for landslide inventory (Liu et al., 2001). 
This conventional method is based on visual perception of colour tone and 
geomorphometric features of landslides on the aerial photographs. Both manual 
interpretation and automatic recognition of satellite images are also used. Most of the recent 
automatic classification methods of landslides using images are based on spectral features 
other than topographic features. Therefore, landslides cannot be correctly recognized. A 
recent study is to establish an interactive approach with a software interface for assisting 
visual interpretation of landslides (Lau et al., 2006). Both spectral and spatial parameters are 
employed for the inputs of the software to assist the interpreter/operator to correctly 
recognize and delineate landslides. Automatic recognition of landslides solely on basis of 
spectral information of digital images is efficient in terms of time consumption, whereas the 
results usually can not meet the requirements for taking engineering measures (Parise, 2001). 
Nevertheless, manual interpretation is too slow to meet the requirements for emergency 
response. A hybrid approach is to combine the advantages of automatic processes with 
manual interpretation. The extraction of gemorphometric parameters from airborne LiDAR 
data is thus considered for integrating in the interactive interface to assist the interpreter. 
Airborne LiDAR is the state-of-the-art technology for efficiently taking high density and 
high resolution elevation data for a wide area. This feature is also suitable for emergency 
response or quick assessment of landslide disasters. Hsiao et al. (2005&2006) shows that the 
integration of multi-temporal airborne LiDAR and aerial photography can give detailed 
change information of large-scaled deep-seated landslide as demonstrated by the Jiu-fen-er 
earthquake landslide. For establishing an interactive interface for assisting visual 
interpretation of landslides, morphometric parameters derived from LiDAR are required for 
setting the internal defaults (Lau et al., 2006). In this interface, four primary parameters are 
selected, namely the greenness, the slope angle, the object height model, and surface 
roughness. Normalized Vegetation Index (NDVI) is taken for denoting the greenness if 
colour IR digital aerial photography is applied. 
For these purposes, surveys were carried out with airborne LiDAR and digital camera to 
obtain digital terrain models (DTM) and digital surface models (DSM) of 1m grid and colour 
orthophotos of 50cm grid. DTM, DSM and orthophotos are georeferenced and transformed 
into the local coordinate system with Taiwan Datum 1997 (TWD97). Subsequently, the 
geomorphometric features of the landslides are analyzed. In this study, the 
geomorphometric characteristics of three selected events will be examined and these will be 
taken as reference values for setting the defaults in the software interface. 

 
2. Conventional API Approach of Landslides and Its Implication 
 

Rainfall-induced landslides are in majority shallow-seated in the high relief terrains of 
Taiwan. Techniques of stereoscopic airphoto interpretation have been adopted for landslide 
inventory in Taiwan since 1973 when an aerial survey team was established under 
Agricultural Council of the government. Though it is labour intensive, it is believed to be 
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The second step of the API procedures is the most critical one where stereoscope is usually 
used to perceive the sense of 3D features and a well-trained interpreter should be 
acquainted with interpretation key for the study area.  

 
2.3 Interpretation Key 
The perception of landslides from a bird-eye view of aerial photographs is also largely 
depending on the scale or spatial resolution of the photographs. Landslides can not be 
mapped properly when they are smaller than a minimum mapping unit such as 5mm on the 
paper prints. Before 2008, the aerial photographs taken by Aerial Survey Office had been the 
conventional panchromatic photographs in a scale around 1:20000. Therefore, the minimum 
mapping unit of the landslides will be larger than 100m in the real ground. In general, four 
factors affect the quality of the mapping results, namely the scale, the time lag between the 
landslide event and the aerial photography, the type of film used, and the overall quality of 
the photographs. Table 2 shows the criteria used for the recognition of landslides on aerial 
photographs. The general feature of a rainfall-induced landslide is characterized by the 
fresh landslide scars in elongated shape and located in a relatively steep slope. It takes place 
in any kind of geology so long as there are some weathered overburdens. Features on aerial 
photographs include the bright tone, the bare surface, and the features shown in Table 2. 
Manual interpretation uses both 2D and 3D features of the landslides for recognition. The 
2D features include tone, location, and shape. The 3D features include location, direction, 
slope, and shadow effects. A sound consideration of the automation of landslide recognition 
should be able to take care of all these aspects. 
 

Feature Description Discrimination rule 
Tone Light, grey light Brightness>Threshold 
Location Near ridges, cut-off slopes, road-sides Trigger events and buffer zone of the feature 
Shape Spoon-shaped, elongated-oval, 

dentritic, rectangular, triangular 
Location-specific and topography-specific 

Direction The drop direction of the landslide is 
the gravitational vector on the ground 
surface. 

Roughly perpendicular to the streams and 
topography-specific 

Slope Depend on types of landslides. E.G. 
Shallow-seated landslides > 45%; 
Deep-seated landslides ~40%; 
Debris flows ~10-20%. 

Slope > Threshold 

Shadow Depend on whether the landslides are 
in shadow-side or sunny-side 

Solar azimuth in related to slope aspect 

Table 2. The criteria for the recognition of rainfall-induced landslides 
 
2.4 Geomorphometry of Landslides 
Obviously, geomorphometry has been applied in manual interpretation. Geomorphometry, 
the science of quantitative land surface analysis is also known as geomorphological analysis, 
terrain morphometry, terrain analysis, and land surface analysis (Hengl & Reuter, 2009). The 
aims of geomorphometry are to extract surface parameters and objects using input digital 
terrain models. Pike (1988) listed a dozen groups of parameters used as terrain descriptors 
using manually digitized digital terrain models and he used a resulting "geometric signature 
or topographic signature" to categorize terrain characteristics and suggested the degree of 

 

from steep slopes. It remains only the fresh scars of the rupture surface. The fresh landslide 
scars emplacing at various slope gradients and various slope locations would normally 
include landslide types such as rock falls, debris slides, channel bank failures, and debris 
flows. In this study, the landslides concerned will cover all these types except debris flows. 
The exception is due to the reasoning that debris flows are triggered by a different 
mechanism with more contributions from flowing-water instead of gravity itself. In other 
words, debris flows can be treated as a transformation of other shallow-seated landslides 
when high concentration of rainfalls and liquefaction of displaced materials take place.  

 
2.2 Procedures of Air Photo Interpretation 
Air photo interpretation (API) is a process of understanding to associate shapes and pattern 
and other characteristics on vertical images with real features or phenomena on the ground. 
Interpretation by aerial photographs has been the most efficient and realistic way for 
identifying landslide topography in a wide area. Currently, researches in automatic 
extraction of landslides using images and digital elevation data become important topics 
(Barlow et al., 2003; Chang & Liu, 2004; Fernandes et al., 2004; Parise, 2001; Liu et al., 2008; 
Mantovani et al., 1996). However, visual interpretation by well-trained personnel is still 
believed to be more accurate and reliable than by computers. Interpretation process needs 
high skill and the results largely depend on the expertise of the interpreter. Sense of 
perception of a specific feature such as landslide can be acquired by practices and by an 
interpretation key describing visual signature characteristics of the object, including size, 
shape, pattern, tone, association, and texture. To minimize subjective factors of individual 
interpreters, cross checks should be implemented for a case covering a wide study area such 
as a few hundreds of aerial photographs. And, map making should be performed very 
carefully with, not only aerial photographs, but also site investigation. 
The procedures of the conventional API adopted for a wide area of landslide inventory 
usually include steps as follows: 
(1). Acquisition and preparation of aerial photographs of the study area. 
(2). Aerial photograph interpretation (identifying landslide topography) – A stereoscope is 

used to pick up accurate landslide topography from aerial photographs. The scale of the 
panchromatic aerial photographs taken by the Aerial Survey Office of Forestry is about 
1:20,000. Since 1976, about 20000 aerial photographs are taken every year. Photo index 
can be used for choosing the particular cloud-free photographs. Landslides with more 
than 50m in length were identified and their scarp, moving mass, internal structure, and 
moving direction are drawn with coloured pencils on the paper-printed photographs. A 
standard legend should be established. 

(3). Tracing the identified features on the topographic map – Tracing the features of 
landslides onto the topographic map by comparing identical landforms both on the 
photographs and the map. An original map of landslides is thus created. 

(4). Digitization and drawing the final map – The landslide features are then digitized. 
Subsequently, landslide scarps and lineament structures are compiled and printed with 
a backdrop of conventional contour map in a GIS environment. These maps were 
examined and revised by the researchers. 

(5). Field check and update the attribute table from field records. 
(6). Ancillary materials for interpretation. 
(7). Final presentation and backups. 
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The second step of the API procedures is the most critical one where stereoscope is usually 
used to perceive the sense of 3D features and a well-trained interpreter should be 
acquainted with interpretation key for the study area.  

 
2.3 Interpretation Key 
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mapped properly when they are smaller than a minimum mapping unit such as 5mm on the 
paper prints. Before 2008, the aerial photographs taken by Aerial Survey Office had been the 
conventional panchromatic photographs in a scale around 1:20000. Therefore, the minimum 
mapping unit of the landslides will be larger than 100m in the real ground. In general, four 
factors affect the quality of the mapping results, namely the scale, the time lag between the 
landslide event and the aerial photography, the type of film used, and the overall quality of 
the photographs. Table 2 shows the criteria used for the recognition of landslides on aerial 
photographs. The general feature of a rainfall-induced landslide is characterized by the 
fresh landslide scars in elongated shape and located in a relatively steep slope. It takes place 
in any kind of geology so long as there are some weathered overburdens. Features on aerial 
photographs include the bright tone, the bare surface, and the features shown in Table 2. 
Manual interpretation uses both 2D and 3D features of the landslides for recognition. The 
2D features include tone, location, and shape. The 3D features include location, direction, 
slope, and shadow effects. A sound consideration of the automation of landslide recognition 
should be able to take care of all these aspects. 
 

Feature Description Discrimination rule 
Tone Light, grey light Brightness>Threshold 
Location Near ridges, cut-off slopes, road-sides Trigger events and buffer zone of the feature 
Shape Spoon-shaped, elongated-oval, 

dentritic, rectangular, triangular 
Location-specific and topography-specific 

Direction The drop direction of the landslide is 
the gravitational vector on the ground 
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Shallow-seated landslides > 45%; 
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Shadow Depend on whether the landslides are 
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2.4 Geomorphometry of Landslides 
Obviously, geomorphometry has been applied in manual interpretation. Geomorphometry, 
the science of quantitative land surface analysis is also known as geomorphological analysis, 
terrain morphometry, terrain analysis, and land surface analysis (Hengl & Reuter, 2009). The 
aims of geomorphometry are to extract surface parameters and objects using input digital 
terrain models. Pike (1988) listed a dozen groups of parameters used as terrain descriptors 
using manually digitized digital terrain models and he used a resulting "geometric signature 
or topographic signature" to categorize terrain characteristics and suggested the degree of 
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scars emplacing at various slope gradients and various slope locations would normally 
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flows. In this study, the landslides concerned will cover all these types except debris flows. 
The exception is due to the reasoning that debris flows are triggered by a different 
mechanism with more contributions from flowing-water instead of gravity itself. In other 
words, debris flows can be treated as a transformation of other shallow-seated landslides 
when high concentration of rainfalls and liquefaction of displaced materials take place.  

 
2.2 Procedures of Air Photo Interpretation 
Air photo interpretation (API) is a process of understanding to associate shapes and pattern 
and other characteristics on vertical images with real features or phenomena on the ground. 
Interpretation by aerial photographs has been the most efficient and realistic way for 
identifying landslide topography in a wide area. Currently, researches in automatic 
extraction of landslides using images and digital elevation data become important topics 
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believed to be more accurate and reliable than by computers. Interpretation process needs 
high skill and the results largely depend on the expertise of the interpreter. Sense of 
perception of a specific feature such as landslide can be acquired by practices and by an 
interpretation key describing visual signature characteristics of the object, including size, 
shape, pattern, tone, association, and texture. To minimize subjective factors of individual 
interpreters, cross checks should be implemented for a case covering a wide study area such 
as a few hundreds of aerial photographs. And, map making should be performed very 
carefully with, not only aerial photographs, but also site investigation. 
The procedures of the conventional API adopted for a wide area of landslide inventory 
usually include steps as follows: 
(1). Acquisition and preparation of aerial photographs of the study area. 
(2). Aerial photograph interpretation (identifying landslide topography) – A stereoscope is 

used to pick up accurate landslide topography from aerial photographs. The scale of the 
panchromatic aerial photographs taken by the Aerial Survey Office of Forestry is about 
1:20,000. Since 1976, about 20000 aerial photographs are taken every year. Photo index 
can be used for choosing the particular cloud-free photographs. Landslides with more 
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(7). Final presentation and backups. 



Geoscience and Remote Sensing120

 

3.1 The interactive system for color orthophoto interpretation 
On basis of the experiences in airphoto interpretation and national landslide inventory, a 
man-machine interface is developed using windows software development tools including 
Visual Studio .NET, Borland C++ Builder, and OpenGL. Figure 3 is the flowchart of the 
interactive system which includes three data entries and four parameters. The entries and 
parameters will be modifies when more standard products are available. Parameters of 
roughness, OHM and Slope are derived from LiDAR data. Parameter 4 the greenness is 
derived from color orthophoto. These four parameters are used for highlighting potential 
areas of landslides by default settings of threshold for the parameters. Another option is to 
manually define training areas to obtain the threshold from the training sample.  
The visualization on the screen shows both 2D and 3D perspectives of the results (Figure 4). 
Final setting of parameter thresholds can be optimized visually. And finally, the interpreter 
can further edit the results of automated detection. Or, the interpreter can even carry out all 
the interpretation discarding the automated results. Finally, ground truth can be imported 
to compare with the results for accuracy assessment. 
For practical reasons, only four major parameters which can be easily derived from the 
standard aerial products available by a national agency are used for the automatic back-
processing in the interactive system (Figure 3). Simple thresholds are used to highlight the 
potential landslides. For example, roughness < 5m, OHM < 10m, slope > 40 degrees, and 
greenness < -0.40. Default settings of thresholds are set on basis of geomorphometric 
analysis of rainfall-induced landslides for the specific area in related to physiographic 
conditions and the triggering event. Another option is to obtain the thresholds from the 
training sample. In this system, a landslide seed is located on the screen by the interpreter. 
The values of 25 pixels extracted from a 5x5 window centred at the assigned seed are used 
to calculate statistical means and standard deviations. Three times of the standard 
deviations are taken as the thresholds. Any pixel with a value within three standard 
deviations of the means will be assigned as a pixel of landslide. Thus, the omission and 
commission errors of landslide recognition can be minimized. In addition, the thresholds 
can be tuned interactively to see the correctness of matching between the landslide feature 
on the colour orthophoto and the highlighted area (Figure 4).  

 
3.2 The parameter derived from orthophoto 
Because rainfall-induced landslides of natural slopes are mostly covered by densely-
vegetated surroundings, vegetation index will be critical for indicating the areas of bareness. 
The most popular one is the NDVI (Normalized Vegetation Index).  
 

NDVI = (NIR-R)/(NIR+R)  (1) 
 
where R stands for the grey value of Red band, and NIR stands for grey value of Near 
Infrared band. Theoretically, if the image digital values are calibrated to stand for the 
reflectance of the target, the NDVI can be widely applicable. However, the digital numbers 
of Red band and NIR band of digital aerial camera are not calibrated for this purpose. 
Therefore, the NDVI value is a relative indicator of biomass. NDVI can be applied for recent 
digital aerial cameras which usually includes an NIR band. If the colour aerial photographs 
include only RGB bands, an alternative of greenness parameter can be used. Greenness is 
also a relative indicator, of which the radiometric values are not normalized. 

 

danger from landslides. Topographic signature of life and their processes are deemed to be 
strongly influenced by biota (Dietrich & Perron, 2006). Guth (2001 & 2003) took terrain fabric 
as measures of a point property of the digital terrain models and the underlying 
topographic surface. This study is also known as topographic fingerprints (Densmore & 
Hovius, 2000) for characterizing the location of a landslide on the slope. The state-of-the-art 
technology of high resolution satellite images, digital aerial photography, and airborne 
LiDAR opens a new era in the automation of landslide recognition, especially the possibility 
of applying geomorphometrics. And, the extraction of land surface parameters becomes 
more and more attractive for both stochastic and process-based modelling, making use all 
the level of detailed digital terrain models. 
It is shown that the topographic-based analyses can be used to objectively delineate 
landslide features, generate mechanical inferences about landslide behaviour and evaluate 
relatively the recent activity of slides (McKean & Roering, 2004; Glen et al., 2006). Especially, 
surface roughness derived from LiDAR DTM allows an objective measurement of landslide 
topography. Eigenvalues of surface normals can be an effective parameter for differentiating 
shallow landslides and debris flows (Woodcock, 1977). 
For establishing an interactive interpretation software interface to assist the interpreter, it is 
clear that expert knowledge of the morphometric properties of landslides is required. And, 
data acquisition with the new sensors of aerial digital camera and LiDAR becomes feasible. 
Therefore, the general properties of slope angles, OHM and roughness of rainfall-induced 
landslides are included in this study. 

 
3. The New Interactive Approach and Parameters of Geomorphometry 
 

Figure 2 shows some typical rainfall-induced landslides in Taiwan. Landslides are bare in 
high relief terrains with densely-vegetated surroundings. Typical modernized aerial survey 
system nowadays is equipped with a digital camera and a LiDAR sensor. The procedures of 
landslide inventory are subjected to change to adopt the new types of high resolution digital 
data. Thus, an interactive system for manual interpretation under a digital environment is 
required. Standard products generated by the new survey system include orthophoto, DTM 
and DSM. In addition to the functions for data management and manipulation in the 
interactive system, algorithms for automatic recognition of landslides are also required to 
assist or guide the interpreter for improving the efficiency. 
 

 
Fig. 2. Typical rainfall-induced landslides in Taiwan 
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3.1 The interactive system for color orthophoto interpretation 
On basis of the experiences in airphoto interpretation and national landslide inventory, a 
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derived from color orthophoto. These four parameters are used for highlighting potential 
areas of landslides by default settings of threshold for the parameters. Another option is to 
manually define training areas to obtain the threshold from the training sample.  
The visualization on the screen shows both 2D and 3D perspectives of the results (Figure 4). 
Final setting of parameter thresholds can be optimized visually. And finally, the interpreter 
can further edit the results of automated detection. Or, the interpreter can even carry out all 
the interpretation discarding the automated results. Finally, ground truth can be imported 
to compare with the results for accuracy assessment. 
For practical reasons, only four major parameters which can be easily derived from the 
standard aerial products available by a national agency are used for the automatic back-
processing in the interactive system (Figure 3). Simple thresholds are used to highlight the 
potential landslides. For example, roughness < 5m, OHM < 10m, slope > 40 degrees, and 
greenness < -0.40. Default settings of thresholds are set on basis of geomorphometric 
analysis of rainfall-induced landslides for the specific area in related to physiographic 
conditions and the triggering event. Another option is to obtain the thresholds from the 
training sample. In this system, a landslide seed is located on the screen by the interpreter. 
The values of 25 pixels extracted from a 5x5 window centred at the assigned seed are used 
to calculate statistical means and standard deviations. Three times of the standard 
deviations are taken as the thresholds. Any pixel with a value within three standard 
deviations of the means will be assigned as a pixel of landslide. Thus, the omission and 
commission errors of landslide recognition can be minimized. In addition, the thresholds 
can be tuned interactively to see the correctness of matching between the landslide feature 
on the colour orthophoto and the highlighted area (Figure 4).  

 
3.2 The parameter derived from orthophoto 
Because rainfall-induced landslides of natural slopes are mostly covered by densely-
vegetated surroundings, vegetation index will be critical for indicating the areas of bareness. 
The most popular one is the NDVI (Normalized Vegetation Index).  
 

NDVI = (NIR-R)/(NIR+R)  (1) 
 
where R stands for the grey value of Red band, and NIR stands for grey value of Near 
Infrared band. Theoretically, if the image digital values are calibrated to stand for the 
reflectance of the target, the NDVI can be widely applicable. However, the digital numbers 
of Red band and NIR band of digital aerial camera are not calibrated for this purpose. 
Therefore, the NDVI value is a relative indicator of biomass. NDVI can be applied for recent 
digital aerial cameras which usually includes an NIR band. If the colour aerial photographs 
include only RGB bands, an alternative of greenness parameter can be used. Greenness is 
also a relative indicator, of which the radiometric values are not normalized. 

 

danger from landslides. Topographic signature of life and their processes are deemed to be 
strongly influenced by biota (Dietrich & Perron, 2006). Guth (2001 & 2003) took terrain fabric 
as measures of a point property of the digital terrain models and the underlying 
topographic surface. This study is also known as topographic fingerprints (Densmore & 
Hovius, 2000) for characterizing the location of a landslide on the slope. The state-of-the-art 
technology of high resolution satellite images, digital aerial photography, and airborne 
LiDAR opens a new era in the automation of landslide recognition, especially the possibility 
of applying geomorphometrics. And, the extraction of land surface parameters becomes 
more and more attractive for both stochastic and process-based modelling, making use all 
the level of detailed digital terrain models. 
It is shown that the topographic-based analyses can be used to objectively delineate 
landslide features, generate mechanical inferences about landslide behaviour and evaluate 
relatively the recent activity of slides (McKean & Roering, 2004; Glen et al., 2006). Especially, 
surface roughness derived from LiDAR DTM allows an objective measurement of landslide 
topography. Eigenvalues of surface normals can be an effective parameter for differentiating 
shallow landslides and debris flows (Woodcock, 1977). 
For establishing an interactive interpretation software interface to assist the interpreter, it is 
clear that expert knowledge of the morphometric properties of landslides is required. And, 
data acquisition with the new sensors of aerial digital camera and LiDAR becomes feasible. 
Therefore, the general properties of slope angles, OHM and roughness of rainfall-induced 
landslides are included in this study. 

 
3. The New Interactive Approach and Parameters of Geomorphometry 
 

Figure 2 shows some typical rainfall-induced landslides in Taiwan. Landslides are bare in 
high relief terrains with densely-vegetated surroundings. Typical modernized aerial survey 
system nowadays is equipped with a digital camera and a LiDAR sensor. The procedures of 
landslide inventory are subjected to change to adopt the new types of high resolution digital 
data. Thus, an interactive system for manual interpretation under a digital environment is 
required. Standard products generated by the new survey system include orthophoto, DTM 
and DSM. In addition to the functions for data management and manipulation in the 
interactive system, algorithms for automatic recognition of landslides are also required to 
assist or guide the interpreter for improving the efficiency. 
 

 
Fig. 2. Typical rainfall-induced landslides in Taiwan 
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3.3 The parameters derived from airborne LiDAR 
Three parameters are derived from airborne LiDAR DTM and DSM, namely the slope, the 
object height model (OHM) and the surface roughness. The factors in the mechanism of 
slope stability usually include slope angle, strength of materials, and pore water pressure 
(Turner & Schuster, 1996). If the slope gradient is high, the slope can be unstable. Slope is 
thus selected as the first parameter due to its importance and that it can be easily derived 
from DTM. There are two surfaces which can be easily defined by LiDAR-derived data. One 
is the digital terrain model (DTM) standing for the bare ground surface. The other is the 
digital surface model (DSM) standing for the upper envelope of all the objects above the 
bare ground surface. For an area of rainfall-induced landslide, the difference between these 
two well-defined surfaces can be minimal. Therefore, the OHM defined as the difference of 
these two surfaces can be a good parameter for automatic landslide recognition. It is 
straightforward that, due to the wash out or sliding, the surface of landslides in nature 
should be smoother than their surroundings. Surface roughness has been proved to be an 
objective and useful measurement of landslide topography (McKean & Roering, 2004; 
Woodcock, 1977; Glen et al., 2006). 
 
(a) Slope 
Slope angle of a landslide is the angle between the horizontal and the ground surface of the 
longitudinal axis of the landslide. Slope angle for each of the landslides can be determined 
by the slope angles derived from LiDAR DTM. If the surface of the ground is  
 

Z=f(X, Y) (3) 
 
the slope (in radian) can be defined as. 
 

( )221tan yx ffslope += −  (4) 
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In common practice, the DTM is stored in grid form. The slope of a grid element such as Z5 
in Figure 5 is computed by using a 3x3 moving window. 
 

Z7 Z8 Z9 
Z4 Z5 Z6 
Z1 Z2 Z3 

Fig. 5. Slope calculation by a kernel of 3x3 moving window 
 
If the fluctuation of local height becomes too large due to the nature of LiDAR data or due to 
the nature of local relief, the resulted slope angles will be subjected to heavy noises with 
discontinuities of slope angles. It is therefore necessary to introduce an image processing 
method to resolve the problem. The first order of differentiation is applied for convolution 
operation with DTM. In the principle of image processing, a 2D (x, y) convolution is 
equivalent to two passes of 1D convolution of both (x) and (y). This simplification can be 
implemented more efficiently (Sharpnack & Akin, 1969; Parker, 1997). For example, formula 

 

Greenness= (G-R)/(G+R)  (2) 
 
where G is the grey value of Green band, and R is the grey value of Red band. The range of 
the values of NDVI and Greenness is between -1 and 1. Nevertheless, the range for those of 
landslides may change with natural weather, terrain conditions and type and settings of the 
camera sensor. A relative low value implies that the area of the pixel is low-vegetated or 
bare. 
 

 
Fig. 3. Flowchart of the interactive system 
 

 
Fig. 4. Screen shots of the interactive system. (Left) Parameter settings; (Right) Accuracy 
assessment by comparing classified result with ground truth 
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where G is the grey value of Green band, and R is the grey value of Red band. The range of 
the values of NDVI and Greenness is between -1 and 1. Nevertheless, the range for those of 
landslides may change with natural weather, terrain conditions and type and settings of the 
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study areas and the landslides of these areas due to the relevant events. Surveys were 
carried out with both sensors of airborne LiDAR and digital camera to DTM and DSM of 1m 
grid and orthophotos of 50cm grid. DTM, DSM and orthophotos are georeferenced, co-
registered and transformed to the local coordinate system with Taiwan Datum 1997 
(TWD97) for the analyses of the induced landslides. 
 

 
Fig. 6. The location map of the study areas and the landslides of these areas 
 
Aerial surveys were conducted after rainfall events as shown in Table 3. Although the 
maximum rainfall in the period of Typhoon Longwang in Shimen was as small as 208 mm, 
this event was the one followed three larger events in three months of the same year, i.e. 
Haitang (504mm) on July 16, Matsa (818mm) on August 3, and Talim (384mm) on 
September 1. The event in Alishan was just a concentrated torrential rainfall. On 9th June 
2006, the cumulative rainfall had reached 811mm in 24 hours and 1200 mm in 48 hours. 
Enormous amount of debris flows and slides took places. LiDAR data and aerial 
photographs were taken right after the event on 22nd June of 2006. There had been no 
records of heavy rainfall events one year prior to this event. The landslides observed with 
these datasets can be solely attributed to this rainfall event. Typhoon Kalmaegi on July 17 
took place nine month after Typhoon Krosa on October 4 of 2007 in Ilan area. The rainfall 
took place after a dry and hot summer season. The occurrences of the three selected study 
areas are different. 

 

(5) is a 1D Gaussian function and formula (6) is the first order of its derivative. Therefore, 
the slope formula in (4) can be implemented by convolution operations in both x and y 
directions with DTM grid. 
 

2

22( )
x

f x e σ
−

=  (5) 

2

22
2'( )

x

x
xf f x e σ

σ

 
−  
  = = − 

 
 (6) 

 
(b) OHM 
OHM is obtained by simply subtracting DTM from DSM for describing the height of objects 
above the bare ground. DTM is also referred to nDSM, i.e. normalized DSM, denoting the 
significance of the surface is tightly related to DSM. DTM is the bare ground surface 
excluding all objects above the ground. In forestry land, the difference between DSM and 
DTM can be referred to CHM (Canopy Height Model), denoting the general heights of the 
trees. The surface objects especially in forests are generally depleted in areas of landslides. 
Therefore, a minimal value of OHM can be expected in landslide areas. 
 
(c) Surface Roughness 
Surface roughness can be described by either the variance of DSM or OHM in a local 
window area. In this study, roughness is defined as one standard deviation in a 5x5 moving 
window on OHM for describing the relief variation in the local area. This can partly 
diminish the effects of landscape undulation. A 5x5 window is used for extraction the 
variance of the OHM values in the moving window and then the value of one standard 
deviation is used to stand for the surface roughness of the central pixel. In the areas of 
rainfall-induced landslides, the roughness will be lower than other areas due to the 
depletion of surface materials. 

 
3.4 Scale Effects of Digital Terrain Models 
Because slope angle, OHM, and roughness are generated from DTM, they are subject to the 
change of DTM grid-size. This poses a requirement to understand the possible scale effect 
due to the change of DTM grid-size for landslide areas (Claessens et al., 2005). A contraction 
of 1m grid is carried out to obtain grids of 5m, 10m, and 40m for comparison. A pixel on the 
grid will cover a larger area when the scale is smaller. There are two approaches for the 
contraction, namely pixel thinning and pixel aggregation. With pixel thinning, every nth 
pixel is kept. With pixel aggregation, the new pixels represent averages of the n pixels 
specified by the contracting factor. In Taiwan, DTMs of 5m, 10m and 40m grids are created 
on bases of photogrammetry. Therefore, pixel aggregation approach is used in this study for 
its comparability to image matching. 

 
4. Test Areas and Materials 
 

The landslides induced by rainfall events in Shimen, Alishan and Ilan of northern, middle 
and eastern Taiwan are selected for this study. Figure 6 is the location map of the three 
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study areas and the landslides of these areas due to the relevant events. Surveys were 
carried out with both sensors of airborne LiDAR and digital camera to DTM and DSM of 1m 
grid and orthophotos of 50cm grid. DTM, DSM and orthophotos are georeferenced, co-
registered and transformed to the local coordinate system with Taiwan Datum 1997 
(TWD97) for the analyses of the induced landslides. 
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2006, the cumulative rainfall had reached 811mm in 24 hours and 1200 mm in 48 hours. 
Enormous amount of debris flows and slides took places. LiDAR data and aerial 
photographs were taken right after the event on 22nd June of 2006. There had been no 
records of heavy rainfall events one year prior to this event. The landslides observed with 
these datasets can be solely attributed to this rainfall event. Typhoon Kalmaegi on July 17 
took place nine month after Typhoon Krosa on October 4 of 2007 in Ilan area. The rainfall 
took place after a dry and hot summer season. The occurrences of the three selected study 
areas are different. 
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the slope formula in (4) can be implemented by convolution operations in both x and y 
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(b) OHM 
OHM is obtained by simply subtracting DTM from DSM for describing the height of objects 
above the bare ground. DTM is also referred to nDSM, i.e. normalized DSM, denoting the 
significance of the surface is tightly related to DSM. DTM is the bare ground surface 
excluding all objects above the ground. In forestry land, the difference between DSM and 
DTM can be referred to CHM (Canopy Height Model), denoting the general heights of the 
trees. The surface objects especially in forests are generally depleted in areas of landslides. 
Therefore, a minimal value of OHM can be expected in landslide areas. 
 
(c) Surface Roughness 
Surface roughness can be described by either the variance of DSM or OHM in a local 
window area. In this study, roughness is defined as one standard deviation in a 5x5 moving 
window on OHM for describing the relief variation in the local area. This can partly 
diminish the effects of landscape undulation. A 5x5 window is used for extraction the 
variance of the OHM values in the moving window and then the value of one standard 
deviation is used to stand for the surface roughness of the central pixel. In the areas of 
rainfall-induced landslides, the roughness will be lower than other areas due to the 
depletion of surface materials. 

 
3.4 Scale Effects of Digital Terrain Models 
Because slope angle, OHM, and roughness are generated from DTM, they are subject to the 
change of DTM grid-size. This poses a requirement to understand the possible scale effect 
due to the change of DTM grid-size for landslide areas (Claessens et al., 2005). A contraction 
of 1m grid is carried out to obtain grids of 5m, 10m, and 40m for comparison. A pixel on the 
grid will cover a larger area when the scale is smaller. There are two approaches for the 
contraction, namely pixel thinning and pixel aggregation. With pixel thinning, every nth 
pixel is kept. With pixel aggregation, the new pixels represent averages of the n pixels 
specified by the contracting factor. In Taiwan, DTMs of 5m, 10m and 40m grids are created 
on bases of photogrammetry. Therefore, pixel aggregation approach is used in this study for 
its comparability to image matching. 

 
4. Test Areas and Materials 
 

The landslides induced by rainfall events in Shimen, Alishan and Ilan of northern, middle 
and eastern Taiwan are selected for this study. Figure 6 is the location map of the three 
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(A) DSM 

 
(B) DTM 

 
(C) OHM 

 
(D) Orthophoto 

Fig. 7. Blown-up of a 1x1 km area of Alishan study area 

 
5. Results and Discussion 
 

5.1 The resultant images of the four parameters 
Greenness can be extracted from RBG orthophoto where the landslide area exhibits lower 
value (Figure 8C). Local slope can be calculated using 3rd finite difference algorithm (Figure 
8D). OHM is a normalized height of objects above the bare ground surface. Because terrain 
effect has been removed, OHM exhibits a good appearance of landslides (Figure 8E). The 
roughness of landslide area is obviously lower than that of the environment (Figure 8F). In 
other words, the smoothness of landslide area is obviously higher than that of the 
environment. 
It also can be observed that the shaded-relief image of DSM gives a better contrast between 
landslides and their environments than that of DTM due to the contribution of the shading 
effect of the trees and other above-ground objects (Figure8A and B). In addition, The DSM-
shaded image in nature is a true ortho-image, possessing the advantage of no occlusion of 
object shading when compared with orthophoto of the same area (Figure 7D). It is costly to 
process an orthophoto to a true orthophoto which needs to incorporate the correction of 
objects along with the terrain correction. Therefore, if airborne LiDAR survey is carried out 
alone without an integrated digital camera, the DSM-shaded image can be a good surrogate 
of panchromatic photograph for manual interpretation. 

 
5.2 Results of Manual Interpretation of Landslides 
Landslides of the study areas (Figure 6) are obtained by manual interpretation of colour 
orthophotos of 50 cm grid and DSM-shaded images of 1m grid using the criteria of expert 
knowledge for conventional aerial photo interpretation. 
The total number of the rainfall-induced landslides in the 36 km2 in Alishan of middle 
Taiwan is 106 with a total coverage area around 1.29 km2. The landslide occurrence rate is 
around 4%. Statistically, 8% of the landslides have a longitudinal length of less than 30m; 
36% between 30~60m; 67% less than 100m; 86% less than 150m. If more than 5 pixels are the 
minimum mapping unit for visual interpretation, usually more than 36% of the landslides 
will not be mapped using remotely-sensed images in medium resolution. The total number 
of landslides in Shimen of northern Taiwan is 200 with landslide coverage of 0.76 km2 in 48 
km2 of study area. The landslide occurrence rate is around 1.4%, which is only one third of 
the rate in Alishan although the total number of landslides is more than that in Alishan. This 
implies that smaller consecutive rainfall events in Shimen area trigger more small landslides 
than that in Alishan area. This assertion can be further supported by the evidence observed 
in Ilan area of eastern Taiwan. The total number of landslides in Ilan area is 12 in 2 km2 of 

 

Name and size of 
study area 

Date of data 
acquisition 

Rainfall 
event 

Date of 
the event 

Maximum 
rainfall (mm) 

Shimen  
(48 sq. km) 

Jun. 17, 2006 Typhoon 
Longwang 

Sept. 30, 
2005 

208 

Alishan 
(36 sq. km) 

Jun. 22, 2006 Torrential 
rainfall 

Jun. 9, 
2006 

1200 

Ilan 
(4 sq. km) 

Nov. 4, 2008 Typhoon 
Kalmaegi 

Jul. 17, 
2008 

1100 

Table 3. Rainfall events related to the study areas 
 
The orthophotos were then generated by the aerial photographs taken by direct-
georeferencing technique and ortho-rectified by LiDAR DSM without using ground control 
points. Photography and laser scanning are synchronized. Because airborne LiDAR is 
equipped with GPS and IMU, an event mark is given when photography system triggers a 
transistor-transistor logic pulse. Thus, the instantaneous GPS and IMU information can be 
used to resolve the exterior orientation of the photo frame, i.e. x, y, z, ω, ψ, κ. Subsequently, 
the true-ortho ground surface model, i.e. LiDAR DSM, is used for the ortho-rectification of 
the central projected photograph. 
Leica ALS50 airborne LiDAR system used in this study is consisted of 2 major parts, i.e. a 
laser scanning assembly and a Position and Orientation System (POS). The former one is for 
triggering laser pulses, controlling the range, the swath, the FOV, the scan rate and the pulse 
rate. These parameters decide how fast we can make a complete coverage of the survey area. 
The second part is critical to the positioning accuracy.  
Point density is an important indicator for the spatial resolution of LiDAR DTM and DSM. 
An understanding of the forest closure and crown density can be obtained by preliminary 
inspection of the point-density distribution of point clouds (Means et al., 2000; Naesset, 
2002). In Alishan study area, the point density in average is around 2.3 points/m2 with 
ground point density of 0.6 points/m2. The upper envelope of the point clouds is 
interpolated to form DSM of 1m grid, whereas the point clouds that hit the bare ground or 
that are filtered to eliminate off-ground points are interpolated to form DTM. In other 
words, DTM denotes the bare ground surface. The accuracy of the DTM and DSM can be 
varied due to the change of land-cover types and density of vegetation. For assuring the 
accuracy, ground survey with total stations was carried out for 347 selected sample points. The 
RMSE is 0.82m, and mean error is 0.73m (Table 4). The error actually is a bias verified in the 
field check because this is due to the dense low bushes underneath the tree-canopies. This 
over-estimation of DTM is noteworthy especially for tropical and sub-tropical forest. In 
general, the accuracy of bare grounds is about 0.15m. Similarly, Shimen and Ilan areas were 
flown with looser point density of 1.5 points/m2 with ground point density of 0.45 points/m2.  
Figure 7 is an example of a blown up of 1 square km of the Alishan study area. It is clearly 
shown that the landslide area can be enhanced on the OHM image where the landslide areas 
are with low OHM values. 
 

Locations Sample size Average error (m) RMSE (m) Standard Error (m) 
Tree base 219 0.70 0.77 0.33 
Open Ground 128 0.79 0.90 0.43 
Total 347 0. 73 0.82 0.37 

Table 4. Accuracy assessment of the DTM in forest lands 
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used to resolve the exterior orientation of the photo frame, i.e. x, y, z, ω, ψ, κ. Subsequently, 
the true-ortho ground surface model, i.e. LiDAR DSM, is used for the ortho-rectification of 
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over-estimation of DTM is noteworthy especially for tropical and sub-tropical forest. In 
general, the accuracy of bare grounds is about 0.15m. Similarly, Shimen and Ilan areas were 
flown with looser point density of 1.5 points/m2 with ground point density of 0.45 points/m2.  
Figure 7 is an example of a blown up of 1 square km of the Alishan study area. It is clearly 
shown that the landslide area can be enhanced on the OHM image where the landslide areas 
are with low OHM values. 
 

Locations Sample size Average error (m) RMSE (m) Standard Error (m) 
Tree base 219 0.70 0.77 0.33 
Open Ground 128 0.79 0.90 0.43 
Total 347 0. 73 0.82 0.37 

Table 4. Accuracy assessment of the DTM in forest lands 
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landslide areas is higher than that of the whole area. Figure 9 shows that the peak of the 
curve of slopes of landslide areas is higher and when the slopes are more than 31 degrees 
the faction of landslide slopes is more than that of the general slopes. This tendency holds 
true for both Shimen and Ilan areas.  
 

  Slope (deg) OHM (m) Roughness (m) 
  Whole area Slide area Whole area Slide area Whole area Slide area 
Alishan Mean 33.97 40.99 14.31 4.40 3.25 2.05 

Std. Dev. 15.71 14.14 9.69 6.30 2.69 2.56 
Shimen Mean 35.15 43.79 13.23 2.150 2.37 1.48 

Std. Dev. 14.28 12.95 8.01 4.70 1.87 2.11 
Ilan Mean 29.00 40.48 10.20 6.15 2.55 0.40 

Std. Dev. 20.14 13.14 10.81 8.32 2.82 1.32 
Average of the means 32.71 41.75 12.58 4.23 2.72 1.31 

Table 6. Statistics of the geomorphommetric parameters of the rainfall-induced landslides 
 
The mean value of OHM of the landslide areas in Alishan is 4.40 m with one standard 
deviation of 6.3 m; whereas for the whole study area, they are 14.31 m and 9.69 m, 
respectively. OHM of landslide areas are obviously smaller than that of the surroundings 
where are vegetated with high forests (Figure 8E). Figure 9 shows that the distribution of 
OHM for the whole study area is in bi-modal with one additional peak between 10~31 m. 
The peak in the right side is a forestry peak representing the concentration of trees. The 
mean OHM of Shimen area is as small as 2.15m denoting a cleaning ground surface of the 
sliding areas, whereas the mean OHM of Ilan area is 6.15m denoting the landslide areas 
remain some tree residues above the ground surface. 
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Fig. 9. Statistics of the three selected parameters of Alishan area 
 
The mean roughness of the landslide areas is 2.05 m whereas it is 3.25 m for the whole 
Alishan area. The cumulative curve of roughness shows that 83% of the landslides have a 
roughness less than 2m and 88% less than 3m. In general, the means of the landslide areas 
are less than those of the whole areas. This indicates that ground surface of landslide areas 
are significantly soother than their surroundings, reflecting the truth of Figure 8(F). The 
mean surface roughnesses for both of Shimen and Ilan areas are smaller than 2.0m which are 
even smaller than that of the Alishan area. 
The significance of these three morphometric parameters can also be perceived from the 
average of the means in Table 6 that the differences of the parameters of the whole test area 
are substantially different from that of the landslide areas. 
 
 

 

study area with landslide coverage of 0.14 km2. The landslide occurrence rate is around 
7.0%. The average area of a landslide in Ilan area is also larger than that of Shimen area, yet 
comparable with that in Alishan area (Table 5). 
 

 
(A) DSM-shaded image 
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(C) Greenness image 

 
(D) Slope image  
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Fig. 8. Resultant images 
 

 Study area Total area 
(km2) 

Total 
landslide area 
(km2) 

Totla number of 
landslides 

Landslide 
occurrence rate (%) 

Average area of 
a landslide (m2) 

Alishan 36 1.29 106 4.0 122 
Shihmen 48 0.76 200 1.4 38 
Ilan 2 0.14 12 7.0 117 
Average - - - 4.1 92 

Table 5. Statistics of the landslide distribution of the study areas 

 
5.3 Results of the morphometric analyses of Landslides 
Manually-interpreted landslides are overlaid with DTM/DSM derivatives to extract the 
selected geomorphometric parameters including slope angle of landslides, object height 
models, and surface roughness. Statistics of the landslides in Alishan area (Table 6) show 
that the mean slope angle of the areas covered by landslides is 40.99 degrees with one 
standard deviation of 14.14 degrees. In contrast, the mean slope of the whole study area is 
33.97 degrees with a standard deviation of 15.71 degrees. Generally, average slope angle in 
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grid and orthophotos of 50cm grid. The landslides induced after torrential rainfalls in 
middle, northern and eastern Taiwan are selected for this study. It is proved that the 
morphometric parameters of rainfall-induced landslides are useful in the automatic 
detection of landslides for highlighting the potential areas in the interactive system. 
However, they have to be defined in related to local conditions and the specific events 
triggering the landslides. It is also observed that scale effects are obvious for roughness but 
not for slope and OHM. The scale effect takes place when the DTM grid is comparable to the 
average size of landslides, i.e. 40m in this study. 
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5.4 Analysis of Scale Effects of Digital Terrain Models 
Table 7 shows the statistics of slope angles, OHM, and roughness of landslides in DTM grids 
of 1 m, 5 m, 10 m, and 40 m, respectively. Two features can be observed in the table: (1) 
statistics of 40 m grid are obviously different from others; (2) the roughness in four different 
grids gives quite different values. The former one reflects the unreliability of the statistics 
when grid-size is comparable to the lengths of landslides (see also Figure 10). The later one 
shows that there is a significant relationship between surface roughness and grid-size. In 
other words, there is a scale effect for this parameter. The value of the parameter is changed 
along with the grid-size. These can be further observed from Figure 10. When the dimension 
of landslides is similar to or less than the dimension of DTM grid-size, the computed slope 
angles become unstable, maybe too big or too small. The OHM shows similar phenomena 
that in 40 m grid, the pixels become mixed cells, i.e. trees nearby the landslide give 
contribution to the OHM. Surface roughness exhibits changes in all different grid-sizes.  
It is noteworthy that there is no cell with a roughness of more than 22m for the curve of 40m 
grid. 22m is about the half of the 40m-gridsize. This shows that the distribution of roughness 
is scale-dependent. In short, DTM with a grid size smaller than 40m will not be suitable for 
analyzing the rainfall-induced landslides which are usually with an area smaller than 
40x40m2 as demonstrated in this study (Table 5). Therefore, it should be carefully treated 
when applying DTM with different resolution for geomorphometric studies. 
 

  1m grid 5m grid 10m grid 40m grid 
Slope Mean 40.99 40.69 40.25 37.77 

Std. Dev 14.14 13.77 13.44 13.20 
OHM Mean 4.40 4.86 5.01 6.61 

Std. Dev 6.30 5.99 5.85 5.90 
Roughness Mean 2.05 7.06 13.37 33.96 

Std. Dev 2.56 4.66 7.39 7.38 
Table 7. Statistics of slope angles, OHM, and roughness of landslides in four grids 
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Fig. 10. Scale effects of slope, OHM and roughness derived from various grid-sizes 

 
6. Conclusions 
 

Conventional airphoto interpretation has long been adopted as a standard approach for 
reliable national mapping of landslides and it is still applied for this purpose in many places 
of the world including Taiwan. For establishing an interactive interpretation interface to 
assist the interpreter, expert knowledge of morphometric properties of landslides are 
required for entries to automatic detection algorithm to highlight the potential areas of 
landslides in the system. In this study, for understanding these properties, aerial surveys 
were carried out with airborne LiDAR and digital camera to obtain DTM and DSM of 1m 
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grid and orthophotos of 50cm grid. The landslides induced after torrential rainfalls in 
middle, northern and eastern Taiwan are selected for this study. It is proved that the 
morphometric parameters of rainfall-induced landslides are useful in the automatic 
detection of landslides for highlighting the potential areas in the interactive system. 
However, they have to be defined in related to local conditions and the specific events 
triggering the landslides. It is also observed that scale effects are obvious for roughness but 
not for slope and OHM. The scale effect takes place when the DTM grid is comparable to the 
average size of landslides, i.e. 40m in this study. 
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1. Introduction    
 
Information systems have evolved to service-oriented architectures (SOA) where dedicated 
desktop applications have turned into on-line data and services. On one hand this 
distributed environment let users to share (resources) data and tools, but on the other hand 
there is a need to develop mechanisms to allow users to find and access to these distributed 
resources efficiently.  
Current trends for discover and access geospatial information are being addressed by 
deployment of interconnected Spatial Data Infrastructure (SDI) nodes at different scales to 
build a global spatial information infrastructure (Masser et al., 2008; Rajabifard et al., 2002) 
being the SOA paradigm in the geospatial domain.  
However, current Geographic Information Systems (GIS) and the services provided by the 
SDIs fail to allow transparent navigation between related geographic information resources. 
In SDI like in other domains,  metadata are a necessary mechanism to describe the 
information, and together with Catalogue Services are the key elements for discovery and 
information fusion possibilities (Nogueras et al., 2005; Díaz et al., 2007).  
In this context, pointing out this need, there are directives such as INSPIRE1, that at 
European level, mandates the creation and maintenance of metadata and related discovery 
services (Craglia et al., 2007), these elements are, often,  the first visible elements of added 
value in SDIs.  
Metadata allow us to describe data and, based on it, we could organize, publicize and 
facilitate the access to such information. Traditionally, it has been the user or the data 
provider who creates these metadata that will be published in Catalogue Services, for being 
discovered and accessed later by different users in a SDI. The fact of generating metadata 
like who created the data, where are they placed, etc. is a laborious task, fundamentally 
because the traditional metadata formats are large and complex, the users who are 
documenting the data usually have no knowledge about some metadata of the original data 
due to the lack of information supplied by the provider, etc. 

                                                                 
1 http://inspire.jrc.ec.europa.eu 
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2.2 Description of Resources 
A description is the explanation, in a detailed and ordered way, of how is certain person, 
place, object or anything, through the explanation of its various parts, characteristics or 
circumstances. 
As we said earlier, metadata allows us to describe data and, based on it, we could organize, 
publicize and facilitate the access to such information. Metadata are commonly defined as 
“structured data about data” or “data that describe the attributes of a resource” or simply 
“information about data”. In other words, metadata is the information that describes the 
content, quality, condition, origin, and other characteristics of data. Metadata is the 
information and the documentation that enable data to be well understood, shared and used 
effectively by all types of users over time.  
These metadata or data description must be generated according to a standard in order to 
fulfil the minimum requirements for interoperability. One of these metadata standards is 
DublinCore (DC), this standard was born originally to describe Web resources in a general 
way proposed by the initiative "Dublin Core Metadata Initiative" (DCMI)4. This initiative, 
created in 1995, promotes the dissemination of interoperable metadata standards and 
metadata vocabularies to build more intelligent information search systems. The DC 
standard has been approved as an American standard (ANSI/NISO Z39.85), in the technical 
European committee CEN/ISSS (European Committee for Standardization / Information 
Society Standardization System) and since 2003 also as an international standard by ISO 
(ISO 15836:2003 “Information and Documentation - The Dublin Core Metadata Element 
Set”). 
The need of this kind of metadata standards is pointed out by organizations like World 
Wide Web Consortium (W3C)5. There are many other standards utilized for specific 
domains, for example, we can find various metadata formats for multimedia resources, like: 
Apple ITUNES XML, Yahoo MediaRSS, Cablelabs VOD Metadata Content Specification 2.0, 
MPEG-7 standard, W3C SMIL Standard, etc. W3C tries to standarize all these metadata 
formats and provide a way to work efficiently. (Toebes, 2007). 
The W3C proposal is to develop metadata extending languages based in XML (eXtensible 
Markup Language) (Bray et al., 2000) or RDF (Resource Description Framework) (Manola y 
Miller, 2004). In this way in the geospatial domain there is a general consensus. 
As we mentioned in the section before, potentially, any resource could be georeferenced and 
be integrated with other geospatial information in or outside SDI environments. As we 
focus on a methodology for description of geospatial information, we describe next the goals 
of the geographic metadata creation and the standards used in this domain.  
Geographic metadata help people involved in the use of geographic information to find the 
information that they need and determine how best to use them (Nebert, 2004). In (FGDC, 
2000) it is stated that the creation of geographic metadata has three major goals (which are 
also benefits): 
 
 Organize and maintain investments in data made by an organization: Metadata seek to 

promote the reusability of data without having to turn to the team that was responsible 
for its initial creation. 

                                                                 
4 http://www.dublincore.org 
5 http://www.w3.org/ 

 

In this sense, the production of metadata becomes a laborious job that consumes a large 
amount of time and effort becoming a task released into the background despite its major 
importance. This provokes, in reality, a scarcity in metadata availability in SDI and 
consequently difficulty in data discovery and a miss functioning SDI.  
For all the above reasons there is a need to facilitate metadata production to easily create, 
with minimal user intervention, metadata descriptions when the data are created. In this 
way, data and metadata can be packed, forming a logical unit, created at the same time and 
minimizing the inconsistence between data and their metadata.  
In this chapter we present a methodology for documenting geospatial information. This 
methodology provides mechanisms to automate the generation and publication of 
metadata. For demonstration purposes we describe a prototype implemented within an 
open-source software GIS/SDI client. This prototype is capable of semi-automatic extraction 
of explicit metadata from data resources, metadata edition and publication to be catalogued 
for data discovery in an SDI.  
The nature of this integrated workflow that facilitates metadata creation and management, 
will hopefully contribute to a change in mindset as to the cost/benefit ratio of generating 
and exploiting metadata, a necessary ingredient for successful SDI. 

 
2. Background   
 

2.1 Geospatial Information 
There are studies showing that most of the information (more than 80%) is likely to be 
linked to a geographic position. When we talk about geospatial information we are talking 
about data intrinsically related to a geographic position. Although there exists formats 
specially supporting geospatial data, any other data or information, not considered spatial 
in nature can be georeferenced and considered as such. 
Georeferenced resources are then resources of any nature that have defined their existence 
in physical space. That is, those that have established their location in terms of map 
projections or coordinate systems. Nowadays, the act of georeference has gone beyond the 
fields of geoscience and GIS, thanks to the  emergence of new tools which their ease of use 
has expanded and democratized this task outside of the current technical context.  
The use of tools like Google Earth2, Flickr3, etc. has meant a qualitative leap in terms of 
georeferencing, extending the use of georeferencing resources traditionally limited to 
geodata in geosciences and GIS specialists, and thus accelerating the emergence of a 
geosemantic web, (Cerda, 2005). In the same way, the overcrowding and constant evolution 
of the georeferentiation has been boosted by the use of mashups in Web 2.0 sites, allowing 
the location of digital content (photo, video, news, 3D models, etc.) in digital mapping, 
nowadays called neogeography (Goodchild, 2007) (Goodchild, 2008). 
All this georeferenced content, like geospatial data, can be described by using metadata and 
published in Catalogue Services in order to be integrated in SDI. 

 
 

                                                                 
2 http://earth.google.es 
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2.2 Description of Resources 
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place, object or anything, through the explanation of its various parts, characteristics or 
circumstances. 
As we said earlier, metadata allows us to describe data and, based on it, we could organize, 
publicize and facilitate the access to such information. Metadata are commonly defined as 
“structured data about data” or “data that describe the attributes of a resource” or simply 
“information about data”. In other words, metadata is the information that describes the 
content, quality, condition, origin, and other characteristics of data. Metadata is the 
information and the documentation that enable data to be well understood, shared and used 
effectively by all types of users over time.  
These metadata or data description must be generated according to a standard in order to 
fulfil the minimum requirements for interoperability. One of these metadata standards is 
DublinCore (DC), this standard was born originally to describe Web resources in a general 
way proposed by the initiative "Dublin Core Metadata Initiative" (DCMI)4. This initiative, 
created in 1995, promotes the dissemination of interoperable metadata standards and 
metadata vocabularies to build more intelligent information search systems. The DC 
standard has been approved as an American standard (ANSI/NISO Z39.85), in the technical 
European committee CEN/ISSS (European Committee for Standardization / Information 
Society Standardization System) and since 2003 also as an international standard by ISO 
(ISO 15836:2003 “Information and Documentation - The Dublin Core Metadata Element 
Set”). 
The need of this kind of metadata standards is pointed out by organizations like World 
Wide Web Consortium (W3C)5. There are many other standards utilized for specific 
domains, for example, we can find various metadata formats for multimedia resources, like: 
Apple ITUNES XML, Yahoo MediaRSS, Cablelabs VOD Metadata Content Specification 2.0, 
MPEG-7 standard, W3C SMIL Standard, etc. W3C tries to standarize all these metadata 
formats and provide a way to work efficiently. (Toebes, 2007). 
The W3C proposal is to develop metadata extending languages based in XML (eXtensible 
Markup Language) (Bray et al., 2000) or RDF (Resource Description Framework) (Manola y 
Miller, 2004). In this way in the geospatial domain there is a general consensus. 
As we mentioned in the section before, potentially, any resource could be georeferenced and 
be integrated with other geospatial information in or outside SDI environments. As we 
focus on a methodology for description of geospatial information, we describe next the goals 
of the geographic metadata creation and the standards used in this domain.  
Geographic metadata help people involved in the use of geographic information to find the 
information that they need and determine how best to use them (Nebert, 2004). In (FGDC, 
2000) it is stated that the creation of geographic metadata has three major goals (which are 
also benefits): 
 
 Organize and maintain investments in data made by an organization: Metadata seek to 

promote the reusability of data without having to turn to the team that was responsible 
for its initial creation. 
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In this sense, the production of metadata becomes a laborious job that consumes a large 
amount of time and effort becoming a task released into the background despite its major 
importance. This provokes, in reality, a scarcity in metadata availability in SDI and 
consequently difficulty in data discovery and a miss functioning SDI.  
For all the above reasons there is a need to facilitate metadata production to easily create, 
with minimal user intervention, metadata descriptions when the data are created. In this 
way, data and metadata can be packed, forming a logical unit, created at the same time and 
minimizing the inconsistence between data and their metadata.  
In this chapter we present a methodology for documenting geospatial information. This 
methodology provides mechanisms to automate the generation and publication of 
metadata. For demonstration purposes we describe a prototype implemented within an 
open-source software GIS/SDI client. This prototype is capable of semi-automatic extraction 
of explicit metadata from data resources, metadata edition and publication to be catalogued 
for data discovery in an SDI.  
The nature of this integrated workflow that facilitates metadata creation and management, 
will hopefully contribute to a change in mindset as to the cost/benefit ratio of generating 
and exploiting metadata, a necessary ingredient for successful SDI. 

 
2. Background   
 

2.1 Geospatial Information 
There are studies showing that most of the information (more than 80%) is likely to be 
linked to a geographic position. When we talk about geospatial information we are talking 
about data intrinsically related to a geographic position. Although there exists formats 
specially supporting geospatial data, any other data or information, not considered spatial 
in nature can be georeferenced and considered as such. 
Georeferenced resources are then resources of any nature that have defined their existence 
in physical space. That is, those that have established their location in terms of map 
projections or coordinate systems. Nowadays, the act of georeference has gone beyond the 
fields of geoscience and GIS, thanks to the  emergence of new tools which their ease of use 
has expanded and democratized this task outside of the current technical context.  
The use of tools like Google Earth2, Flickr3, etc. has meant a qualitative leap in terms of 
georeferencing, extending the use of georeferencing resources traditionally limited to 
geodata in geosciences and GIS specialists, and thus accelerating the emergence of a 
geosemantic web, (Cerda, 2005). In the same way, the overcrowding and constant evolution 
of the georeferentiation has been boosted by the use of mashups in Web 2.0 sites, allowing 
the location of digital content (photo, video, news, 3D models, etc.) in digital mapping, 
nowadays called neogeography (Goodchild, 2007) (Goodchild, 2008). 
All this georeferenced content, like geospatial data, can be described by using metadata and 
published in Catalogue Services in order to be integrated in SDI. 
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entities. Some standards such as ISO19115:2003 and CSDGM provide methods for the 
extension of the metadata within their specification. And if there are a big number of these 
extra features (they involve the creation of a considerable number of elements), 
ISO19115:2003 recommends making a formal request for the creation of a specific 
application profile for that community of users who require it. 
However, although the specific profiles and the optional and conditional elements facilitate 
certain flexibility to the geographic metadata, most of the common used standards like 
CSDGM and ISO19115:2003 are too complex (Nebert, 2004), both define more than 350 
elements distributed into multiple hierarchical sections. This complexity means that, to 
complete the geographic metadata, it is necessary to devote a big amount of time and highly 
qualified human resources.  
Automatic mechanisms for generating metadata in standard format would be a helpful way 
to assist user to increase the number of available metadata in distributed environments 
improving the discovery of the data in an efficient way. 

 
2.3 Generation of Metadata   
Metadata is usually created by data providers, generated manually and stored (separated 
from the resource) in catalogs, according to digital libraries tradition, to be found later for 
informational purposes. However, practical problems with their creation and maintenance 
are limiting their effectiveness for tasks such as discovery and evaluation of the usefulness 
of a given resource. 
Some authors emphasize as causes of this low effectiveness the complexity of the rules and 
standards in the geospatial context or the low automation and synchronization between the 
creation of data and metadata. In terms of complexity, (Bodoff et al., 2005) regret the 
overhead of planned uses for some metadata: according to certain rules some metadata 
must provide at the same time the documentation, the configuration and the access point to 
the resource. Other authors point out the necessity to automatize data generation, 
(Bulterman, 2004; Manso et al., 2004). 
Nowadays metadata are usually created manually, and only few of them are extracted 
automatically by software, for example, geographical extent or the date of creation. 
Although theoretically only must be introduced by hand subjective descriptors such as the 
abstract, but the complexity and variety of formats limit the application of automated 
techniques. 
Due to the increasing need of metadata to find the great amount of data available in 
distributed environment, especially in geospatial information systems, being deployed as 
SDI, there are numerous software applications that try to facilitate this metadata generation. 
Most of these application started supporting CSDGM standard and ISO 19115. There is a 
good survey on these applications available in the FGDC metadata working group8. 
The purpose of this section is to make a small state of the art of existing proposals to 
improve the automated generation of metadata. The hypothesis is that the automatic 
generation of meta-information permits decrease human interaction in the creation of 
metadata, reducing the associated workload and the obstacles arising from the complexity 
of the metadata schemas that metadata creators must face.  
 
                                                                 
8 http://www.fgdc.gov/metadata/iso-metadata-editor-review 

 

 Publicize the existence of geographic information through catalog systems: Metadata 
records are usually published through catalog systems, sometimes also referred as 
directories. Electronic catalogs not differ too much from the traditional library catalogs 
except for the fact that it offers a standardized interface for search services. Thus, these 
catalogs are the tool that put consumers in touch with the producers of information. By 
means of the publication of geographic information resources through a catalog, 
organizations can find data to use, other organizations with who share data and 
maintenance efforts and customers for these data. 

 Facilitate the access to the data, their acquisition and a better utilisation of the data 
achieving information interoperability when it comes from various sources: Metadata 
help receiving users or organizations in the processing, interpretation and storage of 
data in internal repositories. 

 
Within the world of geographic information have been defined recommendations for the 
creation of metadata, whose main purpose is to provide a “hierarchical and concrete” 
structure to describe fully each of the data to which they refer. These recommendations have 
been created and approved by standardization bodies according to opinions of experts in 
the area. These recommendations, in form of standards or metadata schemas, provide 
criteria to characterize their geographic data properly.  
Throughout the years have emerged, at national or European level, even within a specific 
domain, a set of initiatives to standardize the creation of metadata. However, these 
initiatives have been repealed for harmonization with the international standard 
ISO19115:20036. Even the new version of the American standard CSDGM7 will converge 
with the international standard. 
Regardless of the metadata standard used, it is usual to classify the elements of metadata 
respect on their role within the paradigm “discovery, evaluation and access” established in 
(Nebert, 2004): 
 
 Discovery metadata elements are those that allow minimally describe the nature and 

content of a resource. These elements usually respond to the questions “What, Why, 
When, Who, Where and How”. Typical elements in this category would be the title, the 
description of the data set or its geographic extension. 

 Exploration metadata provide information that allow verify that the data are in 
accordance with the desired purpose, assess their properties or contact with the 
organization that will provide further information. 

 Exploitation metadata include those necessary descriptions for access, transfer, load, 
interpret and use the data in the final application in order to be exploited. 

Another important aspect related to the metadata schemas is their level of detail, which is 
defined by the choice of the standard itself and the creation of special extensions and 
profiles. First, the chosen standard defines a more or less large set of elements with different 
condition: mandatory, optional and mandatory if applicable or conditional. An extension of 
the standard usually consists on adding new constraints (e.g. conversion of optional 
elements to mandatory), extension of code lists and the creation of new elements and 
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overhead of planned uses for some metadata: according to certain rules some metadata 
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the resource. Other authors point out the necessity to automatize data generation, 
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abstract, but the complexity and variety of formats limit the application of automated 
techniques. 
Due to the increasing need of metadata to find the great amount of data available in 
distributed environment, especially in geospatial information systems, being deployed as 
SDI, there are numerous software applications that try to facilitate this metadata generation. 
Most of these application started supporting CSDGM standard and ISO 19115. There is a 
good survey on these applications available in the FGDC metadata working group8. 
The purpose of this section is to make a small state of the art of existing proposals to 
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metadata, reducing the associated workload and the obstacles arising from the complexity 
of the metadata schemas that metadata creators must face.  
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Regardless of the metadata standard used, it is usual to classify the elements of metadata 
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content of a resource. These elements usually respond to the questions “What, Why, 
When, Who, Where and How”. Typical elements in this category would be the title, the 
description of the data set or its geographic extension. 

 Exploration metadata provide information that allow verify that the data are in 
accordance with the desired purpose, assess their properties or contact with the 
organization that will provide further information. 

 Exploitation metadata include those necessary descriptions for access, transfer, load, 
interpret and use the data in the final application in order to be exploited. 
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2.3.2 Methods aimed at the inference 
We can infer metadata from other metadata or from geodata, using various techniques of 
data mining, data recovery, using the context surrounding the data, reasoning techniques 
and so on. We could know the administrative limits of a geo-spatial data from the 
knowledge of their bounding box using a gazetteer, or maybe we can infer a more or less 
adequate abstract from the information of the name, the legend of a layer, its geographical 
position, etc. 
In this sense, (Taussi, 2007) proposes a metadata extraction based on three fundamental 
steps. The first step consist on apply some metadata extraction techniques largely based on 
the specific exchange format of the geographic data. Next step is the automatic deduction of 
the information regarding data quality, using brute force, stochastic or comparison 
techniques of the analyzed data with other reference data. Finally, the last step to apply is 
based on the utilization of data mining techniques that lead to obtaining a higher degree of 
knowledge about the data. Among the proposed data mining techniques, the following can 
be highlighted (Hand et al., 2001): 
 
 Exploratory data analysis: Goal is to explore data without clear ideas of what we are 

looking for. 
 Descriptive modelling: Idea is to describe all of the data. For example, showing the 

distribution of the data, partitioning of the data into groups or making models that 
show relationships between variables. 

 Predictive modelling: Goal is to build a model that permits one variable to be predicted 
from the known values of other variables. 

 Discovery methods: These methods are based on pattern detection, and idea here is to 
identify patterns, rules, outliers or combinations of items that occur frequently in data. 

 Retrieval by content: It is based in the comparison of the contents of the dataset 
according to the pattern of interest to find similar patterns. 

 
A work that tries to take a further step in the induction of metadata from the analysis of data 
is that developed by (Klien & Lutz, 2005). They propose a method for automatic annotation 
of geodata that consists of two main steps. In a first step, ontologies are defined from the 
definition of concepts (eg. floodplain) for a possible dataset. Depending on the spatial 
relationships that exist and should be verified with a reference dataset, it is checked whether 
the dataset corresponds to a floodplain, they check their connection to a nearby river, the 
altitude with respect to this, and if it is a flat terrain. In a second step, existing topological 
relationships are verified by a spatial processing for each type of relationship included in the 
concept, and if it meets all the dataset is semantically annotated with the concept. This 
approach requires a previous readiness to define concepts based on spatial relationships 
that makes the method is not directly applicable to any set of data. But in any case, it is 
helpful to specify formally the spatial analysis that allows checking whether a dataset meets 
certain characteristics, for annotate semantically. 
Outside the geographical scope, there are also other works that exploit the idea of extracting 
information about other resources using techniques related to data mining. In this line we can 
mention the work done by (Kawtrakul & Yingsaeree, 2005) which provides a framework for 
extracting metadata from electronic documents, such as text documents or images; the study 

 

2.3.1 Methods aimed at the extraction 
Actual models of representation of georreferenced information, especially the raster and 
vector spatial representation models, are characterized by being highly structured and are 
manifested in multiple exchange formats. Due to the complex nature of digital resources, it 
is not possible to effectively reuse methods for automatic generation of metadata already 
existing in the context of information retrieval on textual type documents (e.g. Web 
browsers). On the other hand, the few existing GIS tools that offer automatic deduction of 
metadata for raster and vector formats are based on the analysis of these specific formats 
and the implementation of ad-hoc mechanisms that process the data in these formats to 
extract information which is used later to populate the metadata elements (Manso et al., 
2004). 
Among the applications that perform an automatic extraction of metadata from certain 
geospatial data exchange formats is the free software tool CatMDEdit9 (Zarazaga-Soria et al., 
2003). As reflected in the work done by (Manso et al., 2004), the amount of information that 
can be extracted depend fundamentally on the representation model used, and its own file 
format. In this way, there are elements that can only be extracted from certain types of data 
and files, while others, such as the size of the data, could be obtained in any circumstances. 
Another well-known tool and widely used that includes automatic metadata generation 
functionality from geographic data is ESRI10 ArcCatalog, available from version 8 ESRI 
ArcGIS. This tool allows the automatic loading of a number of basic fields and the 
synchronized update of data and metadata. To improve this tool have been created some 
extensions, such as the Metadata Editor of the Núcleo Español de Metadatos (NEM), it is a fully 
integrated tool with the ArcCatalog application, capable of generate a metadata record that 
meets the standard ISO19115:2003 and NEM v1.011. Metadata created with this editor will be 
integrated with the ArcCatalog metadata search functionality, as having been generated by 
the application (Sanchidrian & Calle, 2005). 
Regarding to other data formats, such as text, sound or video documents, content creation 
software, that is, the range of programs used to create these resources, usually support some 
automatic metadata generation from the content that they generate. For example, MS Office 
attaches to the document a title based in the text of its first line, apart from other technical 
metadata such as dates of creation or modification and the author information. These 
metadata created by the content creation software are often used by the file system to index 
and sort the contents. All this kind of metadata can be collected during the creation process 
(Greenberg et al., 2005), but during the creation of digital content there are other metadata 
that can be automatic generated, they are usually used in various visualization applications, 
but not usually taken into account for the description of the resource for future discovery. 
A couple of examples of the type of work that is being developed in this area can be the 
report of (Greenberg et al., 2005) on the generation of metadata for MS Word, Acrobat, 
Dreamweaver, CityDesk, WinAmp… file formats or the DCS (Dublin Core Services) project, 
which develops a set of services and applications for the automatic metadata extraction from 
more than 10 types of digital formats (XML, BibTex, XHTML, PNG, etc.), this project aims to 
support the development and widespread application of the Dublin Core standard format.  

                                                                 
9 http://catmdedit.sourceforge.net 
10 http://www.esri.com 
11 http://www.idee.es/resources/recomendacionesCSG/NEM.pdf 



Description and Publication of Geospatial Information 139

 

 
2.3.2 Methods aimed at the inference 
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3 Proposed Methodology  
 

3.1 Metadata generation 
The proposed methodology, to automatically generate complete metadata and of reasonable 
quality, avoiding as much as possible the participation of the user, is a combination of the 
methods described before orchestrated efficiently. 
Initially, we start by obtaining all relevant information that can be extracted from the data 
resource itself, for example, the data size or the creation and modification data. Later, we try 
to extract as much information as possible from the data content. We must emphasize that 
this is one of the most important sources of information, so we must pay special attention on 
it. Moreover, how to analyze the resource and the amount of information available will 
depend entirely on the nature of the resource and the format in which they are represented. 
By this method we can extract explicit information in the data, for instance, in an email is 
easy to find information such as the sender, the recipient or the date that it was sent. 
Now, we will add the common information pertaining to the creation and the exploitation 
context. From the creation context we can obtain relevant information as the organization or 
the company responsible of the data and the theme of the data. We can operate in a similar 
manner with the exploitation of context, obtaining information such as the theme or the 
resource quality offered by certain company. All these information can be previously set or 
revised by the user or automatically obtained exploring the data set and their context. 
The next step is to consider collecting information from the process of creation of the data, 
obviously if it exists. It should be noted that this source of information is “volatile” due to 
the fact that it is only available at the time that data is created and for this reason we must 
collect and store all possible information at that moment. We consider that the information 
that can be obtained from the process of creation of the data is very important and rarely 
taken into account. By this method we can accurately find out relevant information such as 
the creation process in order to replicate the results later, costs (computational, temporal, 
economic, etc.) or the author of the data. In addition to the information that we had 
commented just now, during the process of creation of the data, a sensor or other measuring 
mechanism can provide relevant information. Some magnitudes could be measured such as 
elevation, position or temperature, and incorporate this values to the metadata 
automatically. We can find a good example of this method in some digital cameras that use 
it to add, among others, the information that provides their integrated global positioning 
system (GPS)15 device to the images in the form of EXIF16 tags. 
Having reached this point we already have a base of information, and applying to it some 
deductive methods we will try to extend it. One way to deduce new metadata is that an 
element of metadata is created through a direct correspondence with another existing 
metadata element. For example, you can get the place name corresponding to the data using 
the 4 coordinates of their bounding box, using a gazetteer service. Another way to deduce 
new metadata is based on the calculation of a new element of metadata through a 
computation process of the data themselves. In this sense there are many lines of 
investigation open that cover a wide range of possibilities. We can find from different 
techniques to analyze/process text documents or web pages to find out its main theme or 
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of (Day et al., 2007) for extracting metadata of publications from the bibliographic references, 
or the articles of (Boutell & Luo, 2005) and (Suh & Bederson, 2007) where photographs analysis 
techniques (based on clusters) are presented to identify, for example, if the photograph was 
taken during the day or night, in a natural reserve or in a city, inside a place or outside...  

 
2.4 Publication of Georreferenced Resources 
The publication is the effect of revealing or expressing to the public some information, that 
is, the activity of making information available for public view.   
In the world of geographic information is widely accepted that publishing means to make 
available to users some information of the data in a catalog service, as it is driven by Open 
Geospatial Consortium (OGC)12 and its standards. However, OGC standards are not the 
only mechanism for publishing and searching geographic information or georreferenced 
resources. In the case of entities of medium or small size it might be appropriated to turn to 
simpler mechanisms that allow the content availability online. Z3950 standard (ISO2395013), 
widely used in digital library environments, includes a GEO5 profile that allows to extract 
Z3950 metadata as XML whose content is based on FGDC standard. 
A more general mechanism, but whose philosophy and operation can be adapted to the 
field of the georreferenced resources is the Open Archives Initiative (OAI)14. This initiative 
develops and promotes interoperability standards that aim to facilitate the efficient 
dissemination of content. OAI has its roots in the open access and institutional repository 
movements. Over time, however, the work of OAI has expanded to promote broad access to 
digital resources for eScholarship, eLearning, and eScience. 
OAI provides us with the specification Open Archives Initiative Object Reuse and Exchange 
(OAI-ORE) that defines standards for the description and exchange of aggregations of Web 
resources. These aggregations, sometimes called compound digital objects, may combine 
distributed resources with multiple media types including text, images, data, and video. The 
goal of these standards is to expose the rich content in these aggregations to applications 
that support authoring, deposit, exchange, visualization, reuse, and preservation. Although 
a motivating use case for the work is the changing nature of scholarship and scholarly 
communication, and the need for cyberinfrastructure to support that scholarship, the intent 
of the effort is to develop standards that generalize across all web-based information 
including the increasing popular social networks of “Web 2.0”. 
The specification of standards for the publication of georreferenced information, whose 
implementation is feasible from a technical and economic point of view, results essential to 
the progress of technology and services. 
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available in order to be indexed by Internet search engine’s bots, in this way we can try some 
techniques from simply put the resources available to build an associated KML with the 
metadata. Other way can be the use of peer-to-peer (P2P)20 (Rüdiger, 2002; Antoniadis & Le 
Grand, 2007) networks to share data inside an organization network or globally. The main idea 
is to explore and test these alternatives and others in combination with various levels of 
metadata generation to measure the capacity to be found of the published resources. 

 
4. Architecture 
 

This section describes the architecture of our proposal to develop this methodology. The 
following architecture shows the modules and the connections to design an application that 
we have called GeoCrawler.  
A crawler is an application that explores the content of a system in a methodical and 
automated way. This kind of applications is used to build an index the resources found in 
the system, in basis to the information extracted of each resource in its processing. In this 
way, GeoCrawler will explore the local machine (in the future we can consider to modify it to 
allow network exploration) and will try to generate metadata of the available geospatial 
information resources and later publish them according to their respective metadata.  
To implement and fulfil the requirements of the proposed automatic metadata generation 
methodology we have decided to use a three-tier architecture (Eckerson & Wayne, 1995), to 
place some modules designed to implement the required functionality in each tier. This 
architecture is a client-server architecture in which the user interface, functional process 
logic (“business rules”), computer data storage and data access are developed and 
maintained as independent modules, often on separate platforms. 
 

 
Fig. 1. General Architecture 
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keywords, to other techniques that employ the geodata themselves, for example, to 
determine the province of a town by topological calculations. The last deductive method is 
the inference of metadata from other existing metadata or from the data content. It 
represents the best method, in fact in some situations the only one applicable, for the post-
hoc creation of metadata, that is, document existing geodata. An example would be to infer 
the season of the data using the temperature metadata element, perhaps obtained by 
measurements such as we have explained above, so a rule would establish for a temperature 
below 15 degrees in Tenerife that we can suppose winter. Today it is obvious that the 
creation of this inferred metadata overlaps extensively the research fields of data mining 
and data recovery (Goodchild, 2007). 
Finally, we must never forget to offer the user the possibility of modify or introduce the 
information, although the idea is that users increase their confidence in the methodology in 
base of the observation of its acceptable results and tend to not participate in the metadata 
generation process. 
While most methods are applicable throughout the lifecycle of data, other methods are only 
applicable at the moment that data are created. We must pay special attention on them since 
most times the information that is not collected at that time is lost forever, and some of this 
information can be essential for a correct description of the resource. 
The proposed methodology will allow the improvement of the automatic generation of 
metadata and their quality, collecting information that is currently ignored, such as that one 
that is coming from the creation process that can be very important to describe resources 
properly. Consequently, the result of applying this methodology will obtain more metadata, 
of higher quality and correction, with reduced participation of the user.  

 
3.2 Metadata publication 
Metadata publication is the second step of the proposed methodology. Once the metadata 
has been generated, users will be assisted in the automatic publication of this metadata. We 
can give users the possibility of publish these metadata automatically in an integrated way 
in the workflow. Hopefully, this will lead to increase the amount of published metadata 
since we are drastically reducing the necessary effort to correctly describe resources (by 
generating metadata manually) and to publish them.  
In our methodology, metadata publication means to publish metadata in a Catalog Cervice, 
we will use the CSW17 protocol, specifically the transactional profile (CSW-T) according to the 
OpenGIS Catalog Services Specification (Nerbert & Whiteside, 2004). This protocol supports 
the ability to publish and search collections of descriptive information (metadata) about 
geospatial data, services and related resources, so it covers our needs perfectly. Furthermore, it 
had become an OGC standard so it will be widely adopted by GIS applications. 
However, we want to explore other ways to publish metadata and resources in order to obtain 
better levels of the capacity to be found. One way is publish the information resources directly 
in servers or social networks that support this kind of information using the metadata to 
document it properly in the server. For example, we can publish maps in MapServer18, 
photographs in Flickr or GPS tracks in WikiLoc19. Other way to explore is put the resources 
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5. Case Study: Metadata Management Platform in gvSIG   
 

We describe next a case of study in which we have implemented a proof of concept for our 
methodology and architecture. In this sense, we have implemented a prototype of the 
metadata manager, using the functionality and the extension possibilities that offers an 
open-source software GIS/SDI client called gvSIG22. 
We have extended gvSIG to facilitate, with an integrated workflow, metadata creation, 
management and publication. This prototype interacts with the gvSIG core to handle the 
metadata associated to all the resources pointed out to be described with metadata, and 
provide automatic extraction of explicit metadata from data resources for both internal 
metadata for user efficiency purposes and external metadata to be catalogued for data 
discovery in an SDI. In this case, with this integrated solution, we could get lots of 
information available in the process of data creation. The metadata manager will be working 
in the background annotating all the metadata while gvSIG users are working with their 
geospatial data, when it is required the metadata manager will use the implementation of 
the proposed metadata generation methodology to obtain as much information of the 
resource as possible, thus, without user interaction. As an added value gvSIG will be using 
these metadata, as internal metadata to avoid task duplication or recalculations and to 
visualize the resources properly. On the other hand, when the user wants to share data in a 
distributed environment like an SDI, he or she can use this metadata to publish metadata. 
The metadata manager will allow the user to visualize and edit the metadata according to 
one chosen standard format, and warn about the status of the metadata, for example to fulfil 
a minimum required set of elements of a certain standard format. Finally, included in this 
workflow, the prototype includes a user-friendly wizard to guide the user to publish these 
metadata in a Catalogue Service.  
This prototype became available in October 2008 as a pilot plug-in of gvSIG. To sum-up it 
includes the metadata manager capable of semi-automatic extraction of explicit metadata 
from data resources for internal use or for being exported to a standard format and/or 
published in a catalogue service. 
In this prototype we support GeoNetwork Opensource23, as an implementation of the OGC 
CS-W because is one of the most popular and extended open source Catalog Service 
implementation. The prototype architecture is shown in the next Figure 2. 
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As we can see in Figure 1, at the bottom of the figure and the lowest level of the application 
is the Data Tier, this tier consists on a database to store the generated metadata and the data 
files themselves. In this tier the information is stored and retrieved, so it must provide well 
defined interfaces to manage the data. In our case, this access is provided by data drivers to 
access to the data files and ODBC21 to access to the database. This kind of design, keeps data 
neutral and independent from business logic, and also improves scalability and 
performance. 
The next tier, which lies just above the Data Tier, is the Logic Tier. It controls the 
application's functionality by performing detailed processing. In the bottom level of this tier 
we can find the components implementing the metadata generation methods aimed at 
extraction. These components correspond to the methods described in the proposed 
methodology section. Thus, the MDExtraction module implements the extraction of all 
relevant information that can be extracted from the data resource and its content. The 
MDContext module will try to obtain all the information pertaining to the creation and the 
exploitation context. In a similar manner, the function of the MDCreationProc module is 
collect information from the process of creation of the data. Additionally, the MDMeasures 
module can acquire relevant information from sensors or other measuring mechanisms. At a 
higher level, based on their previous results, we can find the components implementing the 
deductive metadata generation methods. These methods will be the deduction of new 
metadata based on a direct correspondence with another existing metadata element 
(MDCorrespondence), the calculation of a new element of metadata through a computation 
process (MDCalculation) and the inference of metadata (MDInference) that includes data 
mining and data recovery techniques. We have to emphasize that new modules 
implementing new automatic metadata generation methods could be added.  
According to the methodology, and as we can see on the architecture, on the top level of this 
tier and connecting to the modules which generate metadata, we have the 
MDFormatExchange responsible of generate standard formats and handles the 
transformation between them. At the same level of this module we have the MDPublish 
module that using, normally the metadata in any standard format, implements the 
publication business logic, publishing the data in a Catalogue Service or in any other way 
decided by the user. Finally, in this tier, and covering the whole layer scope, we can see the 
Metadata Manager component whose functionality is to orchestrate the metadata generation 
efficiently, provide the generated metadata to other components and offer the visible 
interface to the upper tier. 
In the top of the Figure 1 we have the highest application level, where we find the 
Presentation Tier, this tier displays the information provided by the lower tiers through a 
graphical user interface. This user interface, moreover, allows users to interact, configure 
and operate with the application. 
This kind of architecture, benefits from the advantages of modularized software containing 
well-defined module interfaces, it intends to allow any of the three tiers to be upgraded or 
replaced independently. This is very useful if we want to reuse some components (even the 
module containing the two lower tiers) and integrate it in other system, to incorporate the 
functionality of automatic metadata generation and management to any new or existing 
application. 
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the metadata fields. This wizard will guide users to import and export metadata too, 
validating it according to a standard format to be shared by multiple users without having 
to publish it in a catalogue service.  As we see in the figure the Metadata Editor allows users 
to complete and verify the metadata record according to the selected metadata standard 
format.  
 

 
Fig. 3. Screenshot of the Metadata Extension Prototype (Metadata Editor) 

 
As we see in Figure 3. This user interface also links with the Metadata Publisher module that 
will assist the user with a Publish wizard to publish this metadata in a Catalog Service to 
share the data in an SDI. In the next figure we can observe a screenshot of this Publication 
Wizard after having finished successfully. 
 

 

 
Fig. 2. Metadata Manager Prototype Architecture 
 
As we can see in the Figure 2, in this prototype we define, within the central structure (or 
core) of gvSIG, an internal metadata dynamic object which would keep all types of metadata 
associated with their respective resource, as we can see reflected in the Metadata Hierarchy 
module .  
The various metadata elements collected will be stored in an XML format file that will be 
saved together with the data for future uses. When a resource is created, thus it does not 
have associated metadata yet, the Metadata Generation Engine module will be used to 
generate all the possible metadata according to the proposed metadata generation 
methodology. In this prototype, we automatically extract so-called explicit metadata of the 
resource (format, resolution, spatial reference system, creation date, etc.) using the operating 
system information, and data drivers of gvSIG which are able to read file format headers 
and other information to collect metadata. As future work we will include inference and 
information retrieval techniques to create metadata according to the proposed metadata 
generation methodology, so the user will hardly have to edit or add metadata to publish it 
in an SDI, thus facilitating the proliferation of metadata and thus the resource discovery in 
distributed information platforms. 
The Figure 3 shows a screen shoot where we can see part of the modules containing GUI 
(Graphical user interface) shown in the prototype architecture. These modules let the user to 
visualize and edit these associated metadata by using the metadata editor, he or she can add 
additional information (such as an adequate title or abstract) that might be required by the 
standard metadata formats. In this case, when a user wishes to edit the metadata to export it 
or publish it in a catalogue service, he will choose one of the supported standard formats for 
this purpose. Once it has been chosen, the metadata manager will start a wizard that will 
guide the user to view and edit the metadata according to the selected format and validating 
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This prototype is only capable of working with shapefile25 vector layer file format. The 
implemented and supported metadata standard format is the core of the ISO19115:2003 
standard. The implementation of the transformation templates for this format has been 
made based on the standard specification document published by ISO (ISO/FDIS19115). 
However, its architecture has been designed to support all the desired functionality. So, 
somehow, this is a proof of the concept of the complete functionality that will be captured in 
the future Metadata Extension.  
Using this integrated solution, the user can close the life cycle of metadata (Baca, 2008) 
within the same application. So we could create, modify and publish metadata using the 
metadata manager, and later discover and recover metadata using the integrated catalog 
client in gvSIG that allow us to recover the linked data from the Catalog Service. 

 
6. Conclusions and Future Work   
 

Metadata descriptions are critical to enhance the discovery, access and use of GI data and 
therefore are a key element in achieving good data integration and smooth functioning of 
Spatial Data Infrastructures, as a basic infrastructure to discover, share and use 
heterogeneous GI data. This points out the need to facilitate metadata production to easily 
create, with minimal user intervention, metadata descriptions in standard formats.  
The presented methodology includes mechanisms capable of automatic generation and 
publication of metadata in Open Catalogues as means of improving geospatial information 
sharing in distributed environments like SDI.  
As a proof of concept the implemented prototype allows the extraction of explicit metadata 
from data resources to be catalogued for data discovery in a Spatial Data Infrastructure.  
This implementation of the concept of semiautomatic extraction and management of 
metadata facilitates the creation and edition of images and geospatial data to be published 
in a Spatial Data Infrastructure. The integrated nature of this solution within the user 
workflow hopefully will lead to a proliferation of metadata creation, thus improving the 
functionality and value of SDIs. Furthermore, this development completely supports the 
philosophy of total integration of data and metadata that we are trying to promote in order 
to all data generated are easily found and accessible. 
In the early future we will complete the development of the metadata manager for 
documenting well-known imagery and cartographic data sources. The work includes 
document more types of resources and file formats, add new standard formats and expand 
the possibilities of publication, but the major effort will be done to continue implementing 
and improving each of the methods that compose the proposed methodology to 
automatically generate metadata included in the Metadata Generation Engine. Furthermore, 
this metadata generation engine is a generic approach, so it may be extended to include new 
data types and multimedia content. 
As we had said, the automatic metadata generation methodology includes more intelligent 
methods to extract metadata by using inferential reasoning techniques from other metadata 
and data associated. Intuitive extraction of intrinsic (context-based) metadata of the data 
source in Google-like techniques, including deductive methods to create well formed free 
text. 

                                                                 
25 http://en.wikipedia.org/wiki/Shapefile 

 

 
Fig. 4. Screenshot of the Metadata Extension Prototype (Publication Wizard) 
 
Given the above information, let us look at a typical use case. A technician using gvSIG has 
combined basic geospatial data including terrain data such as slope and aspect, with 
vegetation data, to create a rough forest fire risk map. Assuming he or she has permission to 
share this new dataset, he then undergoes the process of publishing the risk map to a map 
server, and would also like to (or should be required to) publish its description to a 
metadata catalogue service such as that currently available at the European Commission 
INSPIRE Geoportal24. 
In our use case, the resulting dataset, risk map, will have associated a metadata object that 
will be created by the process described above. The final step in the workflow is when the 
user decides to publish the metadata record to a catalogue service the metadata manager 
checks the validity of the resource associated metadata, the validation will depend on the 
metadata standard that has been chosen to publish, thus the standards that the Catalogue 
Service supports. If the metadata conform to minimum requirements according to the 
selected output metadata standard format, then the metadata manger uses stylesheets to 
generate an XML string compatible with the catalogue service and carries out the pertinent 
interaction with the server to establish the connection and publish the metadata. 

                                                                 
24 http://www.inspire-geoportal.eu 
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Another interesting future development is the GeoCrawler, a massive metadata generation 
application, that using crawler techniques and the proposed automatic metadata generation 
methodology, will allow us to automatically describe the resources available in old data 
collections currently without documenting, or simply in the user local machine. 
Subsequently, these data may be published or indexed with respect to the information 
contained in their metadata to be easily found and accessible by other users. We also 
consider very interesting the possibility of use this kind of crawler applications in user’s 
local machines, allowing them to share their multimedia resources automatically, for 
example, in the current social networks. 
On the other hand, we will continue to investigate and develop new techniques that allow 
us the complete integration of data and their metadata. This will greatly facilitate the 
management, reuse and sharing of resources. Additionally, we will explore other lines of 
investigation about georreferenced resources publication, for example, the use of indexing 
techniques that allows us to find the data using simple metadata sets, rather than creating 
complex formats such as those stored in the current catalogs. 
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1. Introduction 
 

Japan is now experiencing an aging society and every person should be safe and feel 
relieved. The Japanese Government executed a new law NSDI for a spatial information 
society on May 30, 2007. (NSDI: National Spatial Data Infrastructure) The society needs to 
obtain absolute position for realizing seamless positioning by ubiquitous network 
technology. However, the technology has not been established yet. An experiment was 
performed on whether Real-Time GIS (Figure 1), GPS, and the IC tag could obtain the 
absolute position. 
The research is to confirm whether absolute positions can be obtained accurately by 
Real-Time Kinematic-GPS (RTK-GPS), Virtual Reference System-GPS (VRS-GPS), and 
Differential-GPS (D-GPS). In addition, Integrated Circuit Tag (IC tag) was used where GPS 
signals could not be received to obtain information on the absolute position. The IC tag is 
used in distribution systems, but the method for using geoinfomatics has not been 
established yet. The experiment was conducted to verify the reading rate of IC tag on 
different types and conditions. The kinds of the IC tag are passive and active types. For 
example, the IC tag has many advantages of transmitting and receiving the information, and 
obtaining the absolute position without any contact. A passive and active IC tags made of 
different materials were experimented to verify the reading rate at the outside and inside of 
a laboratory. As a result, passive type IC tag become accurate, however, the active type is in 
a stage of growth because it is no clear method for using by various affect. Therefore it is 
necessary to do additional experiment of indoor positioning.  
Second big purpose of the research is to establish Universal Map (UM). The basis of UM is a 
surveying and it consists of geoinformatics which is the latest survey technology. Anyone 
can use UM regardless of the physically challenged, healthy person, age, man and woman. 
Figure 2 shows the essential and minimum requirements of UM and the concept of UM.UM 
means the newest map which can display the latest road condition and other information on 
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Japan has been adopting a new standard for map geometry since April 1, 2002. Ellipsoid of a 
new geodetic system in Japan is almost equal to WGS-84 of GPS but most of the Digital Map 
(DM) of local government is still Tokyo Datum of an old geodetic system. To correspond 
with two kinds of data which have different geodetic systems, it is necessary to transform 
coordinates.  
On the other hand, much local government has been utilizing a large scale (1/500 or 1/1000) 
DM with GIS. Government promulgated the law of National Spatial Data Infrastructure 
(NSDI) to construct the advanced spatial information society May 2007. GIS will be able to 
efficiently help many workers who are managers and city planners in government and 
researchers. As an example, it is possible to improve the service to a citizen including 
elderly people and the physically challenged by sharing those data in local government. 
However, the maintenance and renewal of UM database need much labor and time and 
updating a map has not been established yet and, there are only a few successful examples. 
This is a specific problem of a large scale map to achieve the spatial information society 
now.  
In the master's thesis of Ms. Naoko Matsuda who graduated 2003 from Kanazawa Institute 
of Technology (KIT), these problems were solved by using Real Time GIS and the achieved 
result is listed below. 
(1) Position data of latitude and longitude had a high accuracy within 3 cm. 
(2) It is difficult to acquire high-accuracy data because geoids may influence the accuracy of 
height. 
(3) Tracks were not displayed well though she tried to display tracks which moved by using 
a RTK-GPS in GIS because canopies interrupt wavelengths from satellites. 
As a result, at that stage, it was very difficult to solve problems by using a GPS only. 
Interruption of signals in course includes very important problems. If anyone is able to 
receive the positioning data ubiquitously, people will obtain safe, relieved, and comfortable 
service. 
The purpose of this study at the first stage was to establish a method for updating a large 
scale map for local government, and to propose UM by using RS, GPS, and GIS. On the 
second stage, we adopted new concepts of collaboration of geoinformatics technologies. On 
the present stage, the important purpose of study is how to acquire the accurate positioning 
information without interrupting satellites information. 

 
3. Experiment by GPS Positioning 

An experiment was performed inside the KIT campus at Kanazawa district in central Japan 
by using a D-GPS and a VRS-GPS. The purpose of the experiment is to acquire positional 
data accurately and to understand the feature of places where accuracy is poor. Accuracy of 
positioning D-GPS and VRS-GPS was verified. 
Figure  3 shows the experiment field and the route. Background of Figure 3 is Base Map of 
the Nonoichi town on a scale of 1/2500 (Accept: Nonoichi town office). ArcGIS 9.1 which is 
one of the general software of GIS was used to display the map and analyze the data. 
 

a mobile PC. This map includes the recent information by which all users can understand 
the condition of absolute position anytime, anywhere. Additionally, measures to utilize 
spatial information become extremely important and the society might need UM with a lot 
of advantages in the future. Our research suggested that we have to establish a method for 
acquiring seamless positioning information in the advanced spatial information society by 
using UM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Concept of REAL TIME GIS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Concept of Universal Map  

 
2. Background of Study 

“The map should be fresh” is a big concept of our laboratory. One of the backgrounds of 
study is to establish a method for updating a large-scale digital map for local government 
using a Real-Time GIS (Figure 1). The Real-Time GIS which was defined by our laboratory 
can be used to renew the new BM. The Real-Time GIS is a technique that updates the new 
BM instantly by the Real-Time Kinematic Global Positioning System (RTK-GPS), GIS, and 
mobile phones. 
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Fig. 4. Positioning of D-GPS and VRS-GPS 
 
The method of measurement is similar to that of RTK-GPS. Therefore, VRS-GPS has more 
advantages. More specifically, it allows only one person to make real-time positioning, has a 
simple configuration, and has high accuracy. 

 
3.3 D-GPS Positioning 
D-GPS positioning is a method that sends the corrected value of a pseudo distance from 
each satellite, and calculates precision again in the rover station. Additionally, a rover 
station received correction data from a mobile phone by using GPS-based control station. 
Position accuracy is from 0.5m to 2.0m. This system is similar to the technique of VRS-GPS 
and it only needs a rover station.  Moreover, the positioning cost is cheaper than that of 
VRS-GPS because of its simple system. The experiment performed by using a wheelchair 
with D-GPS and VRS-GPS simultaneously. The reason is to make the experimental 
environment almost the same and to acquire position data. Figure 4 shows the positioning 
of D-GPS and VRS-GPS by a wheelchair. 

 
4. Verification of Overlapping 

Positioning data of D-GPS and VRS-GPS were displayed on the DM (Base Map of the 
Nonoichi town on a scale of 1/2500) by using GIS software (Figure 5). Background of Figure 
5 is an aerial photograph. 

 
4.1 Experiment Result 
As a result of experiments, GPS was able to receive high-accuracy data at almost all places. 
However, the data were not accurate at any places though the measured place had wide 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Experiment field and route in KIT campus 

 
3.1 RTK-GPS Positioning 
In this paper, RTK-GPS means that a reference station and a rover station were required for 
real-time GPS positioning. The reference station was made just on a control point. This 
control point is a leveling point which has the absolute position because the accurate 
positioning data by using static positioning were needed. The specified low power radio 
broadcast is used on the communication from the reference station to the rover station for 
the RTK-GPS receiver. 
The experiment was conducted by moving around by a wheelchair which is equipped with 
RTK-GPS at uniform speed inside KIT campus. Additionally, we have carried out the 
experiment by holding the RTK-GPS equipment with hands. In that condition, we could not 
obtain positioning data because a GPS antenna was swung on moving. This is the reason 
why a GPS was attached to the wheelchair or a hand truck for reducing an error. However, 
many errors happened in the most of fields by using a RTK-GPS. One of the reasons for 
causing errors was the buildings between the positioning points because the communication 
area of radio broadcasts was narrow in such a situation. 

 
3.2 VRS-GPS Positioning 
A second experiment was performed by using VRS-GPS that is a kind of RTK-GPS 
positioning. In VRS-GPS, the reference station needs not be set. A virtual reference station 
was made virtually around the positioning point. The distance of a virtual point to an actual 
point is about 3m to 5m. A rover station received correction information from a mobile 
phone by using a wireless system. This system consists of GPS-based control stations. GSI 
made it about 1200 stations in Japan. In the wireless system, only one person is capable of 
positioning with a light baggage. 
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Fig. 6 .(a) Verification around each canopy (Front stoop of 1st building) 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 6 .(b) Verification around each canopy (between 1st and 3rd building) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. (c) Verification around each canopy (Between 5th and 7th building) 
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open sky. It seemed that other reasons affect a receiver. Data were intercepted at three spots, 
and a lot of measurement errors occurred there. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Overlapping of experiment data 
 
In the next stage, we confirmed how long a signal is received around a canopy by a D-GPS 
and a VRS-GPS. Figure 6 (a), (b) and (c) shows one of enlarged canopy areas in Figure 5. 
Table 1 shows the length of interruption of raw data that were displayed on GIS. Table 2 
shows the length of interruption of analytical data that include positional accuracy and 
error. For example, we considered dilution of precision (DOP), number of satellites, and 
standard deviation. 
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If IC tag's powerful advantage is used fully, everyone will be able to receive the positioning 
data anytime and anywhere. For example, GPS positioning is used at open sky, and IC tags 
are used at closed sky, which are good ideas because one can continuously receive the signal 
from satellites and IC tags. In this system, the positioning information will be imagined 
ubiquitously (Figure 7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. Utilization of IC tag 

 
6. Experiment by IC Tags for Spatial Information Society 

Preliminary experiments were performed by using reader of middle-range and several IC 
tags which frequency band is 13.56 MHz. The purpose of experiments is to obtain basic data 
of IC tags for realization of seamless positioning. The experiment was conducted by using 
hand truck which attached the IC tag reader. IC tags were lineally set out and Unique 
Identifier (UID) of them was read by moving on the straight line (Figure 8). Additionally, the 
ratio of UID reading was indicated that how many pieces are able to read among 1000 tags. 
As a result of experiments, the maximum reading distance was about 40 cm though the 
specification of it is 50 cm. Therefore, the height of IC tag's reader fixed from 15cm to 40 cm 
in consideration for the condition of hand truck. After the experiments, we found that the 
error factor of IC tags and good measurement environment of reading rate. 
 

 
Fig. 8. Verification experiment of IC tag 
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Table 1. Length of interruption in raw data 
 
 
 
 
 
 
 
 
 
 
Table 2. Length of interruption in analytical data 

 
4.2 Consideration 
Important condition of GPS positioning is to receive 4 satellites or more at open sky. As a 
result, I acquired the absolute position accurately at open sky. However GPS receiver was 
not able to receive signals from GPS satellites at an area surrounded by canopies and 
buildings. Additionally, one could not obtain continuous GPS signals at districts overgrown 
with trees. In such a place, correction data received by a mobile phone might not give 
acceptable data. An area surrounded by canopies and buildings causes that cycle slip and 
multipath to badly influence the DOP and GPS signals. If GPS positioning is conducted near 
buildings, it is necessary to consider satellites situation and multi-path. Because those areas 
had poor signal conditions, remarkable differences were seen between D-GPS and VRS-GPS.  
Interrupted signals of the D-GPS were shorter than those of the VRS-GPS as shown in Table 
1, but VRS-GPS showed higher accuracy than that of D-GPS as shown in Table 2. As for the 
reasons for difference, VRS-GPS have the problem of initialization and D-GPS of simple 
system don’t have one. Therefore, it appears D-GPS had high continuousness and VRS-GPS 
had reliability of positioning accuracy.  
In the next chapter, we will show how to obtain an absolute position and other information 
at a place where the GPS signal does not reach. 

 
5. Solution of Problems by IC Tag and Geoinformatics 
 

Pedestrian space will become safer and securer if people are able to receive absolute 
positions and other information by future spatial information technology. In this 
technology, we will adopt an Integrated Circuit tag (IC tag) to assist people including the 
physically challenged. Major advantages of IC tag are listed below.  

The IC tag can 
・ Receive the data without contact. 
・ Memorize a lot of data and be very small size. 
・ Easily add information and update data. 
・ Have high durability is better than that of its paper type. 

Building No. Length of interrupted tracks 
D-GPS(m) VRS-GPS(m) 

1st 4.624 7.908 
1st and 3rd 5.119 7.396 
5th and 7th 2.374 5.419 

Building No. Length of interrupted tracks 
D-GPS(m) VRS-GPS(m) 

1st 15.313 12.574 
1st and 3rd null 12.130 
5th and 7th 12.952 5.419 
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If IC tag's powerful advantage is used fully, everyone will be able to receive the positioning 
data anytime and anywhere. For example, GPS positioning is used at open sky, and IC tags 
are used at closed sky, which are good ideas because one can continuously receive the signal 
from satellites and IC tags. In this system, the positioning information will be imagined 
ubiquitously (Figure 7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. Utilization of IC tag 
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Table 1. Length of interruption in raw data 
 
 
 
 
 
 
 
 
 
 
Table 2. Length of interruption in analytical data 
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Fig. 9. (b) .Results of IC tag experiment (Reading rate by interval of IC tags) 

 
6.2 Consideration 
These results show that the decrease of reading rate was influenced by the moisture 
included in cement concrete. Installation interval of IC tags should leave space from about 5 
cm to 10 cm to avoid anti-collision. Reading rate of ceramics type has narrow area because 
the ceramics type of IC tag uses alumina to increase durability and is thicker than other 
kinds of one. And IC tag which has small size of the antenna was low reading rate. 
Therefore, IC tag should be selected a large size as much as possible and the material should 
be considered of the environmental condition. 
An appropriate reading distance was 20 cm depending on the material of IC tag. However, 
it is necessary to perform more detailed experiment under various conditions for the 
realization of proposed UM in my research. 

 
7. VERIFICATION EXPERIMENT OF IC TAG  

7.1 Read Experiment by Shielding Material  
(1) Experimental Overview 
It is necessary to clarify that the height of IC tag’s reader and conditions of use. An 
experiment was performed where the IC tag was buried under the shielding material and 
was read when reader move through the material. The experiment was conducted by a hand 
truck to which the IC tags reader was attached. The UID of the IC tag was recognized and 
the reading rate was investigated. The reading rate was expressed for 1,000 IC tags. Figure 
10. shows read experiment by shielding material on wood. 
 
 

Several experiments were conducted to confirm influence of reading rate. Each condition for 
research and experimental overview are listed below. 
(1)Material of the ground: It can easily influence that the metal, the water and other 

materials for to IC tag. First experiment was performed at any places such as cement 
concrete, asphalt concrete, earthenware tile and fireclay brick. 

(2)Interval of IC tags: As a result of preliminary experiment, IC tag could not be read when 
the interval was too narrow. Second experiment has the space in the interval of IC tags. 

(3)Material and size of IC tags: Material and antenna size of IC tag is variety. Third 
experiment was performed by using ceramics type of IC tags which has high durability, 
general card type and paper type. 

 
6.1 Experiment Result 
It was confirmed that IC tags be influenced by the differences the interval of setting and the 
material on the reading rate. Figure 9 (a) and (b) shows the results of each research as 
mentioned above. 
As a result, the reading rate of IC tags has decreased greatly by 30cm or more on cement 
concrete. The reading rate at other places is higher than the concrete area (Figure 9 (a)). 
Additionally, the reading rate was rapidly decreased when the height is above 25 cm (Figure 
9 (b)). Furthermore, the reader could not read UID in ceramics type of one when height is 
more than 20 cm. The reading rate has decreased from 25 cm up in the height of the reader 
from all results. 
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7.2 Result and Considerations 
As the thickness of shielding materials is increased, the reading rates tend to decrease. 
However, each material shows a high reading rate. Therefore, this height is the best suited.  
The following shows appropriate conditions obtained by the experiment. 

(a) Interval of passive type: Over 10cm 
(b) Size of passive type used: Large size 
(c) Moving speed to read: Normal walking speed 
(d) Height of reader: below 15cm 
(e) Thickness of shielding materials: below 10cm 

 
7.3 Indoor Positioning Experiment 
An experiment was used the IC tag of active type. An advance of this type is to transmit 
radio waves at regular intervals automatically, detect and specify IDs existing in a wide 
maximum range of 20m. And it can control information as a person, an object, a position, 
time, and condition at real time. An experiment was investigated to discuss a method for 
setting active tag in a room and how to set in environment. By changing material and the 
height, a change in the member of need times and RSSI was verified. RSSI means a 
sensitivity to receive tag. 
(1) Equipment in use 
  Made by Kyusyu Ten Co. 

Wireless reader: TGS-R300W 
Wireless tag: YGS-T300 
Wireless router: WIN-G54/R4-M(Made by I･O DATA Co.) 

(2) Setting conditions 
 (a)The height of reader: 240cm 
 The height of reader is shown from the floor to the ceiling in experimentation area. It easy 
to receive the electric wave from a tag by reader is attached to the ceiling.  
(b) The distance from a tag to a reader: 10m 
(c)The time to read tag: 60 seconds 
(d) Interval time of electric wave automatic transmission: 3 seconds 
(e)Attached the material: person, wood and iron 
According to statistics, an average height of Japanese is 170cm for the past 5 years. So the 
height of the tag is set 170cm at the maximum.  
 
(3) Experimental Overview 
An experiment was performed where a wireless tag is attached to wood, iron, and people. 
By changing material and the height, a change in the member of need times and RSSI was 
verified. The active tag can automatically received control position information from 
attached object. Therefore, it was assumed that a tag was attached to a human body in a 
basis pattern. Wood and iron were used in comparison with a person from the result of 
experiment. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Read experiment by shielding material (wood) 
 
(2) Equipment in Use 
Made by Welcat Inc. 

IC tag’s reader: EFG-400-01 
An antenna of exclusive IC tag’s reader writer: ANU-100-01 
IC tag: card type(ISO15693, 13.56MHz) 

(3) Setting conditions 
(a) Used shielding material and its thickness 

Wood: 3, 6, 9cm 
Concrete: 6, 12cm 
Soil: 5, 10, 15cm 

Shielding materials made of wood, concrete, and soil were used. These materials are used 
for general buildings and roads. The thickness of the shielding material has not been unified 
acquisition conditions 
(b)The height of reader 
The height of IC tag’s reader was set to 15, 20, 25, and 30cm. The reason was shown by Mr. 
Shimano Co. Author who graduated from Kanazawa Institute of Technology (K.I.T.) where 
the reading rate was high when the height of the reader ranged form 15cm to 30cm in his 
research. In this experiment, the height was set to a maximum of 30cm and a minimum of 
15cm according to the result. 
(c) Setting intervals 
A setting interval of the IC tag is 10cm because it was the best interval by his research.  
(d)The kinds of IC tags used 
In the experiment, passive type was used.  
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Fig. 13. IC Tags of Passive type 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14. IC Tag System of Active type 
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Fig. 12. Outdoor and indoor experiments 
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However, the method of making control points was not adopted because it is difficult to 
obtain the coordinates on a map and to find the points at the field. Therefore, the control 
points of town planning group data and cadastral data were used for coordinate 
transformation. Many control points are in a narrow area.  
As a result, the transformed old map will be allowed to overlap to a new map measured by 
RTK-GPS. 

 
9. Control Point for Transformation 

To transform the old BM, the control point was used at the field. In the research, the control 
point means a point for showing both exact coordinates of Tokyo Datum and JGD2000. A 
verification area has accurate data of Tokyo Datum (based on BESSEL ellipsoid and 
rectangular plane coordinate system), and the data are managed by the Town Planning 
Group and the Cadastral Section in Kanazawa City. Experiment areas are “Area A,” “Area 
B,” “Area C,” and “Area D,” (they are marked as A, B, C and D in Figure 17 at next page). 
Figure 15 shows Sample of verification are (Area D). 
To obtain the coordinates of JGD2000, this study used static positioning of GPS and Virtual 
Reference Station-GPS (VRS-GPS) at test fields (Figure 15). A and B were measured over 2 
hours using static positioning of GPS. C and D were measured for one minute using 
VRS-GPS. The measurement time is decided by the law of Japan.  
The control points of the Town Planning Group data and Cadastral Section data were 
installed simply. Especially, the control point number could be discerned on a road. 
Therefore, everyone can easily confirm the control point at the field. However, in the future, 
marking ink of the control point number will disappear. A better method for maintaining 
and managing the control point for coordinate transformation is to adopt the control point 
of town blocks and an IC tag. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15. Sample of verification area (Area D) 

7.4 Results and Considerations 
Table 3 shows RSSI and read times. The times and RSSI show higher values when the tag is 
attached to the iron as compared with a person. It seemed that tag served as an antenna 
when it was attached to the iron, and electric wave to reader were amplified. In addition, 
each values of attaching to wood and person were similar to basis. Therefore, the tag does 
not affect reception sensitivity if it is attached to the wood or person. 
 

Table 3. RSSI and times to read tag 

 
8. Update base map by using regional parameter 

“The map should be fresh” is a concept of our laboratory mentioned above. The purpose of 
study is to establish a method for updating a large-scale digital map for local government 
using a Real-Time GIS. The Real-Time GIS which was defined by our laboratory can be used 
to renew the new BM. The Real-Time GIS is a technique that updates the new BM instantly 
by the Real-Time Kinematic Global Positioning System (RTK-GPS), GIS, and mobile phones. 
These techniques have been called “Geoinfomatics” that is a new field of survey.  
Japan has adopted a new general standard for map geometry since April 1, 2002. Ellipsoid 
of a new geodetic system in Japan is almost equal to WGS-84 of GPS. However, most of the 
digital maps of local government are still Tokyo Datum of an old geodetic system. To cope 
with two kinds of data which have different geodetic systems, it is necessary to transform 
coordinates. 
In the master's thesis of Ms. Aki Okuno who graduated from Kanazawa Institute of 
Technology (KIT), she tried to solve the problem between the old and new geodetic systems 
by TKY2JGD and Affine Transformation. The result is listed below (Okuno, 2006). 
1. The control point of transformation has to be located at four corners in the map. The exact 

point (national control point and public control point) of the control point could not be 
found in the field of survey.  

2. A 1/500 scale area is desirably converted.  

 

0cm 70cm 100cm 170cm 

RSSI times RSSI times RSSI times RSSI times 

Basis 4 17 6 21 4 21 6 21 

Wood 4 18 6 19 5 19 4 21 

Iron 8 21 8 22 8 22 8 22 

Person 4 17 5 21 4 19 5 19 
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Fig. 17. Differences of vector in each test fields 

 
11. Verification of High-Accuracy regional Parameter Using Affin 
Transformation in Narrow Area 

On the verification, Affine Transformation is the most general and simple method in various 
geometric conversions. Affine Transformation makes the three parameters. Elements were 
rotation, scale and parallel. These parameters transform the geodetic system (x, y) of old 
geodetic system to (x’, y’) of new one. The conversion formula is as follows. 
 

 x’ = x0 + kxx- θyy                      (1) 
 y’ = y0 +θxx + kyy                     (2) 

 
Where (x, y) = coordinates of Tokyo Datum 
 (x’, y’) = coordinates of JGD2000 
 (x0, y0) = parallel transformation 
 k = scale 
 kx = scale of X axis 
 ky = scale of Y axis 
 θ = rotation 
 θx = rotation of X axis 
 θy = rotation of Y axis 
 
Parameters obtained by Affine Transformation are called “High-Accuracy Regional 
Parameter (HARP)”. HARP was calculated by the coordinates of Tokyo Datum and GPS 
data. In the master's thesis of Ms. Aki Okuno, she performed calculation by 11 methods 
having a different number of control points and different places of control points, and 

 
Fig. 16. GPS measuring at the field point 

 
10. Verification of TKY2JGD for Japanese Standard Conversion 

Geographical Survey Institute of Japan (GSI) opened a website for conversion parameters 
and programs (TKY2JGD). First, the coordinates of Tokyo Datum of the old geodetic system 
were transformed to new ones by TKY2JGD. The differences between calculation results and 
GPS measurement data were verified. The detail results are not shown in this paper by page 
limitation. The average differences at A, B, C, and D were about 11.3, 31. 9, 11, and 14 cm 
respectively. In addition, A, B, C and D were rotary, parallel, south-east, and 
south-southeast respectively.  
The areas A, B, C and D have a regular accident error. Converted data almost all 
corresponded to digital BM data in a small-scale map. However, the parameter could not be 
adopted in a large-scale map. Because the parameter area of TKY2JGD is too large, it is 
necessary to make the parameter in a narrow area. 
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Fig. 17. Differences of vector in each test fields 
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point is managed by GSI and, the point is set up in large area. This experiment used 
triangular points of 53 places in the Kanazawa city. 

 
12.2 Conversion result of triangulation point 
On the result of the coordinate transformation, the regularity in the large area indicated the 
direction of the southeast (Figure 18). In addition, the research area was verified separately 
plain field and along the mountain. As a result, the character of plain field indicated the 
southeast pattern, and mountain indicated the south-southeast pattern. Characteristic of 
triangulation point was compared with to area of verification. As a result, feature of error 
was similar in the various areas (Figure 19). Therefore, the error in the verification area has 
the possibility that a triangulation point influences, and the error of a triangular point has 
the possibility that diastrophism influenced. 
 

 
Fig. 18. Character of error in large area (Kanazawa City) 

New BM of Kanazawa 

standard deviation of Affine Transformation had only 3cm errors when  using control 
points at four  corners. In this paper, four control points were located at four corners of the 
area. In addition, calculated parameters by the coordinates of A B, C and D were named 
parameter A, parameter B, parameter C, and parameter D respectively. 
Transformation methods are as follows. 
Areas A, B, C, D were transformed by using parameter A, B, C, D. 
Areas B, C, D were transformed by using parameter B. 
 

Experiment Area 
Error(m) 

σx σy 

Area A (parameter A) 0.002 0.003 

Area B (parameter B) 0.001 0.002 

Area C (parameter C) 0.001 0.001 

Area D (parameter D) 0.005 0.003 

Table 4. Error calculated by the same parameter 
 

Experiment Area 
Error(m) 

σx σy 

Area B (parameter B) 0.026 0.010 

Area C (parameter B) 0.008 0.050 

Area D (parameter B) 0.111 0.029 

Table 5. Error calculated by different parameter 
 
Table 4 shows that result of adapting the parameter of the same area. As a result of 
verification, the error was not more than 1cm in X and Y.  
Table 5 shows that result of adapting the parameter of a different area. The error was large 
in areas D. However, the error of area A and area C are not more than 3cm in X and Y. There 
is a possibility that the large area can be converted by one parameter.  In addition, the 
overlaying of New BM and transformed Map should be verified. Then, the accuracy of 
coordinate transformation will become clear. 

 
12. Characteristics of Error Margin in Large Area Using Triangulation Point 

12.1 Triangular point for coordinate transformation 
The character of the error was clarified from the result of experiment. However, the 
regularity of the error in the large area was not able to be clarified. Therefore, the regularity 
of the error was comprehended by using a triangulation point in large area. Triangulation 
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Fig. 20. (c) Overly of area B and New BM 
 

 
Fig. 20. (d) Overly of area C and New BM 
 

 
Fig. 20. (e) Overly of area D and New BM 

 
Fig. 19. Comparison between triangulation point and verification area 

 
13. Overly of Transformed Map and New BM of Kanazawa City 

Large scale Base Maps used in local government was transformed by using the parameter. 
Parameter was calculated in Chapter 10 and transformed Base Map was overlapped with 
New BM. An original program for transformation was made by our laboratory. 
Transformation parameters were inputted to the program and dot-line from Figure 
20((a)-(e)) shows transformed Map using same area parameter. Heavy line in Figure 
20((a)-(e)) shows the transformed Map by using parameter of Area A, and narrow line is 
road data of New BM in the city of Kanazawa's new base map (Kiban Chizu) 
Result of applying same area parameter to same area, the error margin of area A, B, C, and 
D were about 10cm, 4.53m, 12.64m, and 5.36m respectively. On the result of overlapping 
New BM and converted map with area of A, those maps were accurately overlapped (Figure 
20(a)),however, New BM and the converted map of area B, C and D were not overlapped 
(Figure 20(b),(c),(d)). Result of applying parameter B, the error margin of area A, C, and D 
were about 6.58m, 4.66m, and 4.69m respectively (Figure 20 (a), (c) and (d)). Therefore, all 
area did not overlap. Applying the parameter of another area to the area was very difficult. 
 

 
Fig. 20. (a) Overly of area A and New BM    (b) Overly of area A and New BM (Amplifier) 
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Fig. 20. (a) Overly of area A and New BM    (b) Overly of area A and New BM (Amplifier) 
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Fig. 22. (a) Overly of VRS-GPS and Area A   (b) Overly of VRS-GPS and Area A (Amplifier) 
 

 
Fig. 22. (c) Overly of VRS-GPS and Area B   (d) Overly of VRS-GPS and Area B (Amplifier) 
 

 
Fig. 22. (e) Overly of VRS-GPS and Area D   (f) Overly of VRS-GPS and Area D (Amplifier) 

 
15. Conclusion 
 

The experiment was conducted by using a D-GPS and a VRS-GPS attached to wheelchairs. 
As a result, the positioning data with high-accuracy was obtained under the open sky. 
However, there were measurement errors including cycle slip and multipath at some places 
under closed sky. It showed that it is very difficult to solve these problems by using a GPS 
only. In addition, safe UM cannot be made only by the current technology. Therefore, the 

14. Overly of GPS Data and New BM 

New BM was overlapped with GPS data acquired by VRS-GPS.Actual experiment was 
performed by using RTK-GPS of Virtual Reference Station (VRS-GPS). VRS-GPS does not 
need to set the reference station. Virtual reference station was made virtually around the 
measuring point. Distance of virtual point to actual point is about 3m to 5m. Revision 
information of rover station was sent to mobile phone by using wireless system. This system 
is possible to measure by only one person with light baggage (Figure 21). 
 

 
Fig. 21. VRS-GPS on the road line 
 
A circle symbol and solid line in Figure 22((a)-(f)) means VRS-GPS and road line of New BM 
in the Kanazawa city respectively. Actual experiment was performed at district in A, B and 
D. GPS was not able to be observed, because area C was a residential area. 
Difference between GPS data and New BM were 22cm in Area A, 32cm in Area B and 28cm 
in Area D (Figure 22). The GPS data was partially overlapped to the map, therefore the 
update of the New BM using VRS-GPS is effective at that area. However, a part of GPS data 
and the map did not overlap because GPS is influenced easily by the measurement 
environment. It is the reason why the update region is limited. 
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the cooperation of Mr. Fukumori, Toppan Printing Co., Ltd. for supplying IC tag’s 
information and samples. 
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study proposed the method by using geoinformatics and IC tags. Next step is to perform a 
spatial simulation and it is expected that the proposed method will establish useful UM in 
the near future. 
If the government adopt high-resolution satellite imageries as a background of new BM, the 
government and general users can easily recognize the urban conditions. We recommend 
that the government introduce the system of “REAL TIME GIS” and Remote Sensing 
imageries for their work. The simplification of the mapping process, reduction of mapping 
and updating costs, and understanding of accurate urban conditions are connected with the 
improvement of improved service to the citizens. In the experiment, the coordinate 
transformation of the large-scale map for local government was successfully conducted at a 
part of test field. However, old maps were not accurately transformed to the new geodetic 
system. Therefore, it is necessary to investigate the method of the highly accurate 
conversion. 
It is suggested that the town block control point is very useful tool to transform the map. 
The town block control point was made by GSI on” Basic Survey of Town Block for Renewal 
of Urban Areas." The town block control points has accurate data because they are managed 
by the nation, and they were set up at a short interval (every 200m).  
Therefore, accurate reference point data can be acquired. If the town block control point is 
used for geometrical transform, the characteristic of the difference between the old geodetic 
system and the new one understand easily, and coordinate transformation will perform 
more efficiently. VRS-GPS and New BM was overlapped. As a result, the effectiveness of 
VRS-GIS was confirmed. Collaboration of Remote Sensing, Real Time GIS will help local 
government renew a large-scale map and new BM, and this research will contribute to 
update of new BM. 
Finally, I would like to recommend strongly that local governments have to establish the 
conference to revise large scale map by using NSDI which include country, prefecture, and 
cities. It is most important point that reduces much labor money and time. 
Previous research confirmed whether high-accuracy positioning information continuously 
by a D-GPS and VRS-GPS. However, GPS can be obtained positioning was not performed in 
closed sky. It was proposed to obtain positioning information by a high-accuracy GPS 
positioning technology like an IC tag utilized at intelligent for control points. Kind of IC tag 
has passive type and active type. The method is different by a purpose of use. In this study, 
it became clear how to use appropriately passive type IC tags. Active type IC tags are in a 
stage of growth on territory of geoinfomatics technology. In the future, simulation 
experiments will be conducted to verify whether positioning information obtained by GPS 
and IC tags can be shown on the GIS. 
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1. Introduction      
 

Integration of regional information from existing ocean observing platforms, such as 
satellite and in situ observations, and from data assimilation and modelling systems is 
essential for our understanding and prediction of regional environments and ecosystems. 
The strategy of such integration is to link existing modelling and observing systems – both 
in situ and space-borne, - and to collect new atmospheric and ocean observations to better 
understand the Earth system, to monitor the climate, to predict environmental changes and 
mitigate natural disasters. Remarkable progress has been made in recent years toward the 
establishment of a global Earth observing system. As a result of an international June 2003 
G8 Heads of State meeting, the U.S. Integrated Ocean Observing System (IOOS) was 
created, as a part of the Global Earth Observing System of Systems (GEOSS). The system is a 
pioneering architecture that provides new observational capabilities to advance informed 
decision making on national, regional, and local levels. The IOOS development plan 
(http://www.ocean.us./ioospln.jsp) called for both global and regional components. The 
coastal component consists of regional coastal observing systems that engage a broad 
spectrum of data providers and users who can depend on operational systems with the 
capacity to rapidly detect and provide timely predictions of changes occurring in the coastal 
environments.   
 
One of the most essential variables in ocean dynamics that is used to monitor climate change 
is sea surface temperature (SST). Variations in SST are important indicators of climate 
variability, and can be related to other climate variables, such as sea level change, hurricane 
intensity, and air-sea fluxes of CO2. In addition, SSTs are widely used in ocean modelling 
efforts by providing surface boundary conditions and/or observational constraints for 
atmospheric and oceanic hindcasts and forecasts. To increase resolution and to improve 
quality of analysis, SST products are often constructed by combining measurements from a 
variety of sources. Examples of global, operational, satellite SST products include the Global 
Ocean Data Assimilation Experiment (GODAE) High-Resolution SST Pilot Project 
(GHRSST-PP) (Donlon et al., 2007), NOAA/NASA Advanced Very High Resolution 
Radiometer (AVHRR) Pathfinder SST analyses (Reynolds et al., 2002), Tropical Rainfall 
Measuring Mission (TRMM) Microwave Imager (TMI) and NASA Advanced Microwave 

9



Geoscience and Remote Sensing182

 

 

 

Fig. 1. OSTIA analysis: An example of integrated SST product based on synthesis of infrared 
and microwave satellite-derived SSTs with in situ data on July 5 2009 in °C. Spatial 
resolution ~5 km. Source: UK Met Office website 
 

 

Fig. 2. RTG_SST product: An example of integrated SST product based on synthesis of 
infrared satellite-derived SSTs with in situ data on July 5 2009 in °C. Spatial resolution ~9 
km. Source: NCEP website. 

 

Scanning Radiometer (AMSR) SST products (Chelton & Wentz, 2005). A list of available 
operational GHRSST products is given in Table 1.  
 

SST product name Satellite 
sensors 
used  

Agency 
Identifier 

Grid 
Spacing 

Period 

OYSSEA AVHRR, 
AMSRE, 
TMI, 
AATST, 
SEVIRI, 
GOES 

CNES 
IFREMER 

6 km Day 274 2007 
- present 

AVHRR_OI AVHRR, 
in situ 

NOAA 0.25°  1985 - 
present 

AVHRR_AMSR_O
I 

AVHRR, 
AMSRE, 
in situ 

NOAA 0.25°  Day 152 2002 
- present 

OSTIA AVHRR, 
AMSRE, 
TMI, 
AATSR, 
SEVIRI, 
in situ  

UK Met Office 5 km April 2006 - 
present 

MW_IR_OI AMSRE, 
TMI, 
MODIS 

Remote 
Sensing 
Systems 

9 km Day 233 2005 
- present 

NAVO K10 AVHRR, 
GOES, 
AMSRE 

NAVOVEAN
O (NAVY) 

10 km Day 92 2008 
- present 

Table 1. Examples of available daily global SST analyses provided by GHRSST group 
 
The products are typically based on merged, optimally-interpolated multi-sensor SST data 
sets. All these products are high-quality, high-resolution, daily global analyses that also 
provide the errors associated with their interpolation procedure. For example, Ocean 
Surface Temperature and Ice Analysis (OSTIA), provided by the UK Met Office (see 
example in Figure 1), is generated globally in near-real time on a 1/20° (~5-km) grid and is 
routinely validated using independent observations from Marine-Atmospheric Emitted 
Radiance Interferometer (M-AERI). The system combines satellite microwave and infrared 
measurements with in situ observations from ships and buoys using optimal interpolation 
with correlation length of 700 km, and it has a root-mean-square error within 0.8 °C. (Stark 
et al., 2007). Another example of the real-time global SST analyses (RTG_SST) is shown in 
Figure 2. The fields are developed at the National Centres for Environmental Prediction 
(NCEP) on a 1/12° (~9-km) grid as a blend of in situ and AVHRR observations using 
variational analysis with isotropic correlation scales that vary from 100 km in areas of high 
temperature gradients to 450 km in areas of low SST gradients (Thiébaux et al., 2003). 
Comparison with buoy data resulted in average root-mean-square error within 1 °C.  
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The products are typically based on merged, optimally-interpolated multi-sensor SST data 
sets. All these products are high-quality, high-resolution, daily global analyses that also 
provide the errors associated with their interpolation procedure. For example, Ocean 
Surface Temperature and Ice Analysis (OSTIA), provided by the UK Met Office (see 
example in Figure 1), is generated globally in near-real time on a 1/20° (~5-km) grid and is 
routinely validated using independent observations from Marine-Atmospheric Emitted 
Radiance Interferometer (M-AERI). The system combines satellite microwave and infrared 
measurements with in situ observations from ships and buoys using optimal interpolation 
with correlation length of 700 km, and it has a root-mean-square error within 0.8 °C. (Stark 
et al., 2007). Another example of the real-time global SST analyses (RTG_SST) is shown in 
Figure 2. The fields are developed at the National Centres for Environmental Prediction 
(NCEP) on a 1/12° (~9-km) grid as a blend of in situ and AVHRR observations using 
variational analysis with isotropic correlation scales that vary from 100 km in areas of high 
temperature gradients to 450 km in areas of low SST gradients (Thiébaux et al., 2003). 
Comparison with buoy data resulted in average root-mean-square error within 1 °C.  
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ECCO products is still ongoing, but overall there is a good agreement between the solution 
and SST data within the expected noise level.  
 
A well-constrained model solution typically has values of the cost that are close to one, 
indicating a good model/data agreement within the noise level of the observations (see 
example in Figure 3).  

 
2. Integration methods 
 

Each of the two integration approaches mentioned above, i.e. pure data synthesis and 
model/data integration, has both advantages and limitations. For example, infrared 
measurements (AVHRR, MODIS) allow higher spatial resolution, especially in coastal areas, 
but they can be less accurate than microwave data (AMSR, TMI) due to cloud 
contaminations. In addition, blended analyses tend to over-smooth ocean fine spatial 
structures, such as fronts and eddies (Donlon et al., 2004).  The products are also sensitive to 
methods that are chosen to blend SST datasets from different sensors, with differences 
between analysis reaching 2 °C. Ocean models can provide SST estimates that are physically 
consistent with the dynamical and thermodynamical constraints, but can also introduce 
additional model errors related to unresolved physics (e.g., sub-grid parameterizations).  
 
When integrating SSTs from different sources, including blended analyses or data 
assimilation into numerical models, one has to estimate the total error necessary to compute 
the weights for synthesis algorithms. Consider the problem of estimating the model field M 
from data D, which measures the ocean variable with some error: 
 

D = HM + σ DATA  (2) 
 
where H is mapping matrix that establishes the relationship between M and D. The Bayesian 
maximum likelihood approach (Vinogradova et al., 2005) allows one to build the optimal 
field that maximizes the conditional probability of the field M: 
  

p M D( )→ max  (3) 

 
Maximization of conditional probability can be expressed in terms of cost function J with 
respect to M: 
 

J(M ) = − log p M D( )= − log p D M( )− log p(M )→ min  (4) 

 
Assuming that the errors are uncorrelated and the statistics are Gaussian, the probability 
density p(D|M) can be expressed in terms of the data error statistics: 
 
− log p D M( )= − log p σ DATA( )= − log p D − HM( )= D − HM[ ]T W D − HM[ ] (5) 

 

Another source of integrated high-quality SST analyses are solutions provided by general 
ocean circulation models. Ocean models provide an estimate of the ocean state, including 
SST, that could be constrained by observations and the model physics and that 
approximates the time evolution according to the model’s equations and parameterizations 
of the fluxes. Observational constraints range from satellite-derived SST fields (e.g., 
GoMOOS model, Xue et al., 2005) to almost all available ocean datasets including in situ and 
satellite-derived observations such as altimetry, Argo, CTD, XBT, scatterometer, SST, SSS, 
etc. (e.g., ECCO-GODAE solution, Wunsch et al., 2009). Ocean models are typically fit in a 
least-squares sense to each datasets, each weighted according to the best existing estimate of 
the data and model errors (see Section 2 for more details). Such combinations provide 
optimal estimates, given model physics and knowledge of the data. Evaluation of how well 
model solution fits the data is usually done in terms of cost ratio, which is defined as the 
variance of model-data differences divided by data error variance: 
 

cost =
M − D 2

σ DATA
2  (1) 

 

 

Fig. 3. Example of the cost calculated according to equation (1) for the global ECCO-GODAE 
model solution and GHRSST-AVHRR_OI product at annual frequency. ECCO-GODAE 
optimization is achieved in terms of minimizing the model/data differences. The example 
above shows consistency between the model and data seasonal cycles, which is the 
dominant signal in SST variability. Values of the cost that are close or less than one indicate 
good model/data agreement within the noise level of the data.  The optimization of the 



Integrated sea surface temperature products within a coastal ocean observing system 185

 

ECCO products is still ongoing, but overall there is a good agreement between the solution 
and SST data within the expected noise level.  
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signal is removed. SST values in the areas with large errors will be integrated with smaller 
weights to avoid noise fitting.  

 
3. Integrated SST products in coastal oceans 
 

3.1 Integration of observations from various ocean-observing platforms. 
Traditional blended SST products, described in the previous sections, are typically available 
as daily fields as they are based on measurements from polar-orbiting satellites which do 
not resolve high-frequency signals. However, high-frequency varations, and the diurnal 
cycle in particular, are important characteristics of the coupled atmosphere-ocean dynamics. 
The diurnal cycle has substantial implications in numerical weather prediction (NWP) and 
ocean models. Driven by solar forcing, it directly affects SST variations, the air-sea heat 
transfer regime, and variations in depth of the upper ocean mixed layer (Stuart-Menteth et 
al., 2003). Geostationary satellites, such as NOAA Geostationary Operational Environmental 
Satellite (GOES), provide a continuous stream of environmental data, which can be used to 
retrieve SST fields with high frequency. Combining observations from geostationary and 
polar-orbiting satellites allows one to produce a synthesized product with high spatial and 
temporal resolution. Presented here is an example of such regional application for the North 
Eastern US coast and Atlantic Canada, which is typically referred to as the Gulf of Maine 
region (see Figure 5).  
 

 

Fig. 5. The Gulf of Maine area, stretching along the coastline of New England and Atlantic 
Canada. The locations of the buoy stations transmitting in situ SST measurements in real 
time are shown as red circles. Bottom topography featuring banks and ridges is shown as 
contour lines.   

 

where T denotes transposed matrix, and W is a weight matrix, which is inversely 
proportional to the error covariance of data error:  
 

W =
1

σ DATA
2

 (6) 

 
Assuming that observational errors are uncorrelated, one can estimate the data error as the 
difference between the data variance and model/data covariance: 
 

σ DATA
2 = D2 − MD  (7) 

 
As seen from procedure (2)-(7), integration occurs within expected uncertainties of each 
dataset. Accurate characterization of uncertainties, or data errors σ2DATA in equation (7), is 
important when fitting the data to model or blending data from different sources. If the 
uncertainties are overestimated, one discards and loses information stored in the data. If, on 
the other hand, the errors are underestimated, the model is fitting noise. Figure 4 shows an 
example of SST error calculations that follow the procedure (2)-(7) for the North Atlantic 
region (Vinogradova et al., 2008). These SST errors are computed from the ECCO-GODAE 
ocean state estimates and global blended Reynolds OI.v2 SST analysis over the last decade. 
Annual signal has been removed from both model and observations. As seen from Figure 4, 
areas of high variability, such as western boundary currents (Gulf Stream in Figure 4), are 
characterized by large errors, indicating larger uncertainties in model and data. In these 
regions, the integration procedure will assign smaller weight to avoid imposing erroneous 
variability and noise fitting.  
 

 
Fig. 4. SST errors (in °C) estimated from model/data difference based on ECCO-GODAE 
ocean state estimate and Reynolds SST analyses following the procedure (2)-(7). Annual 
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Fig. 4. SST errors (in °C) estimated from model/data difference based on ECCO-GODAE 
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Although GOES radiances are collected every 30 minutes, individual GOES-SST retrievals 
are usually contaminated by clouds. To increase spatial coverage of the retrieved GOES 
SSTs, the fields are averaged over the set of eight analyses. The four-hour average provides 
a better spatial coverage and still resolves the diurnal cycle that could be significant in the 
coastal dynamics. The example of the input data sources is shown in Figure 6.  
 

 

Fig. 6. Example of the SST data sources (GOES, OSTIA and RTG_SST) and fused SST 
analyses on May 2, 2007 in °C. Notice over-smoothed frontal features in OSTIA and RTG 
analyses, and unresolved cloud-contaminated coastal regions by the GOES. 
 
Before blending, all data sets are mapped into the GOES domain (4 km) and are quality 
contolled to avoid artifical errors. The synthesized SST is computed as a weighted average 
of the three datasets with the weights being inversely proportional to the errors of each data 
constraint. The errors for each data sets Ei are determined by using the network of in situ 
SST measurments, that includes about 20 real-time buoys in that area.  That allows one to 
assign time-varying weights, which are recomputed at every run of the system. For each 
data source, the errors are estimateded as a mean difference between the in situ measurment 
and collocated satellite SST: 

 

This part of the ocean is a biologically productive and economically importtant area that 
covers about 92,000 km2 of the ocean surface. It has a complex bottom topography, which 
includes banks, ridges, and basins, and extends up to 500 m deep and about 300 km 
offshore. From a modeling standpoint, the Gulf of Maine is a challenging area due to highly 
variable surface forcing, strong shelf and open ocean fluxes, and large tidal signal. The 
ocean circulation is mostly cyclonic and it is predominantly controlled by atmospheric 
heating and cooling, wind, river runoff, Scotian Shelf inflow, Gulf Stream warm-core ring 
intrusion and tidal mixing (Xue et al., 2000). For a successful operational forecast of the Gulf 
of Maine circulation, it is crucial to introduce accurate, high-resolution SST fields into a 
model, through data assmilation and surface boundary conditions. A synthezied AER-SST 
product with high spatial and temporal resolution has been developed (Vinogradova et al., 
2009) to meet the demand in precise SST forcing. The fused SST product combines three 
sources: global temperatures estimates from (i) OSTIA and (ii) RTG_SST, described in the 
previous sections, and (iii) GOES radiances.  
 
GOES SST retrievals are derived from the brightness temperatures of the GOES imager mid-
wavelength infrared channel 2 at 3.9 µm and long-wavelength thermal infrared channel 4 at 
10.8 µm using the AER cloud-mask detection algorithm (Gustafson et al., 2000). The cloud 
detection algorithm constructs a binary cloud mask using a set of multispectral tests to 
detect the presence of various cloud signatures. The cloud mask algorithm detects highly 
reflective terrain, including sun glint from water surfaces during daytime conditions using 
visible and thermal IR channels. The thermally-distinct cloud test compares brightness 
temperatures with the GFS NWP surface temperatures to detect obvious mid- and high-
level clouds. The algorithm combines the results of the individual background and cloud 
tests to create the cloud mask.  The algorithm assigns a binary cloudy/clear determination 
value if at least one of the cloud tests returns a positive result and all of the background tests 
return a negative result. After cloud mask has been applied, GOES radiances are converted 
to SST values following the current NOAA GOES operational SST equation: 
 

SST = a0 + ′a0S + a2 + ′a2S( )T2 + a4 + ′a4S( )T4  (8) 
 

where S is the satellite zenith angle, 
 

S = sec(θ) −1  (9) 
 
T2 and T4 are brightness temperature of channel 2 and channel 4, respectively (Maturi et al., 
2007). The NOAA retrieval coefficients ai  and ′ai , are listed in Table 2 and are derived 
from the regression analysis by matching satellite measurements with global drifting buoy 
observations from the Global Telecommunication System (GTS).  
 

Imager 
channel 

Wavelengh
,  µm 

ai  ′ai  

0 - -2.1000 -1.1500 
2 3.78-4.03 1.1177 0.0073 
4 10.2-11.2 -0.1620 -0.0690 

Table 2. Retrieval coefficients for the NOAA-GOES-12 SST algorithm (from Maturi et al., 
2007). The coefficients are used to convert GOES radiances to SST values.   
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SST = a0 + ′a0S + a2 + ′a2S( )T2 + a4 + ′a4S( )T4  (8) 
 

where S is the satellite zenith angle, 
 

S = sec(θ) −1  (9) 
 
T2 and T4 are brightness temperature of channel 2 and channel 4, respectively (Maturi et al., 
2007). The NOAA retrieval coefficients ai  and ′ai , are listed in Table 2 and are derived 
from the regression analysis by matching satellite measurements with global drifting buoy 
observations from the Global Telecommunication System (GTS).  
 

Imager 
channel 

Wavelengh
,  µm 

ai  ′ai  

0 - -2.1000 -1.1500 
2 3.78-4.03 1.1177 0.0073 
4 10.2-11.2 -0.1620 -0.0690 

Table 2. Retrieval coefficients for the NOAA-GOES-12 SST algorithm (from Maturi et al., 
2007). The coefficients are used to convert GOES radiances to SST values.   
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The system is routinely validated by comparing the values of the blended SST analysis with 
in situ measurements from buoys. The average bias in the domain is found to be 0.02±0.8 °C. 
SST bias is attributed to bulk correction and partly to the bias of the retrieved GOES SSTs. 
One way to reduce the bias would be to fine-tune the regression coefficients that are used in 
the retrieval algorithm in the equation (1) using regional observations instead of the global 
match-ups. Another way to enhance system performance might be the use of the preceding 
improved SST synthesis as a background field instead of the daily OSTIA and RTG_SST 
analyses.  
 
The ability of the AER-SST product to resolve diurnal variations has important implications 
in ocean studies. Many coastal regions, especially Gulf of Maine area, are well-known for 
strong high-frequency signals, including diurnal and nearly resonant semi-diurnal tidal 
responses. Tides affect not only the high-frequency spectrum, but also variability at longer 
periods though tidal mixing and nonlinear rectification (Xue et al., 2000). One of many 
possible applications of the AER-SST system is to evaluate the spatial pattern of a diurnal 
cycle. An example of the monthly mean diurnal cycle is shown in Figure 8. Amplitudes of 
diurnal variations can reach up to 2-4 °C in summer time and are attributed to high 
variability of the shortwave insolation that can range from 0 at night to over 900 W/m2 at 
noon (Chen et al., 2003). Large-amplitude diurnal fluctuations suggest that the diurnal 
forcing is significant and it should be accounted for in ocean models that currently 
assimilate daily SSTs and do not resolve higher frequency variability. Improved high-
resolution regional SSTs would also enhance estimation of the surface heat flux, which is 
known to play a dominant role in seasonal coastal circulation. Furthermore, knowing 
diurnal amplitudes will allow one to validate empirical models that are used to retrieve 
daytime and nighttime satellite sea-surface temperatures (Gentemann et al., 2003). 
 

 

Fig. 8. Spatial distribution of the monthly mean diurnal variability during summer in the 
Gulf of Maine based on the AER-SST analysis (in °C).  

 

Ei (t) = Di (t) − B(t)( )p
 (10) 

where i = 1,2,3 represent each data source , Di , p = 1..20 are locations of the buoys 

Bp , and .( )denotes spatial averaging.  

 
To resolve diurnal variability, the analysis runs four times per day and ingests observations 
receieved in the preceding (?) four hours, for both in situ and satellite data. Finally, the 
blended solution is smoothed by its variance with the correlation scale of 10 km, which is 
close to the Rossby radius in this area (Xue et al., 2000). The algorithm  has been 
implemented into a prototype near-real time production system that, since May 2007, has 
been producing SST fields four times a day on a 4-km grid (see example in Figure 7).   
 

 

Fig. 7. Example of the fused AER-SST analysis at 00, 06, 12, and 18 UTC on June 8, 2007 in 
°C. The system resolves typical summer-time patterns with warmer water in the west and 
cooler water in the east. Other distinctive features include a strong tidal mixing front in the 
Georges Bank area; warm slope water intrusion in the southwest; cold water in the north-
west and Bay of Fundy due to vigorous mixing in response to nearly resonant semi-diurnal 
tides; and cold temperature along the Maine coast resulting from summer upwelling.  
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atmosphere coupling and predictability. Comparing ratios of each budget term to the total 
tendency can determine the extent to which each process affects surface heat content. 
Budget analysis by Vinogradova et al. (2008a) suggests that, in the Northern Atlantic, and in 
particular in the Gulf of Maine area, seasonal SST tendencies are one of the largest over the 
globe and can reach the values of 80 W/m2 (see Figure 9). These studies also indicate that 
overall SST tendency due to advection is several times smaller compared to other terms, and 
except large scales, total tendency is a balance between surface mixing and heat fluxes across 
the air-sea interface.   
 

 

Fig. 9. Analysis of the surface heat budget based on the ECCO-GODAE 13-year ocean 
estimate for the North Atlantic and the Gulf of Maine area. The terms are computed 
according to equation (11). The ratios illustrate importance of forcing, advective and 
diffusive fluxes at different timescales. To analyse dynamical causes of the SST variation, 
advective fluxes are further evaluated in terms of meridional, zonal and vertical 
contributions. Along the western boundary, ratios of zonal and meridional components 
closely follow each other due to angular direction of the Gulf Stream. Vertical advection is 
generally the smallest term, but it becomes important on the decadal scales. Overall, SST 
tendency in this region is a balance between the diffusive fluxes and fluxes of heat across the 
air-sea interface.  

 

Area-integrated value is about 2 °C, but the extreme amplitude can reach 4 °C. Complex 
spatial patterns are influenced by geometry of the domain and physical processes that 
control ocean circulation. Large values of diurnal variation are found along the coast, and in 
stratified and frontal regions. In the mixed regions, the diurnal cycle is weaker (e.g., the 
interior of the Georges Bank; western Nova Scotia). Even though solar heating increases 
during summertime, the buoyancy input is not strong enough compared to vigorous tidal 
mixing, which keeps the water well mixed and relatively cool in summer. In the stratified 
and frontal regions, heat is not transferred vertically as efficiently, and surface waters are 
more prone to diurnal warming, yielding large values of diurnal variability. 

 
3.2 Integration of observations with ocean models 
As shown in the previous section, integrated datasets based on pure observations, both 
satellite-derived and in situ, are useful tools to characterize upper ocean variability as a 
function of time and space. These products, however, do not explain the mechanisms 
controlling the observed variability. To interpret the observations, it is useful to analyze the 
equations defining an evolution of the sea surface temperature, which are also referred to as 
budget equations. Analysis of ocean surface heat budgets has been addressed both locally 
and regionally using in situ observations (Wang and McPhaden, 2001; Kim et al., 2006), and 
globally using theoretical calculations (Gill and Niiler, 1973). A prerequisite of a complete 
budget analysis is the closure of the budget, meaning that the sum of the budget 
components exactly matches the property tendency. Such a prerequisite is very difficult to 
fulfil when using raw observations and, in many cases, even numerical models (Qui, 2002). 
ECCO-GODAE is one of a few integrated data/model systems that allows computing closed 
budgets for any prognostic variable, due to consistency of the solution with the model 
equations and atmospheric forcing as the optimization is achieved through adjustments of 
the forcing fields and initial conditions. Closed property balances can be used for 
interpretation of the observed signals and in diagnostics of the SST tendencies, as they relate 
to advective and diffusive heat fluxes, or atmospheric forcing.  
 
To characterize SST variations in terms of dynamic and thermodynamic processes that drive 
SST tendencies, it is useful to evaluate the strength of different terms in SST (or surface heat) 
balance. According to the heat content equation, the rate of change of heat storage in the 
surface layer occurs due to the advection and diffusive fluxes of heat, and the absorption 
and radiation of energy through the ocean surface:  
 



ρ0Cph
∂T
∂t

+ ∇ ⋅ ρCphTru( )= ∇ ⋅ ρCph
r
K( )+ ∂Q

∂ξ
 (11) 

 

where T is the temperature, 


u is the velocity vector, 




K is the diffusive heat flux vector, ξ  

is the vertical coordinate, ρ0  is constant density of seawater, Cp  is the specific heat 

capacity, and h  is the thickness of the surface layer. Analysing the budget (11) provides 
information about the contribution of each term into surface heat or temperature tendency, 
where and when one regime is dominant over the other, and how it can be linked to ocean-
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4. Conclusion 
 

Combinations of the advantages of the existing observing systems as well as integration of 
the observations into data assimilating systems provide invaluable tools for environmental 
management and control in the coastal regions. The need of high-quality, high-resolution 
SST fields, as one of the essential variables describing climate variability, has been receiving 
considerable attention in oceanic and atmospheric studies. With the abundance of the SST 
measurements, many products are based on synthesis of various data sources to produce an 
analysis with improved resolution and quality. Integration of SST measurements from 
polar-orbiting and geostationary satellites as well as in situ measurements from oceanic 
buoys, such as AER-SST product (Vinogradova et al., 2009), produces a new blended 
estimate with high spatial and temporal resolution. High temporal and spatial resolution of 
the system allows one to monitor fine ocean structures such as coastal fronts, describe high-
frequency oceanic variability and improve regional numerical weather prediction systems. 
Such systems represent new coastal oceanic and atmospheric products to gain 
understanding and to improve prediction of the regional environment.  
 
Integrating SST observations with data assimilating ocean numerical models provides best 
estimates of ocean state, given model physics and knowledge of the data. Integrated systems 
such as ECCO-GODAE typically continue to evolve and improve as new information 
(including new data and associated error estimates) becomes available. A considerable 
advantage of model/data integration is the ability to interpret observed variability as a 
function of space and time. In particular, understanding the dynamics and forcing of the SST 
variability is important to determine coupling mechanisms and predictability of the ocean-
atmosphere system. By evaluating the prognostic equation for temperature, one can 
characterize the SST dynamics as a function of timescale and as function of season, which 
can both affect what physical mechanisms are most relevant (Vinogradova et al., 2008a). One 
can also differentiate between the regimes where the ocean is mostly affected by local 
atmospheric forcing, and those where response involve geostrophic and ageostrophic 
advection processes (Vinogradova & Ponte, 2009).  
 
Identifying and understanding ocean coastal dynamics is one of the major tasks of the 
Integrated Ocean Observing System. Coastal oceans are highly populated areas of 
considerable interest to marine commerce, human recreation, oil and gas exploration and 
development, and are an integral part of the national and international economies. 
Operational integrated SST products that combine data and/or numerical models help to 
address important oceanographic problems of air-sea interaction and ultimately improve 
coastal monitoring and predictability.  
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atmosphere system. By evaluating the prognostic equation for temperature, one can 
characterize the SST dynamics as a function of timescale and as function of season, which 
can both affect what physical mechanisms are most relevant (Vinogradova et al., 2008a). One 
can also differentiate between the regimes where the ocean is mostly affected by local 
atmospheric forcing, and those where response involve geostrophic and ageostrophic 
advection processes (Vinogradova & Ponte, 2009).  
 
Identifying and understanding ocean coastal dynamics is one of the major tasks of the 
Integrated Ocean Observing System. Coastal oceans are highly populated areas of 
considerable interest to marine commerce, human recreation, oil and gas exploration and 
development, and are an integral part of the national and international economies. 
Operational integrated SST products that combine data and/or numerical models help to 
address important oceanographic problems of air-sea interaction and ultimately improve 
coastal monitoring and predictability.  
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Abstract 
In precision agriculture, crop nitrogen status can be estimated based on the measurement of 
leaf chlorophyll content at specific stages of crop development. Over the last decade, several 
spectral chlorophyll indices have been developed to estimate chlorophyll content both at the 
leaf and the canopy level from different crop types using hyperspectral remote sensing data. 
For an accurate interpretation of chlorophyll indices derived from hyperspectral data, a 
“true” chlorophyll content value attributed only to the crop cover signal and free from any 
contribution of non-photosynthetic elements is required. However, in remote sensing, in 
spite of the correction and the standardization of the various radiometric distortions such as 
due to topography, atmosphere, sensor drift, and Bidirectional Reflectance Distribution 
Function (BRDF) effects, the chlorophyll indices remain sensitive up to a certain degree to 
the artifacts caused by the soil optical properties particularly in an earlier stage of crop 
growth. This chapter focuses on the evaluation and comparison of the sensitivity of several 
chlorophyll indices to bare soils optical property variations. In order to achieve the goal of 
this investigation, field spectroradiometric measurements were used as well as 
hyperspectral data acquired with the Probe-1 airborne and Hyperion Earth Observing -1 
(EO-1) satellite sensors. The field-based reflectance measurements were acquired above 90 
bare soil plots with various optical properties and selected from different agricultural lands. 
Probe-1 and Hyperion EO-1 data were acquired over the study site on June 28, 2000 and 
June 30, 2002, respectively. Imagery data were spectrally and radiometrically calibrated, as 
well as atmospherically corrected. After these pre-processing steps, sixty spectral signatures 
of different bare soils with various optical properties were extracted from each set of data for 
use in the analysis. The obtained results show an excellent agreement between the accuracies 
estimated from field, airborne and satellite data. Indices SIPI, PSSRa and MTCI show a very 
high root mean square error (RMSE) related to optical background variation. The indices 
SIPI, SRPI, NDPI, NPCI, GNDVI, CAI and HNDVI have a non-negligible RMSE related to 
the optical properties of bare soils, and will be very difficult to interpret at a low leaf area 
index (LAI). PSNDa, hNDVI and PRI show an RMSE less than 20%. The most insensitive 
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reflectance behaviour because many factors influence the soil reflectance (Huete, 1989; Irons 
et al., 1989). These are mineral composition, colour, brightness, moisture, organic matter 
content, salt and sodium content, roughness, and texture. In addition, size and shape of soil 
aggregates also influence the soil reflectance. These soil property variations affect the 
spectral response of soil and crop canopies and induce noise to the relationships between 
reflectance data and crop characteristics, such as LAI, absorbed photosynthetically active 
radiation (APAR), and chlorophyll content (Bannari et al., 1996). These artifacts are likely to 
increase the chlorophyll index due to the spectral variations of the soils and not to an 
increase of the chlorophyll content. This chapter focuses on the evaluation and comparison 
of the sensitivity of several hyperspectral chlorophyll indices (PRI, NDPI, GNDVI, hNDVI, 
SIPI, SRPI, NPCI, PSSRa, PSNDa, MTCI, CAI, CARI, MCARI, and TCARI) to bare soils 
optical property variations using field spectroradiometric measurements as well as 
hyperspectral data acquired with the Probe-1 airborne and Hyperion EO-1 satellite 
hyperspectral sensors in the beginning of the growing season. With a sparse vegetation 
cover, the soil background becomes very important to consider using these indices 

 
2. A Review of Spectral Chlorophyll Indices   

Hyperspectral remote sensing is very often used to quantify plant photosynthetic pigment 
content. Plant pigments have a distinct spectral absorption characteristic, which means 
potential discrimination between them. Numerous studies and experiments have been 
undertaken in the search for spectral chlorophyll indices for accurate chlorophyll estimation 
at the leaf or the canopy level using hyperspectral remote sensing (i.e., laboratory and 
ground spectroradiometric measurements, model simulations and/or image data). 
Empirical approaches are based on simple relations established between chlorophyll content 
and spectral data, such as simple spectral analysis (Blackmer et al., 1996; Mariotti et al., 1996) 
and the analysis of the red-infrared spectral transition, the red-edge (Horler et al., 
1983; Guyot and Baret, 1988; Curran et al., 1990 and 1991; Munden et al., 1994; Pinar and 
Curran, 1996; Gitelson et al., 1996; Filella and Peňuelas, 1994; Jago et al., 1999; Zaroc-Tejada 
and Miller, 1999; Zarco-Tejada, 2000). In order to minimize the effects of soil background 
optical properties or the acquisition geometry (view/illumination) on the red-edge 
parameters, scientists have analyzed the potential of the first and second spectrum derivates 
(Peñuelas et al., 1994; Elvidge and Chen, 1995; Peñuelas and Filella, 1998; Jago et al., 1999; 
Daughtry et al., 2000; Gao, 2006). Other methods indicate that the logarithm of the inverse of 
the reflectance at specific wavelengths is well correlated with chlorophyll content (Peñuelas 
et al., 1994; Balckburn, 1999). Semi-empirical approaches have a physical basis, but their 
mathematical formulation is related empirically to spectral data. In the literature, different 
indices for detecting and predicting chlorophyll status were developed (Baret et al., 1988; 
Gamon et al., 1992; Chappel et al., 1992; Carter, 1994; Filella et al., 1995; Jacquemoud et al., 
1996; Rollin and Milton, 1998; Blackburn, 1998a and 1998b; Haboudane et al., 2002; Zhang et 
al., 2008). A review of the spectral chlorophyll indices used in this chapter is given below, 
and their equations are presented in Table 1. 
The Photochemical Reflectance Index (PRI) was developed to estimate the photosynthetic 
activity of canopies (Gamon et al., 1992). It is a physiological reflectance index, which 
correlates (coefficient of determination R2 > 0.91) with the epoxidation state of the 
xanthophylls cycle pigments (i.e., a particular group of carotenoids, violaxanthin, 

index of this group is the PRI with an RMSE less than 6 %. However, these errors remain 
significant. Independently from the data source and from the bare soil background, CARI, 
MCARI and TCARI indices are basically not sensitive to changes in soil optical properties 
with a RMSE less than 1.2 % and will permit a better estimation of chlorophyll content in 
sparse crop cover environment.  
Keywords: chlorophyll indices, soil optical properties, precision agriculture, hyperspectral 
remote sensing, field spectroradiometric measurements, Probe-1 and Hyperion EO-1 sensors. 

 
1. Introduction   

Nitrogen concentration in crop cover is related to chlorophyll content and, therefore, 
indirectly to one of the basic plant physiological processes. When nitrogen supply surpasses 
the vegetation’s nutritional needs, the excess is eliminated by runoff and water infiltration 
leading to pollution of aquatic ecosystems (Daughtry et al., 2000; Wood et al., 1993). This 
nitrogen loss to the environment represents an economic loss for farmers. However, 
inappropriate reduction of nitrogen supply could result in reduced yields and, 
subsequently, substantial economic losses. With this impasse, the optimal solution is an 
adequate assessment of the nitrogen status and its variability in agricultural landscapes. 
Since yield is determined by crop condition at the earlier stages of growth, it is mandatory to 
provide farmers with nitrogen status at those stages in order to supply appropriate rates 
based upon an accurate assessment of plant growth requirements and deficiencies 
(Haboudane et al., 2002). For this purpose, remote sensing techniques have been used to 
assess crop conditions relative to nitrogen status and effects. Foliage spectral properties, 
reflectance and transmittance, were found to be affected by nitrogen deficiency (Blackmer et 
al., 1996). Nitrogen shortage reduces leaf chlorophyll content and, therefore, increases its 
transmittance at visible wavelengths. Thus, reflected radiation from crop leaves and canopies 
has been used both to estimate chlorophyll content of crop canopies (Daughtry et al., 2000; 
Filella et al., 1995) and to assess nitrogen variability and stress (Blackmer et al., 1994 and 1996). 
Over the last decade, several spectral chlorophyll indices have been developed to estimate 
chlorophyll content both at the leaf and at the canopy levels using hyperspectral remote 
sensing data of different crop types (Haboudane et al., 2002; Blackburn, 1998a and 1998b; 
Chappelle et al., 1992). Theoretically, the “ideal” chlorophyll index should be sensitive only 
to chlorophyll content in crop cover, but insensitive to soil background (colour, brightness, 
etc.), less sensitive to leaf area index (LAI) variations, independent of the spatial resolution 
of the sensors, and little affected by atmospheric and environmental effects, the drift of the 
sensor radiometric calibration, as well as solar illumination geometry and senor viewing 
conditions, and not saturate rapidly. These effects intervene simultaneously during in-situ 
measurements and at the time of the airborne and/or satellite data acquisition. 
Consequently, it is impossible to design an index which is sensitive only to the desired 
variable and totally insensitive to all other parameters (Daughtry et al., 2000; Bannari et al., 
1995; Kim et al., 1994). However, in remote sensing, in spite of the correction and the 
standardization of the various radiometric distortions (topography, atmosphere, sensor 
drift, BRDF, etc.) chlorophyll indices remain always sensitive to the artifacts caused by soil 
optical properties particularly in an earlier stage of crop growth (sparse or fairly dense crop 
cover). Indeed, the effects of the underlying soil optical proprieties are very difficult to 
correct because not all soils are similar in the scene. Different soils have different spectral 
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reflectance behaviour because many factors influence the soil reflectance (Huete, 1989; Irons 
et al., 1989). These are mineral composition, colour, brightness, moisture, organic matter 
content, salt and sodium content, roughness, and texture. In addition, size and shape of soil 
aggregates also influence the soil reflectance. These soil property variations affect the 
spectral response of soil and crop canopies and induce noise to the relationships between 
reflectance data and crop characteristics, such as LAI, absorbed photosynthetically active 
radiation (APAR), and chlorophyll content (Bannari et al., 1996). These artifacts are likely to 
increase the chlorophyll index due to the spectral variations of the soils and not to an 
increase of the chlorophyll content. This chapter focuses on the evaluation and comparison 
of the sensitivity of several hyperspectral chlorophyll indices (PRI, NDPI, GNDVI, hNDVI, 
SIPI, SRPI, NPCI, PSSRa, PSNDa, MTCI, CAI, CARI, MCARI, and TCARI) to bare soils 
optical property variations using field spectroradiometric measurements as well as 
hyperspectral data acquired with the Probe-1 airborne and Hyperion EO-1 satellite 
hyperspectral sensors in the beginning of the growing season. With a sparse vegetation 
cover, the soil background becomes very important to consider using these indices 

 
2. A Review of Spectral Chlorophyll Indices   

Hyperspectral remote sensing is very often used to quantify plant photosynthetic pigment 
content. Plant pigments have a distinct spectral absorption characteristic, which means 
potential discrimination between them. Numerous studies and experiments have been 
undertaken in the search for spectral chlorophyll indices for accurate chlorophyll estimation 
at the leaf or the canopy level using hyperspectral remote sensing (i.e., laboratory and 
ground spectroradiometric measurements, model simulations and/or image data). 
Empirical approaches are based on simple relations established between chlorophyll content 
and spectral data, such as simple spectral analysis (Blackmer et al., 1996; Mariotti et al., 1996) 
and the analysis of the red-infrared spectral transition, the red-edge (Horler et al., 
1983; Guyot and Baret, 1988; Curran et al., 1990 and 1991; Munden et al., 1994; Pinar and 
Curran, 1996; Gitelson et al., 1996; Filella and Peňuelas, 1994; Jago et al., 1999; Zaroc-Tejada 
and Miller, 1999; Zarco-Tejada, 2000). In order to minimize the effects of soil background 
optical properties or the acquisition geometry (view/illumination) on the red-edge 
parameters, scientists have analyzed the potential of the first and second spectrum derivates 
(Peñuelas et al., 1994; Elvidge and Chen, 1995; Peñuelas and Filella, 1998; Jago et al., 1999; 
Daughtry et al., 2000; Gao, 2006). Other methods indicate that the logarithm of the inverse of 
the reflectance at specific wavelengths is well correlated with chlorophyll content (Peñuelas 
et al., 1994; Balckburn, 1999). Semi-empirical approaches have a physical basis, but their 
mathematical formulation is related empirically to spectral data. In the literature, different 
indices for detecting and predicting chlorophyll status were developed (Baret et al., 1988; 
Gamon et al., 1992; Chappel et al., 1992; Carter, 1994; Filella et al., 1995; Jacquemoud et al., 
1996; Rollin and Milton, 1998; Blackburn, 1998a and 1998b; Haboudane et al., 2002; Zhang et 
al., 2008). A review of the spectral chlorophyll indices used in this chapter is given below, 
and their equations are presented in Table 1. 
The Photochemical Reflectance Index (PRI) was developed to estimate the photosynthetic 
activity of canopies (Gamon et al., 1992). It is a physiological reflectance index, which 
correlates (coefficient of determination R2 > 0.91) with the epoxidation state of the 
xanthophylls cycle pigments (i.e., a particular group of carotenoids, violaxanthin, 

index of this group is the PRI with an RMSE less than 6 %. However, these errors remain 
significant. Independently from the data source and from the bare soil background, CARI, 
MCARI and TCARI indices are basically not sensitive to changes in soil optical properties 
with a RMSE less than 1.2 % and will permit a better estimation of chlorophyll content in 
sparse crop cover environment.  
Keywords: chlorophyll indices, soil optical properties, precision agriculture, hyperspectral 
remote sensing, field spectroradiometric measurements, Probe-1 and Hyperion EO-1 sensors. 

 
1. Introduction   

Nitrogen concentration in crop cover is related to chlorophyll content and, therefore, 
indirectly to one of the basic plant physiological processes. When nitrogen supply surpasses 
the vegetation’s nutritional needs, the excess is eliminated by runoff and water infiltration 
leading to pollution of aquatic ecosystems (Daughtry et al., 2000; Wood et al., 1993). This 
nitrogen loss to the environment represents an economic loss for farmers. However, 
inappropriate reduction of nitrogen supply could result in reduced yields and, 
subsequently, substantial economic losses. With this impasse, the optimal solution is an 
adequate assessment of the nitrogen status and its variability in agricultural landscapes. 
Since yield is determined by crop condition at the earlier stages of growth, it is mandatory to 
provide farmers with nitrogen status at those stages in order to supply appropriate rates 
based upon an accurate assessment of plant growth requirements and deficiencies 
(Haboudane et al., 2002). For this purpose, remote sensing techniques have been used to 
assess crop conditions relative to nitrogen status and effects. Foliage spectral properties, 
reflectance and transmittance, were found to be affected by nitrogen deficiency (Blackmer et 
al., 1996). Nitrogen shortage reduces leaf chlorophyll content and, therefore, increases its 
transmittance at visible wavelengths. Thus, reflected radiation from crop leaves and canopies 
has been used both to estimate chlorophyll content of crop canopies (Daughtry et al., 2000; 
Filella et al., 1995) and to assess nitrogen variability and stress (Blackmer et al., 1994 and 1996). 
Over the last decade, several spectral chlorophyll indices have been developed to estimate 
chlorophyll content both at the leaf and at the canopy levels using hyperspectral remote 
sensing data of different crop types (Haboudane et al., 2002; Blackburn, 1998a and 1998b; 
Chappelle et al., 1992). Theoretically, the “ideal” chlorophyll index should be sensitive only 
to chlorophyll content in crop cover, but insensitive to soil background (colour, brightness, 
etc.), less sensitive to leaf area index (LAI) variations, independent of the spatial resolution 
of the sensors, and little affected by atmospheric and environmental effects, the drift of the 
sensor radiometric calibration, as well as solar illumination geometry and senor viewing 
conditions, and not saturate rapidly. These effects intervene simultaneously during in-situ 
measurements and at the time of the airborne and/or satellite data acquisition. 
Consequently, it is impossible to design an index which is sensitive only to the desired 
variable and totally insensitive to all other parameters (Daughtry et al., 2000; Bannari et al., 
1995; Kim et al., 1994). However, in remote sensing, in spite of the correction and the 
standardization of the various radiometric distortions (topography, atmosphere, sensor 
drift, BRDF, etc.) chlorophyll indices remain always sensitive to the artifacts caused by soil 
optical properties particularly in an earlier stage of crop growth (sparse or fairly dense crop 
cover). Indeed, the effects of the underlying soil optical proprieties are very difficult to 
correct because not all soils are similar in the scene. Different soils have different spectral 
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The Simple Ratio Pigment Index (SRPI) based on the ratio of the carotenoid and Chl-a content 
was proposed by Penuelas et al. (1993). Penuelas et al. (1993 and 1994) found that SRPI 
correlates well (R2 > 0.95) with different levels of mite attacks in apple trees, as the 
carotenoid / Chl-a ratio increases with increasing level of mite attack. Similar performances 
were observed for the same ratio from a wide range of leaves from different species (maize, 
wheat, tomato, soybean, sunflower, sugar beet, and maple) when the SRPI was highly 
correlated (R2 > 0.95) with carotenoid / Chl-a ratio (Penuelas et al., 1995). The SRPI was 
found to be slightly sensitive to low chlorophyll content (< 50 mg / cm2). Penuelas et al. 
(1995) also demonstrated that this index is very sensitive to the leaf structure. 
 
The Normalized Difference Pigment Index (NDPI) was proposed by Penuelas et al. (1993) in the 
same way as SRPI to evaluate the ratio of total pigments to Chl-a. Penuelas et al. (1993, 1994 
and 1995) found that in maize, wheat, tomato, soybean, sunflower, sugar beet, maple, and 
aquatic plants the NDPI was highly correlated (R2 ≥ 0.91) with the ratio of total carotenoids 
and Chl-a measured at the leaf and plant levels. This index was found sensitive to the leaf 
surface and structure (Araus et al., 2001). For wheat chlorophyll content estimation in 
intermediate stage development (approximately 70% of the fields were covered by wheat 
crop) using the Hyperion EO-1 data against those derived from the SPAD-502 
measurements and chemical laboratory analysis, the NDPI showed satisfactory results with 
an index of agreement of 0.66 and a root mean square error (RMSE) of 2.89 μg/cm2 (Bannari 
et al., 2008). 
 
In a study related to nitrogen (N) and water in sunflower leaves, Penuelas et al. (1994) 
proposed the Normalized Pigment Chlorophyll Ratio Index (NPCI). This index varies with 
total pigment and chlorophyll content and is associated with plant physiological state. This 
index is sensitive to the proportion of total photosynthetic pigments to chlorophyll, 
particularly applicable to N stress (Penuelas et al., 1994). For wheat crop (Triticum aestivum 
L.), NPCI was significantly correlated (R2 = 0.84) with total chlorophyll content using field-
based reflectance measurements (Riedell and Blackmer, 1999). Exploring a wide range of 
hyperspectral chlorophyll indices, laboratory based-reflectance data and wheat leaf 
chlorophyll content estimated from chemical laboratory analysis, Bannari et al. (2007a) 
found that NPCI is significantly correlated (R2 = 0.84) with Chl-ab / Chl-a ratio than with 
the Chl-ab content only. 
 
Considering a wide range of leaves from several species (corn, wheat, tomato, soybean and 
sunflower) with the aim of assessing the pigment ratio, Penuelas et al. (1995) proposed the 
Structure Insensitive Pigment Index (SIPI). They established an empirical estimation of the 
carotenoid / Chl-a ratio and found that SIPI provided the best estimate for a range of 
individual leaves of different species (maize, wheat, tomato, soybean, sunflower, sugar beet, 
and maple) and conditions (R2 ≥ 0.95). Blackburn (1998a) confirmed that this index has a 
curvilinear relationship with the carotenoid / Chl-a ratio, which is best described using a 
logarithmic model (i.e., this model gives the highest coefficient of determination: R2 = 0.86). 
The SIPI lacks sensitivity for low values of the carotenoid / Chl-a ratio and becomes more 
sensitive for higher values. Using physical simulation on Vitis vinifera L. leaves, Zarco-
Tejada et al. (2005) demonstrated that SIPI is more sensitive to carotenoids and Chl-ab / 
carotenoid ratio than to chlorophyll Chl-ab content alone. 

antheraxanthin, and zeaxanthin), and with the efficiency of the plant canopy’s 
photosynthesis. The epoxidation state is the content of xanthophylls cycle pigments. This 
xanthophylls cycle may be associated with a diurnal reduction in photosynthetic efficiency 
(Gamon et al., 1992). Therefore, the epoxidation state of the xanthophylls cycle pigments 
may be a useful indicator of short-term changes in photosynthetic activity. In several 
studies, this index showed its usefulness in the assessment of radiation use efficiency at the 
canopy-level. Filella et al. (1996) showed that PRI is significantly correlated (R2 = 0.88) with 
epoxidation, zeaxanthin, and photosynthetic radiation use efficiency for a cereal canopy. 
Penuelas et al. (1997) found significant results to assess photosynthetic radiation use efficiency 
at the leaf-level in Mediterranean trees, Quercus ilux and Phillyrea latifolia. Zarco-Tejada et al. 
(2005) showed that PRI is more sensitive to Chl-ab / carotenoid ratios (R2 = 0.50) than to Chl-
ab alone (R2 = 0.45) or the carotenoid content for Vitis vinifera L (R2 = 0.27) leaves. The PRI was 
found not affected as much by changing viewing angles for wheat chlorophyll content 
prediction using the Compact High Resolution Imaging Spectrometer (CHRIS) on the platform 
PRoject for On-Board Autonomy (PROBA). This is because the PRI is in the visible part of the 
spectrum and, therefore, is not influenced by anisotropy in the near infrared. However, this 
index performs better for wheat chlorophyll content estimation at the canopy level (biomass 
per unit ground area) than for wheat chlorophyll contents per leaf (Oppelt and Mauser, 2007). 
 

Spectral Chlorophyll Indices Authors 
PRI = (r550-r531) / (r550+r531) Gamon et al. (1992) 
SRPI = r430 / r680  Penuelas et al. (1993) 
NDPI = (r430-r680) / (r430+r680) Penuelas et al. (1993) 
NPCI  = (r680 - r430)  / (r680 + r430) Penuelas et al. (1994) 
SIPI  =  (r800 - r445) / (r800 - r680) Penuelas et al. (1995) 
GNDVI  =  (r801 - r550) / (r801 + r550) Gitelson et al. (1996) 
PSNDa  =  (r800 - r680) / (r800 + r680) Blackburn (1998a) 
PSSR (a)  = r800 / r680 
CARI= [(r700 - r670) - 0.2 * (r700 - r550)] 

Blackburn (1998a) 
Kim et al. (1994) 

MCARI = [(r700 - r670) - 0.2*(r700 - r550)]*(r700  / r670) Daughtry et al. (2000) 
TCARI = 3* [(r700   - r670)  - 0.2 * (r700  - r550) *(r700   / r670)] Haboudane et al. (2002) 
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where rSc is the reflectance of the vegetation spectrum at 
band c, rec is the reflectance of the envelope at band c, and rEQ 
is the envelope quotient (see Oppelt and Mauser (2001 and 
2004) for provision of more details about this index and for 
the calculation and extraction of all these parameters).  
 

 
Oppelt & Mauser (2001) 
 

HNDVI  =  (R827 – R668) / (R827 + R668) 
MTCI  =  (r753.75  -  r708.75)  / (r708.75  -  r681.25) 

Oppelt & Mauser (2004) 
Dash and Curran (2004) 

Table 1. Equations of chlorophyll indices (rλ indicates the reflectance in a band centered at a 
specific wavelength λ). 
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The Simple Ratio Pigment Index (SRPI) based on the ratio of the carotenoid and Chl-a content 
was proposed by Penuelas et al. (1993). Penuelas et al. (1993 and 1994) found that SRPI 
correlates well (R2 > 0.95) with different levels of mite attacks in apple trees, as the 
carotenoid / Chl-a ratio increases with increasing level of mite attack. Similar performances 
were observed for the same ratio from a wide range of leaves from different species (maize, 
wheat, tomato, soybean, sunflower, sugar beet, and maple) when the SRPI was highly 
correlated (R2 > 0.95) with carotenoid / Chl-a ratio (Penuelas et al., 1995). The SRPI was 
found to be slightly sensitive to low chlorophyll content (< 50 mg / cm2). Penuelas et al. 
(1995) also demonstrated that this index is very sensitive to the leaf structure. 
 
The Normalized Difference Pigment Index (NDPI) was proposed by Penuelas et al. (1993) in the 
same way as SRPI to evaluate the ratio of total pigments to Chl-a. Penuelas et al. (1993, 1994 
and 1995) found that in maize, wheat, tomato, soybean, sunflower, sugar beet, maple, and 
aquatic plants the NDPI was highly correlated (R2 ≥ 0.91) with the ratio of total carotenoids 
and Chl-a measured at the leaf and plant levels. This index was found sensitive to the leaf 
surface and structure (Araus et al., 2001). For wheat chlorophyll content estimation in 
intermediate stage development (approximately 70% of the fields were covered by wheat 
crop) using the Hyperion EO-1 data against those derived from the SPAD-502 
measurements and chemical laboratory analysis, the NDPI showed satisfactory results with 
an index of agreement of 0.66 and a root mean square error (RMSE) of 2.89 μg/cm2 (Bannari 
et al., 2008). 
 
In a study related to nitrogen (N) and water in sunflower leaves, Penuelas et al. (1994) 
proposed the Normalized Pigment Chlorophyll Ratio Index (NPCI). This index varies with 
total pigment and chlorophyll content and is associated with plant physiological state. This 
index is sensitive to the proportion of total photosynthetic pigments to chlorophyll, 
particularly applicable to N stress (Penuelas et al., 1994). For wheat crop (Triticum aestivum 
L.), NPCI was significantly correlated (R2 = 0.84) with total chlorophyll content using field-
based reflectance measurements (Riedell and Blackmer, 1999). Exploring a wide range of 
hyperspectral chlorophyll indices, laboratory based-reflectance data and wheat leaf 
chlorophyll content estimated from chemical laboratory analysis, Bannari et al. (2007a) 
found that NPCI is significantly correlated (R2 = 0.84) with Chl-ab / Chl-a ratio than with 
the Chl-ab content only. 
 
Considering a wide range of leaves from several species (corn, wheat, tomato, soybean and 
sunflower) with the aim of assessing the pigment ratio, Penuelas et al. (1995) proposed the 
Structure Insensitive Pigment Index (SIPI). They established an empirical estimation of the 
carotenoid / Chl-a ratio and found that SIPI provided the best estimate for a range of 
individual leaves of different species (maize, wheat, tomato, soybean, sunflower, sugar beet, 
and maple) and conditions (R2 ≥ 0.95). Blackburn (1998a) confirmed that this index has a 
curvilinear relationship with the carotenoid / Chl-a ratio, which is best described using a 
logarithmic model (i.e., this model gives the highest coefficient of determination: R2 = 0.86). 
The SIPI lacks sensitivity for low values of the carotenoid / Chl-a ratio and becomes more 
sensitive for higher values. Using physical simulation on Vitis vinifera L. leaves, Zarco-
Tejada et al. (2005) demonstrated that SIPI is more sensitive to carotenoids and Chl-ab / 
carotenoid ratio than to chlorophyll Chl-ab content alone. 

antheraxanthin, and zeaxanthin), and with the efficiency of the plant canopy’s 
photosynthesis. The epoxidation state is the content of xanthophylls cycle pigments. This 
xanthophylls cycle may be associated with a diurnal reduction in photosynthetic efficiency 
(Gamon et al., 1992). Therefore, the epoxidation state of the xanthophylls cycle pigments 
may be a useful indicator of short-term changes in photosynthetic activity. In several 
studies, this index showed its usefulness in the assessment of radiation use efficiency at the 
canopy-level. Filella et al. (1996) showed that PRI is significantly correlated (R2 = 0.88) with 
epoxidation, zeaxanthin, and photosynthetic radiation use efficiency for a cereal canopy. 
Penuelas et al. (1997) found significant results to assess photosynthetic radiation use efficiency 
at the leaf-level in Mediterranean trees, Quercus ilux and Phillyrea latifolia. Zarco-Tejada et al. 
(2005) showed that PRI is more sensitive to Chl-ab / carotenoid ratios (R2 = 0.50) than to Chl-
ab alone (R2 = 0.45) or the carotenoid content for Vitis vinifera L (R2 = 0.27) leaves. The PRI was 
found not affected as much by changing viewing angles for wheat chlorophyll content 
prediction using the Compact High Resolution Imaging Spectrometer (CHRIS) on the platform 
PRoject for On-Board Autonomy (PROBA). This is because the PRI is in the visible part of the 
spectrum and, therefore, is not influenced by anisotropy in the near infrared. However, this 
index performs better for wheat chlorophyll content estimation at the canopy level (biomass 
per unit ground area) than for wheat chlorophyll contents per leaf (Oppelt and Mauser, 2007). 
 

Spectral Chlorophyll Indices Authors 
PRI = (r550-r531) / (r550+r531) Gamon et al. (1992) 
SRPI = r430 / r680  Penuelas et al. (1993) 
NDPI = (r430-r680) / (r430+r680) Penuelas et al. (1993) 
NPCI  = (r680 - r430)  / (r680 + r430) Penuelas et al. (1994) 
SIPI  =  (r800 - r445) / (r800 - r680) Penuelas et al. (1995) 
GNDVI  =  (r801 - r550) / (r801 + r550) Gitelson et al. (1996) 
PSNDa  =  (r800 - r680) / (r800 + r680) Blackburn (1998a) 
PSSR (a)  = r800 / r680 
CARI= [(r700 - r670) - 0.2 * (r700 - r550)] 

Blackburn (1998a) 
Kim et al. (1994) 

MCARI = [(r700 - r670) - 0.2*(r700 - r550)]*(r700  / r670) Daughtry et al. (2000) 
TCARI = 3* [(r700   - r670)  - 0.2 * (r700  - r550) *(r700   / r670)] Haboudane et al. (2002) 

,
735

600

dxrCAI
r

r
EQ∫=  where    .ecScEQ rrr =

  
where rSc is the reflectance of the vegetation spectrum at 
band c, rec is the reflectance of the envelope at band c, and rEQ 
is the envelope quotient (see Oppelt and Mauser (2001 and 
2004) for provision of more details about this index and for 
the calculation and extraction of all these parameters).  
 

 
Oppelt & Mauser (2001) 
 

HNDVI  =  (R827 – R668) / (R827 + R668) 
MTCI  =  (r753.75  -  r708.75)  / (r708.75  -  r681.25) 

Oppelt & Mauser (2004) 
Dash and Curran (2004) 

Table 1. Equations of chlorophyll indices (rλ indicates the reflectance in a band centered at a 
specific wavelength λ). 
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Reflectance Index (MCARI). The main change from CARI is the introduction of the ratio (r700 / 
r670) to minimize the combined effect of the underlying soil reflectance and the canopy non-
photosynthetic materials. Even though this index was developed to be both responsive to 
chlorophyll variations and resistant to non-photosynthetic material effects, Daughtry et al. 
(2000) reported that the MCARI is still influenced by the optical proprieties of the soil 
background. In order to minimize the underlying soil contribution, they suggested that the 
MCARI be normalized with a soil line vegetation index like the Optimized Soil-Adjusted 
Vegetation Index (OSAVI; Rondeaux et al., 1996). Combining these spectral indices will 
further reduce the background contributions and enhance the sensitivity to leaf chlorophyll 
content variability at the same time. Daughtry et al. (2000) found that the MCARI / OSAVI 
ratio was linearly related to leaf chlorophyll contents (R2 = 0.87) over a wide range of foliage 
cover of corn (Zea mays L.) and soil backgrounds. The combined use of the spectral indices 
MCARI and OSAVI was successful in producing an accurate assessment of crop chlorophyll 
contents from remote sensing data (Daughtry et al., 2000). However, this normalization 
combination was not implemented for predictive purposes, nor have further developments 
dealt with LAI effects on pigment content estimation from canopy reflectance 
measurements. In addition, Haboudane et al. (2002) noted the limited sensitivity of MCARI 
for low pigment contents (> 5 μg / cm2).  
 
Haboudane et al. (2002) presented another variation of the MCARI, the Transformed 
Chlorophyll Absorption in Reflectance Index (TCARI). The main reason for developing TCARI 
was to improve sensitivity for low chlorophyll values of corn. However, according to these 
authors, this index is sensitive to the underlying soil properties, particularly for low LAIs (< 
2.5). In the same study of integrated narrow-band indices for corn-crop chlorophyll 
prediction, Haboudane et al. (2002) proposed the TCARI / OSAVI ratio. The use of this ratio 
enabled accurate prediction of corn chlorophyll content from hyperspectral remote sensing 
imagery. These authors established a scaling-up relationship to make chlorophyll 
estimations as a function of the TCARI / OSAVI ratio derived from above canopy 
reflectance using Compact Airborne Spectrographic Imager (CASI) data. The ratio was found to 
be relatively insensitive to canopy cover variations, even for very low LAIs (< 1.5). The best 
fits were obtained for a logarithmic and polynomial function with R2 values exceeding 0.98. 
Zarco-Tejada et al. (2005) showed that the TCARI / OSAVI was successfully correlated with 
the Chl-ab content at the canopy scale of Vitis vinifera L. using Reflective Optics Spectrometric 
Imaging System (ROSIS) and CASI data (R2 = 0.67). Huang et al. (2004) found a significant 
logarithmic relationship (R2 = 0.78) between TCARI / OSAVI derived from field reflectance 
measurements and wheat chlorophyll arbitrary values measured with the SPAD (Soil-Plant 
Analyses Development)-502 meter. Exploring CHRIS-PROBA data for wheat crop 
chlorophyll content prediction in shaded and sunlit portions of the field, Oppelt and Mauser 
(2007) showed that using the off-forward-looking angle (+ 36° from the nadir) chlorophyll 
content per leaf area is weekly correlated with TCARI / OSAVI (R2 = 0.56 and R2 = 0.49 for 
the sunlit and shaded sides, respectively). However, this index showed a relatively high 
correlation (R2 = 0.71) with chlorophyll content per biomass of the sunlit portion in the nadir 
viewing direction. They concluded that the TCARI / OSAVI ratio is significantly sensitive to 
the viewing angle geometry. In another study for the Chl-ab content estimation at the 
canopy scale of Vitis vinifera L. using CASI reflectance spectra, Meggio et al. (2008) 
demonstrated that BRDF effects significantly affect the TCARI / OSAVI ratio. According to 

The Green Normalized Difference Vegetation Index (GNDVI) was developed by Gitelson et al. 
(1996) using a green band in a study related to the remote sensing of global vegetation and 
EOS-MODIS (Earth Observing System - Moderate Resolution Imaging Spectroradiometer) data. 
The development of the GNDVI is based on the idea that an index for chlorophyll 
estimation should be invariant with respect to pigments other than chlorophyll and should 
not be influenced by factors including background and atmosphere. Blackburn (1999) 
reported that there is a curvilinear relationship between GNDVI and the total chlorophyll 
content (R2 = 0.82). He used this index in a laboratory experiment using stacks of leaves, 
obtained from four species of deciduous trees at various stages of senescence. He observed 
that over the wide range of chlorophyll contents, which can be experienced at the canopy 
scale, GNDVI was found to be sensitive to low content (∼ 500 mg / cm2) only. The use of 
reflectance in a narrow green band, r550, rather than rGreen (reflectance in the range of 540-570 
nm) in the formulation of this index did not improve the relationship with total chlorophyll 
content. In addition, no relationship was found between GNDVI and matorral vegetation 
canopy chlorophyll content per unit ground area (Blackburn, 1999). 
 
The Pigment Specific Simple Ratio (PSSR) was proposed by Blackburn (1998a) for the 
estimation of Chl-a (PSSRa), Chl-b (PSSRb), and carotenoids (PSSRc) contents at the leaf level 
using samples from deciduous trees at various stages of senescence. Blackburn (1998b) 
found that PSSRa has a strong relationship with Chl-a (R2 = 0.97), and McNairn et al. (2001) 
reported the same conclusion for Chl-a estimation in corn and beans. However, the PSSRc 
failed to predict carotenoid content in individual leaves of four deciduous tree species at 
various stages of senescence (Blackburn, 1998b). In another experiment on matorral 
vegetation canopy, Blackburn and Steele (1999) reported a reasonably linear relationship 
between PSSRa and Chl-a content per unit ground area (R2 = 0.71). However, the 
relationship was much weaker for low Chl-a contents (0 to 500 mg / cm2). Lower linear 
relationships were also found between PSSRb and Chl-b (R2 = 0.68) and PSSRc and 
carotenoid (R2 = 0.50) content per unit ground area. In this study, only the PSSRa was 
considered.  
 
Blackburn (1998a) also developed the Pigment Specific Normalized Difference (PSND) index to 
estimate individual pigment Chl-a (PSNDa), Chl-b (PSNDb), and carotenoid (PSNDc) 
contents. Like the PSSR indices, the PSNDa and PSNDb were found to have a strong 
exponential relationship with Chl-a and Chl-b (R2 > 0.91), respectively. However, PSNDc 
failed to predict carotenoid content in individual leaves of four deciduous tree species at 
various stages of senescence (Blackburn, 1998b). Blackburn and Steele (1999) found a lower 
correlation (R2 < 0.51) between these indices and the pigment contents of matorral 
vegetation canopies per unit ground area than in his previous studies (Blackburn, 1998a and 
b). The author suggested that this is due to variable background conditions and the 
structural/spectral complexity of the study sites. As for the PSSRa, only the PSNDa is used in 
this study.  
 
The Chlorophyll Absorption in Reflectance Index (CARI) was developed by Kim et al. (1994) and 
was designed to reduce the variability of photosynthetically active radiance due to the 
presence of diverse non-photosynthetic materials. Due to the sensitivity of CARI to soil 
background, Daughtry et al. (2000) presented the Modified Chlorophyll Absorption in 
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Reflectance Index (MCARI). The main change from CARI is the introduction of the ratio (r700 / 
r670) to minimize the combined effect of the underlying soil reflectance and the canopy non-
photosynthetic materials. Even though this index was developed to be both responsive to 
chlorophyll variations and resistant to non-photosynthetic material effects, Daughtry et al. 
(2000) reported that the MCARI is still influenced by the optical proprieties of the soil 
background. In order to minimize the underlying soil contribution, they suggested that the 
MCARI be normalized with a soil line vegetation index like the Optimized Soil-Adjusted 
Vegetation Index (OSAVI; Rondeaux et al., 1996). Combining these spectral indices will 
further reduce the background contributions and enhance the sensitivity to leaf chlorophyll 
content variability at the same time. Daughtry et al. (2000) found that the MCARI / OSAVI 
ratio was linearly related to leaf chlorophyll contents (R2 = 0.87) over a wide range of foliage 
cover of corn (Zea mays L.) and soil backgrounds. The combined use of the spectral indices 
MCARI and OSAVI was successful in producing an accurate assessment of crop chlorophyll 
contents from remote sensing data (Daughtry et al., 2000). However, this normalization 
combination was not implemented for predictive purposes, nor have further developments 
dealt with LAI effects on pigment content estimation from canopy reflectance 
measurements. In addition, Haboudane et al. (2002) noted the limited sensitivity of MCARI 
for low pigment contents (> 5 μg / cm2).  
 
Haboudane et al. (2002) presented another variation of the MCARI, the Transformed 
Chlorophyll Absorption in Reflectance Index (TCARI). The main reason for developing TCARI 
was to improve sensitivity for low chlorophyll values of corn. However, according to these 
authors, this index is sensitive to the underlying soil properties, particularly for low LAIs (< 
2.5). In the same study of integrated narrow-band indices for corn-crop chlorophyll 
prediction, Haboudane et al. (2002) proposed the TCARI / OSAVI ratio. The use of this ratio 
enabled accurate prediction of corn chlorophyll content from hyperspectral remote sensing 
imagery. These authors established a scaling-up relationship to make chlorophyll 
estimations as a function of the TCARI / OSAVI ratio derived from above canopy 
reflectance using Compact Airborne Spectrographic Imager (CASI) data. The ratio was found to 
be relatively insensitive to canopy cover variations, even for very low LAIs (< 1.5). The best 
fits were obtained for a logarithmic and polynomial function with R2 values exceeding 0.98. 
Zarco-Tejada et al. (2005) showed that the TCARI / OSAVI was successfully correlated with 
the Chl-ab content at the canopy scale of Vitis vinifera L. using Reflective Optics Spectrometric 
Imaging System (ROSIS) and CASI data (R2 = 0.67). Huang et al. (2004) found a significant 
logarithmic relationship (R2 = 0.78) between TCARI / OSAVI derived from field reflectance 
measurements and wheat chlorophyll arbitrary values measured with the SPAD (Soil-Plant 
Analyses Development)-502 meter. Exploring CHRIS-PROBA data for wheat crop 
chlorophyll content prediction in shaded and sunlit portions of the field, Oppelt and Mauser 
(2007) showed that using the off-forward-looking angle (+ 36° from the nadir) chlorophyll 
content per leaf area is weekly correlated with TCARI / OSAVI (R2 = 0.56 and R2 = 0.49 for 
the sunlit and shaded sides, respectively). However, this index showed a relatively high 
correlation (R2 = 0.71) with chlorophyll content per biomass of the sunlit portion in the nadir 
viewing direction. They concluded that the TCARI / OSAVI ratio is significantly sensitive to 
the viewing angle geometry. In another study for the Chl-ab content estimation at the 
canopy scale of Vitis vinifera L. using CASI reflectance spectra, Meggio et al. (2008) 
demonstrated that BRDF effects significantly affect the TCARI / OSAVI ratio. According to 

The Green Normalized Difference Vegetation Index (GNDVI) was developed by Gitelson et al. 
(1996) using a green band in a study related to the remote sensing of global vegetation and 
EOS-MODIS (Earth Observing System - Moderate Resolution Imaging Spectroradiometer) data. 
The development of the GNDVI is based on the idea that an index for chlorophyll 
estimation should be invariant with respect to pigments other than chlorophyll and should 
not be influenced by factors including background and atmosphere. Blackburn (1999) 
reported that there is a curvilinear relationship between GNDVI and the total chlorophyll 
content (R2 = 0.82). He used this index in a laboratory experiment using stacks of leaves, 
obtained from four species of deciduous trees at various stages of senescence. He observed 
that over the wide range of chlorophyll contents, which can be experienced at the canopy 
scale, GNDVI was found to be sensitive to low content (∼ 500 mg / cm2) only. The use of 
reflectance in a narrow green band, r550, rather than rGreen (reflectance in the range of 540-570 
nm) in the formulation of this index did not improve the relationship with total chlorophyll 
content. In addition, no relationship was found between GNDVI and matorral vegetation 
canopy chlorophyll content per unit ground area (Blackburn, 1999). 
 
The Pigment Specific Simple Ratio (PSSR) was proposed by Blackburn (1998a) for the 
estimation of Chl-a (PSSRa), Chl-b (PSSRb), and carotenoids (PSSRc) contents at the leaf level 
using samples from deciduous trees at various stages of senescence. Blackburn (1998b) 
found that PSSRa has a strong relationship with Chl-a (R2 = 0.97), and McNairn et al. (2001) 
reported the same conclusion for Chl-a estimation in corn and beans. However, the PSSRc 
failed to predict carotenoid content in individual leaves of four deciduous tree species at 
various stages of senescence (Blackburn, 1998b). In another experiment on matorral 
vegetation canopy, Blackburn and Steele (1999) reported a reasonably linear relationship 
between PSSRa and Chl-a content per unit ground area (R2 = 0.71). However, the 
relationship was much weaker for low Chl-a contents (0 to 500 mg / cm2). Lower linear 
relationships were also found between PSSRb and Chl-b (R2 = 0.68) and PSSRc and 
carotenoid (R2 = 0.50) content per unit ground area. In this study, only the PSSRa was 
considered.  
 
Blackburn (1998a) also developed the Pigment Specific Normalized Difference (PSND) index to 
estimate individual pigment Chl-a (PSNDa), Chl-b (PSNDb), and carotenoid (PSNDc) 
contents. Like the PSSR indices, the PSNDa and PSNDb were found to have a strong 
exponential relationship with Chl-a and Chl-b (R2 > 0.91), respectively. However, PSNDc 
failed to predict carotenoid content in individual leaves of four deciduous tree species at 
various stages of senescence (Blackburn, 1998b). Blackburn and Steele (1999) found a lower 
correlation (R2 < 0.51) between these indices and the pigment contents of matorral 
vegetation canopies per unit ground area than in his previous studies (Blackburn, 1998a and 
b). The author suggested that this is due to variable background conditions and the 
structural/spectral complexity of the study sites. As for the PSSRa, only the PSNDa is used in 
this study.  
 
The Chlorophyll Absorption in Reflectance Index (CARI) was developed by Kim et al. (1994) and 
was designed to reduce the variability of photosynthetically active radiance due to the 
presence of diverse non-photosynthetic materials. Due to the sensitivity of CARI to soil 
background, Daughtry et al. (2000) presented the Modified Chlorophyll Absorption in 
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et al. (2007a) showed that it would be very difficult or impossible to interpret the MTCI 
values at low LAI in the precision agriculture context. Additionally, Haboudane et al. (2008) 
found that this index is very sensitive to the LAI, predicting a week correlation with wheat 
chlorophyll content (R2 = 0.35), but a higher one with corn chlorophyll (R2 = 0.81) using 
CASI airborne data.  

 
3. Material and Methods  

3. 1. Study Site and field data collection 
The field, airborne and satellite data were collected in an agricultural region near Indian 
Head (50oN, 104oW), approximately 70 km east of Regina, Saskatchewan, Canada. The 
principal economic activities in this area are based on agriculture. Major crops grown are 
wheat, pea, canola and corn. This region was used in the context of a large project to 
investigate the potential of hyperspectral remote sensing in precision agriculture. In this 
project, the laboratory and the field measurements, and airborne and satellite hyperspectral 
data were investigated for plant water content estimation (Champagne et al., 2003), nitrogen 
stress detection (Karimi et al., 2005a and 2005b), LAI modelling and percent crop cover type 
mapping (Pacheco et al., 2001, 2002, and 2008), crop residues estimation (Bannari et al., 2006 
and 2007b), and chlorophyll content prediction (McNairn et al., 2001; Bannari et al., 2007a 
and 2008). 
 
The soils in the Indian Head and Regina regions are developed on lacustrine, alluvial 
lacustrine, alluvial glacio-fluvial, and glacial till parent materials in the brown, dark-brown, 
and black soil zone (Thie, 2006). Dark-brown chernozemic soils, which are the most 
productive of this group, occupy approximately 75% of the area. Thin black chernozemic 
soils (about 15 %) are developed on moderately fine and fine textured lacustrine parent 
materials. The brown soils (less than 2 %) are characterized by moderate-fine texture, and 
are generally rated as soils whereas the moderately coarse and coarse deposits. Gleysolic 
soils are generally most widely distributed, but are less represented in the study area. 
Azonal soils characteristic of the alluvium and hillwash complexer (about 10 %) occur in 
association with the main drainage channels or their adjacent floodplains. The objective of 
this study is not the characterization of each soil class using hyperspectral remote sensing, 
but the evaluation and comparison of the sensitivity of several chlorophyll indices to bare 
soils optical property variations. In order to achieve the goal of this investigation, different 
soils were selected based on the spatial representativeness of the major soil types from 
different agricultural lands with various optical and physico-chemical properties (colour, 
brightness, roughness, moisture, mineralogical composition, etc.). In the field, samples were 
taken from the soils upper layer (5 cm depth). Observations and remarks about each sample 
were noted and photographed using a 35 mm digital camera equipped with a 28 mm lens.  

 
3.2. Hyperion data acquisition 
Satellite hyperspectral data were acquired on June 30, 2002 using the Hyperion 
hyperspectral sensor on NASA’s Earth Observer-1 (EO-1) platform over the Indian Head 
site (Figure 1a). The launch of the Hyperion sensor in November 2000 marked the first 
operational test of a space-borne hyperspectral sensor covering both the visible and near-
infrared (VNIR) and the short-wave infrared (SWIR) spectral regions (Beck, 2003). This 

Wu et al. (2008), if different disturbances sources such as shadow, soil background, and non-
photosynthetic materials, were considered, the integrated indices TCARI / OSAVI and 
MCARI / OSAVI are appropriate for chlorophyll estimation of different types of corns with 
high R2 of 0.88 and 0.94, respectively. In addition, these authors indicated that these two 
indices could be used to estimate the chlorophyll of wheat using Hyperion data (R2 of 0.68 
and 0.76 for TCARI / OSAVI and MCARI / OSAVI, respectively). However, Kneubühler 
(2002) and Bannari et al. (2007 and 2008) showed that these indices, developed specifically 
for corn, performed poorly at the wheat canopy-level using Hyperion hypersectral data. As 
well, Haboudane et al. (2008), the developer of the TCARI / OSAVI ratio, found that this 
ratio seems to be a good estimator of leaf chlorophyll content for corn canopies using CASI 
hyperspectral reflectance data (R2 = 0.73), but weak for wheat chlorophyll content estimation 
(R2 = 0.29).  
 
The Normalized Difference Vegetation Index (NDVI) was proposed by Rouse et al. (1974) and 
was used in various regional and global applications for studying the state of vegetation 
using multispectral remote sensing (Bannari et al., 1995). When hyperspectral data are used, 
the name of this index becomes the Hyperspectral Normalized Difference Vegetation Index 
(HNDVI). Oppelt and Mauser (2004) used the HNDVI in a study for monitoring 
physiological parameters of wheat. They found that HNDVI and OSAVI become insensitive 
at chlorophyll contents below 0.3 g/m2 as well as above 1.5 g/m2. Nevertheless, it important 
to mention that these indices were developed for biomass and yield estimation, but not for 
chlorophyll content prediction.  
 
The Chlorophyll Absorption Integral (CAI) was proposed by Oppelt and Mauser (2001) for 
chlorophyll content of maize (Zea mays) derived from Airborne Visible/near-infrared Imaging 
Spectrometer (AVIS) data. This index involves the position of the red edge as well as the 
depth of chlorophyll absorption at 680 nm (Chl-a) and 650 nm (Chl-b). According to these 
authors, CAI shows a very good correlation with the maize chlorophyll content per unit area 
or per unit mass (R2 ≥ 0.92), and it could be a good predictor of wheat canopy chlorophyll 
content provided the dependence of the chlorophyll level on the wheat crop variety is taken 
into consideration. Oppelt and Mauser (2007) demonstrated that the CAI is the appropriate 
index to assess the chlorophyll content of both sunlit and shaded layers of wheat canopies 
using the data acquired with multi-angle CHRIS-PROBA sensor. However, even if the CAI 
was recommended for wheat crop chlorophyll content prediction (Oppelt and Mauser, 2004 
and 2007), this index provide very poor results for wheat using Hyperion EO-1 data 
(Bannari et al., 2008). Oppelt and Mauser (2001 and 2004) and Khurshid (2004) provide more 
details on the calculation and extraction of this index. 
 
Using a ratio of the difference in reflectance between bands 10 and 9 and the difference in 
reflectance between bands 9 and 8 of the Medium Resolution Imaging Spectrometer (MERIS), 
Dash and Curran (2004) developed the MERIS Terrestrial Chlorophyll Index (MTCI). This 
index is used by the European Space Agency to produce the land surface biomass, a MERIS 
level-2 product. Due to its moderate spatial resolution (300 m x 300 m) and three-day re-visit 
time, MERIS is a potentially valuable sensor for the measurement and monitoring of 
terrestrial environment at regional to global scales (Verstraete et al., 1999). However, using 
laboratory reflectance measurements for wheat crop chlorophyll content estimation, Bannari 
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et al. (2007a) showed that it would be very difficult or impossible to interpret the MTCI 
values at low LAI in the precision agriculture context. Additionally, Haboudane et al. (2008) 
found that this index is very sensitive to the LAI, predicting a week correlation with wheat 
chlorophyll content (R2 = 0.35), but a higher one with corn chlorophyll (R2 = 0.81) using 
CASI airborne data.  

 
3. Material and Methods  

3. 1. Study Site and field data collection 
The field, airborne and satellite data were collected in an agricultural region near Indian 
Head (50oN, 104oW), approximately 70 km east of Regina, Saskatchewan, Canada. The 
principal economic activities in this area are based on agriculture. Major crops grown are 
wheat, pea, canola and corn. This region was used in the context of a large project to 
investigate the potential of hyperspectral remote sensing in precision agriculture. In this 
project, the laboratory and the field measurements, and airborne and satellite hyperspectral 
data were investigated for plant water content estimation (Champagne et al., 2003), nitrogen 
stress detection (Karimi et al., 2005a and 2005b), LAI modelling and percent crop cover type 
mapping (Pacheco et al., 2001, 2002, and 2008), crop residues estimation (Bannari et al., 2006 
and 2007b), and chlorophyll content prediction (McNairn et al., 2001; Bannari et al., 2007a 
and 2008). 
 
The soils in the Indian Head and Regina regions are developed on lacustrine, alluvial 
lacustrine, alluvial glacio-fluvial, and glacial till parent materials in the brown, dark-brown, 
and black soil zone (Thie, 2006). Dark-brown chernozemic soils, which are the most 
productive of this group, occupy approximately 75% of the area. Thin black chernozemic 
soils (about 15 %) are developed on moderately fine and fine textured lacustrine parent 
materials. The brown soils (less than 2 %) are characterized by moderate-fine texture, and 
are generally rated as soils whereas the moderately coarse and coarse deposits. Gleysolic 
soils are generally most widely distributed, but are less represented in the study area. 
Azonal soils characteristic of the alluvium and hillwash complexer (about 10 %) occur in 
association with the main drainage channels or their adjacent floodplains. The objective of 
this study is not the characterization of each soil class using hyperspectral remote sensing, 
but the evaluation and comparison of the sensitivity of several chlorophyll indices to bare 
soils optical property variations. In order to achieve the goal of this investigation, different 
soils were selected based on the spatial representativeness of the major soil types from 
different agricultural lands with various optical and physico-chemical properties (colour, 
brightness, roughness, moisture, mineralogical composition, etc.). In the field, samples were 
taken from the soils upper layer (5 cm depth). Observations and remarks about each sample 
were noted and photographed using a 35 mm digital camera equipped with a 28 mm lens.  

 
3.2. Hyperion data acquisition 
Satellite hyperspectral data were acquired on June 30, 2002 using the Hyperion 
hyperspectral sensor on NASA’s Earth Observer-1 (EO-1) platform over the Indian Head 
site (Figure 1a). The launch of the Hyperion sensor in November 2000 marked the first 
operational test of a space-borne hyperspectral sensor covering both the visible and near-
infrared (VNIR) and the short-wave infrared (SWIR) spectral regions (Beck, 2003). This 

Wu et al. (2008), if different disturbances sources such as shadow, soil background, and non-
photosynthetic materials, were considered, the integrated indices TCARI / OSAVI and 
MCARI / OSAVI are appropriate for chlorophyll estimation of different types of corns with 
high R2 of 0.88 and 0.94, respectively. In addition, these authors indicated that these two 
indices could be used to estimate the chlorophyll of wheat using Hyperion data (R2 of 0.68 
and 0.76 for TCARI / OSAVI and MCARI / OSAVI, respectively). However, Kneubühler 
(2002) and Bannari et al. (2007 and 2008) showed that these indices, developed specifically 
for corn, performed poorly at the wheat canopy-level using Hyperion hypersectral data. As 
well, Haboudane et al. (2008), the developer of the TCARI / OSAVI ratio, found that this 
ratio seems to be a good estimator of leaf chlorophyll content for corn canopies using CASI 
hyperspectral reflectance data (R2 = 0.73), but weak for wheat chlorophyll content estimation 
(R2 = 0.29).  
 
The Normalized Difference Vegetation Index (NDVI) was proposed by Rouse et al. (1974) and 
was used in various regional and global applications for studying the state of vegetation 
using multispectral remote sensing (Bannari et al., 1995). When hyperspectral data are used, 
the name of this index becomes the Hyperspectral Normalized Difference Vegetation Index 
(HNDVI). Oppelt and Mauser (2004) used the HNDVI in a study for monitoring 
physiological parameters of wheat. They found that HNDVI and OSAVI become insensitive 
at chlorophyll contents below 0.3 g/m2 as well as above 1.5 g/m2. Nevertheless, it important 
to mention that these indices were developed for biomass and yield estimation, but not for 
chlorophyll content prediction.  
 
The Chlorophyll Absorption Integral (CAI) was proposed by Oppelt and Mauser (2001) for 
chlorophyll content of maize (Zea mays) derived from Airborne Visible/near-infrared Imaging 
Spectrometer (AVIS) data. This index involves the position of the red edge as well as the 
depth of chlorophyll absorption at 680 nm (Chl-a) and 650 nm (Chl-b). According to these 
authors, CAI shows a very good correlation with the maize chlorophyll content per unit area 
or per unit mass (R2 ≥ 0.92), and it could be a good predictor of wheat canopy chlorophyll 
content provided the dependence of the chlorophyll level on the wheat crop variety is taken 
into consideration. Oppelt and Mauser (2007) demonstrated that the CAI is the appropriate 
index to assess the chlorophyll content of both sunlit and shaded layers of wheat canopies 
using the data acquired with multi-angle CHRIS-PROBA sensor. However, even if the CAI 
was recommended for wheat crop chlorophyll content prediction (Oppelt and Mauser, 2004 
and 2007), this index provide very poor results for wheat using Hyperion EO-1 data 
(Bannari et al., 2008). Oppelt and Mauser (2001 and 2004) and Khurshid (2004) provide more 
details on the calculation and extraction of this index. 
 
Using a ratio of the difference in reflectance between bands 10 and 9 and the difference in 
reflectance between bands 9 and 8 of the Medium Resolution Imaging Spectrometer (MERIS), 
Dash and Curran (2004) developed the MERIS Terrestrial Chlorophyll Index (MTCI). This 
index is used by the European Space Agency to produce the land surface biomass, a MERIS 
level-2 product. Due to its moderate spatial resolution (300 m x 300 m) and three-day re-visit 
time, MERIS is a potentially valuable sensor for the measurement and monitoring of 
terrestrial environment at regional to global scales (Verstraete et al., 1999). However, using 
laboratory reflectance measurements for wheat crop chlorophyll content estimation, Bannari 
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Fig. 1. Hyperspectral Hyperion EO-1 (a) and Probe-1 (b) 3D cubes. 

 
3.4. Field spectroradiometric measurements 
In order to achieve the goal of this investigation, spectroradiometric measurements were 
acquired above 90 bare soil plots selected from different agricultural lands with various 
optical and physicochemical properties (colour, brightness, roughness, moisture, 
mineralogical composition, etc.) using an ASD (Analytical Spectral Devices) spectroradiometer 
(ASD Inc., 1999). This instrument is equipped with two detectors operating in the VNIR and 
SWIR, between 350 and 2500 nm. It acquires a continuous spectrum with a 1.4 nm sampling 
interval from 350 to 1000 nm and a 2 nm one from 1000 to 2500 nm. The ASD resamples the 
measurements in 1-nm intervals, which allows the acquisition of 2151 contiguous bands per 
spectrum. The sensor is characterized by the programming capacity of the integration time, 
which allows a satisfactory signal-to-noise ratio as well as a great stability (ASD Inc., 1999).  
 
Measurements were taken in the laboratory using two halogen lamps of 500 W each, 
equipped with an electrical current regulator. The data were acquired at nadir with a FOV 
of 25° and a solar zenith angle of approximately 5° by averaging twenty-five measurements. 
The spectroradiometer was installed on a tripod with a height of approximately 30 cm over 
the target, which makes it possible to observe a surface of approximately 177 cm2. A laser 
beam was used to locate the center of the ASD FOV. The reflectance factor of each soil 
sample was calculated by rationing target radiance to the radiance obtained from a 
calibrated “Spectralon panel” in accordance with the method described in Jackson et al. 
(1980). Corrections were made for the wavelength dependence and non-lambertien behavior 
of the panel. Only the VNIR wavelengths from 430 to 850 nm were required to calculate the 
chlorophyll indices used in this study (Table 1). The specific and requested wavelength 
ranges for each chlorophyll index were used from these measurements. Figure 2 shows the 
reflectance of the soil samples.  
 
 
 

(b) 
sensor is a pushbroom imaging spectrometer that acquires data in the along-track direction. 
It collects the upwelling radiance in 242 spectral bands, each approximately 10 nm wide at 
full width half maximum (FWHM) with an average spectral sampling interval of 10 nm. 
Hyperion has a single telescope and consists of two spectrographs, one covering the VNIR 
wavelengths range from 357 to 1055 nm, the other, the SWIR from 851 to 2576 nm. Since 
Hyperion is a pushbroom sensor, the entire swath is obtained in a single frame with a 
ground sampling distance of 30 m. Its telescope images the Earth onto a slit with a field-of-
view (FOV) of 0.624°, resulting in a swath width of 7.65 km from a 705 km altitude. Each 
data set acquired by this sensor covers a nominal along-track length of 40 km. Figure 1a 
illustrates the 3D cube of the used Hyperion EO-1 data.  

 
3.3. Probe-1 data acquisition 
The airborne hyperspectral data were acquired using the Probe-1 sensor (Earth Search 
Sciences Inc., 2001) on Jun 28, 2000 over the Indian Head site (Figure 1b). The Probe-1 is a 
"whiskbroom style" instrument that collects data in cross-track direction by mechanical 
scanning and in along-track direction by movement of the airborne platform. This sensor 
acquires up-welling radiance in 128 bands in the 400 to 2500 nm wavelengths region. The at-
sensor radiance is dispersed by four spectrographs onto four linear detector arrays with 32 
bands each. This sensor covers the wavelength range continuously with small gaps in the 
strong 1380 nm and 1870 nm atmospheric water vapor absorption regions. The bandwidth is 
between 11 and 18 nm at FWHM. Probe-1 was mounted on a three-axis gyrostabilizer to 
minimize geometric distortion from the aircraft movement. The flying altitude was 2500 m 
above ground for a swath width of 3 km and a spatial resolution of 5 m at nadir. A non-
differential GPS was recording the location of the aircraft during the flight. Figure 1b shows 
the 3D cube of the used Probe-1 airborne hyperspectral data.  
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Fig. 1. Hyperspectral Hyperion EO-1 (a) and Probe-1 (b) 3D cubes. 
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ranges for each chlorophyll index were used from these measurements. Figure 2 shows the 
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view (FOV) of 0.624°, resulting in a swath width of 7.65 km from a 705 km altitude. Each 
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strong 1380 nm and 1870 nm atmospheric water vapor absorption regions. The bandwidth is 
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al. (2004) reported that the Hyperion sensor has keystone distortions, ranging from - 0.05 to 
0.49 pixels for the VNIR spectrometer and - 0.06 to 0.07 pixels for the SWIR spectrometer. 
For our data, the keystone distortion varied from a minimum of - 0.075 pixels to a maximum 
of 0.3 pixels for the VNIR and - 0.075 to 0.1 pixels for the SWIR (Khurshid et al., 2006). No 
keystone corrections were performed due to the lack of an appropriate resampling 
procedure providing sufficient geometric accuracy without minimal increase in noise. 
 
Furthermore, the spectral smile/frown is a wavelength shift, which is a function of the 
across-track pixel (column) in the swath (Neville et al., 2008). In an ideal case, all pixels in 
the across-track dimension correspond to the same wavelength. This wavelength shift is due 
to many sources, such as spatial distortions caused by the dispersion element, prism or 
grating, or by aberrations in the collimator and imaging optics (Neville et al., 2008). To 
achieve spectral calibration, the radiance spectra were analyzed to evaluate the bandwidth 
and band’s center position using five known atmospheric absorption features: 760 nm 
(oxygen), 940 nm and 1130 nm (water vapor), and 2005 nm and 2055 nm (carbon dioxide). 
The correct band center wavelengths and bandwidths are determined by correlating the at-
sensor Hyperion radiance with a modeled at-sensor radiance calculated with the radiative 
transfer (RT) code MODTRAN 4.2 (Berk et al., 1999). Wavelength shifts of 1 to 3 nm in the 
VNIR and SWIR were detected and applied after the atmospheric correction process. 

 
3.5.2. Probe-1 radiometric and spectral calibration 
A laboratory calibration was completed for the Probe-1 sensor in April 2000 to obtain the 
dark current signal, radiometric coefficients, and to ascertain the center position of the 
spectral bands. However, a vicarious calibration of the sensor was required to correct for 
errors in gains and band centers, which resulted from the stresses experienced during 
transportation, installation and operation between the laboratory calibration and the over-
flight (Secker et al., 2001). This is an absolute calibration method, which produces a new set 
of gains that can be used to replace those derived in the laboratory.  
 
To achieve spectral calibration of the Probe-1 data, the raw spectrum (digital numbers) 
recorded by the sensor was converted to radiance using the radiometric gains and offsets 
derived in the laboratory. As for the Hyperion data, the derived reflectance spectra were 
then analyzed to evaluate the band’s center positions using five known atmospheric 
absorption features located at 760 nm (oxygen), 940 nm and 1130 nm (water vapor) and 2005 
nm and 2055 nm (carbon dioxide). Wavelength shifts were then calculated, which best 
corrected the surface reflectance to obtain a smooth spectrum in the regions of these 
absorption features. These shifts were then applied to the Probe-1 data. The reflectance-
based vicarious calibration was then applied in a next step to the data using the reflectance 
of an asphalt reference target acquired on the ground with an ASD spectroradiometer 
(Secker et al., 2001). This site was then visually located in the Probe-1 imagery and an 
average spectrum was extracted for the calibration target. The spectrum from this target was 
then matched to the averaged ASD spectra of the same site. The differences between the two 
spectra were calculated and the Probe-1 radiometric coefficients were then adjusted to 
minimize the absolute reflectance difference until an error threshold was reached, which 
was set to 0.02 %. This process was carried out in ISDAS (Staenz et al., 1998) with an iterative 
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Fig. 2. Spectral signature of soils sampled at the field and measured in the lab using ASD.  

 
3.5. Hyperion and Probe-1 data pre-processing 
 

3.5.1. Hyperion radiometric and spectral calibration 
Hyperion EO-1 hyperspectral data were pre-processed with an aim to correct for sensor 
artifacts and atmospheric and geometric effects (Khurshid et al., 2006). The Imaging 
Spectrometer Data Analysis System (ISDAS) developed at the Canada Centre for Remote Sensing 
(Staenz et al., 1998) was used to perform all the pre-processing steps. The procedure begins 
with geometric corrections (shift and rotation) of the SWIR data to spatially register them to 
the VNIR data. In fact, the SWIR data were corrected for a single pixel offset from pixels 129 
to 256 across-track and rotated by 0.22°. Furthermore, the striping problem due to 
systematic noise caused by factors such as detector non-linearity, movement of the slit with 
respect to the focal plane and temperature effects (Kruse et al., 2003) was corrected. In 
addition, the column dropouts caused by dead pixels (a dead pixel is a functional failure of 
a single detector element during acquisition) were then removed from the whole image cube 
(Sun et al., 2008). This was followed by noise reduction using recently developed automated 
software tools (Khurshid et al., 2006). To achieve this step, the raw imagery (digital 
numbers) recorded by the sensor was converted to radiance using the radiometric 
calibration coefficients (gains and offsets) derived in the laboratory and provided by NASA.  
 
The data cube was subsequently analyzed to characterize the distortions of keystone and 
spectral smile (Neville et al., 2004 and 2008). At this step, the data were cropped to exclude 
noisy bands resulting in a final data set that spans the spectral range from 426.82 to 2355.20 
nm with a total of 192 bands, excluding the overlap bands between the VNIR and SWIR 
spectrographs. Keystone is a term used in hyperspectral remote sensing to refer to the inter-
band spatial mis-registration in imaging spectrometers (Neville et al., 2004). These 
distortions may be caused by geometric distortions or by chromatic aberration, or a 
combination of both. Due to these distortions, a particular spatial pixel, corresponding to a 
specific detector element in the across-track dimension, in one specific band, will not be 
registered on the ground with the corresponding pixel in the other spectral bands. Neville et 
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al. (2004) reported that the Hyperion sensor has keystone distortions, ranging from - 0.05 to 
0.49 pixels for the VNIR spectrometer and - 0.06 to 0.07 pixels for the SWIR spectrometer. 
For our data, the keystone distortion varied from a minimum of - 0.075 pixels to a maximum 
of 0.3 pixels for the VNIR and - 0.075 to 0.1 pixels for the SWIR (Khurshid et al., 2006). No 
keystone corrections were performed due to the lack of an appropriate resampling 
procedure providing sufficient geometric accuracy without minimal increase in noise. 
 
Furthermore, the spectral smile/frown is a wavelength shift, which is a function of the 
across-track pixel (column) in the swath (Neville et al., 2008). In an ideal case, all pixels in 
the across-track dimension correspond to the same wavelength. This wavelength shift is due 
to many sources, such as spatial distortions caused by the dispersion element, prism or 
grating, or by aberrations in the collimator and imaging optics (Neville et al., 2008). To 
achieve spectral calibration, the radiance spectra were analyzed to evaluate the bandwidth 
and band’s center position using five known atmospheric absorption features: 760 nm 
(oxygen), 940 nm and 1130 nm (water vapor), and 2005 nm and 2055 nm (carbon dioxide). 
The correct band center wavelengths and bandwidths are determined by correlating the at-
sensor Hyperion radiance with a modeled at-sensor radiance calculated with the radiative 
transfer (RT) code MODTRAN 4.2 (Berk et al., 1999). Wavelength shifts of 1 to 3 nm in the 
VNIR and SWIR were detected and applied after the atmospheric correction process. 

 
3.5.2. Probe-1 radiometric and spectral calibration 
A laboratory calibration was completed for the Probe-1 sensor in April 2000 to obtain the 
dark current signal, radiometric coefficients, and to ascertain the center position of the 
spectral bands. However, a vicarious calibration of the sensor was required to correct for 
errors in gains and band centers, which resulted from the stresses experienced during 
transportation, installation and operation between the laboratory calibration and the over-
flight (Secker et al., 2001). This is an absolute calibration method, which produces a new set 
of gains that can be used to replace those derived in the laboratory.  
 
To achieve spectral calibration of the Probe-1 data, the raw spectrum (digital numbers) 
recorded by the sensor was converted to radiance using the radiometric gains and offsets 
derived in the laboratory. As for the Hyperion data, the derived reflectance spectra were 
then analyzed to evaluate the band’s center positions using five known atmospheric 
absorption features located at 760 nm (oxygen), 940 nm and 1130 nm (water vapor) and 2005 
nm and 2055 nm (carbon dioxide). Wavelength shifts were then calculated, which best 
corrected the surface reflectance to obtain a smooth spectrum in the regions of these 
absorption features. These shifts were then applied to the Probe-1 data. The reflectance-
based vicarious calibration was then applied in a next step to the data using the reflectance 
of an asphalt reference target acquired on the ground with an ASD spectroradiometer 
(Secker et al., 2001). This site was then visually located in the Probe-1 imagery and an 
average spectrum was extracted for the calibration target. The spectrum from this target was 
then matched to the averaged ASD spectra of the same site. The differences between the two 
spectra were calculated and the Probe-1 radiometric coefficients were then adjusted to 
minimize the absolute reflectance difference until an error threshold was reached, which 
was set to 0.02 %. This process was carried out in ISDAS (Staenz et al., 1998) with an iterative 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

430 530 630 730 830

Wavelength (nm)

Re
fle

ct
an

ce

 
Fig. 2. Spectral signature of soils sampled at the field and measured in the lab using ASD.  

 
3.5. Hyperion and Probe-1 data pre-processing 
 

3.5.1. Hyperion radiometric and spectral calibration 
Hyperion EO-1 hyperspectral data were pre-processed with an aim to correct for sensor 
artifacts and atmospheric and geometric effects (Khurshid et al., 2006). The Imaging 
Spectrometer Data Analysis System (ISDAS) developed at the Canada Centre for Remote Sensing 
(Staenz et al., 1998) was used to perform all the pre-processing steps. The procedure begins 
with geometric corrections (shift and rotation) of the SWIR data to spatially register them to 
the VNIR data. In fact, the SWIR data were corrected for a single pixel offset from pixels 129 
to 256 across-track and rotated by 0.22°. Furthermore, the striping problem due to 
systematic noise caused by factors such as detector non-linearity, movement of the slit with 
respect to the focal plane and temperature effects (Kruse et al., 2003) was corrected. In 
addition, the column dropouts caused by dead pixels (a dead pixel is a functional failure of 
a single detector element during acquisition) were then removed from the whole image cube 
(Sun et al., 2008). This was followed by noise reduction using recently developed automated 
software tools (Khurshid et al., 2006). To achieve this step, the raw imagery (digital 
numbers) recorded by the sensor was converted to radiance using the radiometric 
calibration coefficients (gains and offsets) derived in the laboratory and provided by NASA.  
 
The data cube was subsequently analyzed to characterize the distortions of keystone and 
spectral smile (Neville et al., 2004 and 2008). At this step, the data were cropped to exclude 
noisy bands resulting in a final data set that spans the spectral range from 426.82 to 2355.20 
nm with a total of 192 bands, excluding the overlap bands between the VNIR and SWIR 
spectrographs. Keystone is a term used in hyperspectral remote sensing to refer to the inter-
band spatial mis-registration in imaging spectrometers (Neville et al., 2004). These 
distortions may be caused by geometric distortions or by chromatic aberration, or a 
combination of both. Due to these distortions, a particular spatial pixel, corresponding to a 
specific detector element in the across-track dimension, in one specific band, will not be 
registered on the ground with the corresponding pixel in the other spectral bands. Neville et 
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flat target pixels”. Finally, linear fits are performed on a band-by-band basis providing 
slopes and offsets, which are used as gain and offset for the correction of residual errors in 
the reflectance data.  
 
After all these pre-processing steps, 60 spectral signatures representing different bare soils 
with various optical properties were extracted from bare soil of different agricultural fields 
from the Hyperien and Probe-1 imagery for the analysis (Figures 3 and 4). 
      
 

Fig. 3. Spectral signature of soils extracted from airborne Probe-1 imagery. 
 

Fig. 4. Spectral signature of soils extracted from Hyperion EO-1 satellite imagery. 
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numerical technique which provided a new set of optimal gains. These new gains were then 
applied to the raw digital numbers to calculate at-sensor radiance for the dataset. 

 
3.5.3. Hyperion and Probe-1 surface reflectance retrieval  
The calibrated at-sensor radiance data were converted to surface reflectance using a look-up 
table (LUT) approach to correct for the atmospheric effects (Staenz and Williams, 1997). Two 
five-dimensional raw LUTs, each one for a 5% and 60% spectrally flat reflectance, with 
tunable breakpoints were generated with the MODTRAN 4.2 RT code to provide additive 
and multiplicative coefficients for the removal of atmospheric scattering and absorption 
effects. For this purpose, the midlatitude-summer atmosphere model and a continental-rural 
aerosol model was used. The input parameters for the RT code for Hyperion and Probe-1 
data are presented in Table 2. The initial LUTs were then convolved with the Hyperion and 
Probe-1 spectral sensor characteristics and used in combination with a curve-fitting 
technique in the 940 and 1130 nm water vapor absorption regions to estimate the 
atmospheric water vapour content from the datasets themselves on a pixel-by-pixel basis 
(Green et al., 1991; Gao and Goetz, 1990). The column atmospheric water vapour estimates 
are then used to interpolate the LUTs to retrieve surface reflectance. Subsequently, the 
reflectance data were corrected for smile effects.  
 

Input Parameters/Dataset Probe-1 data Hyperion data 
Date of over flight June 28, 2000 June 30, 2002 
Time of over flight (GMT) 17:10:00 17:36:00 
Aircraft heading 110o N/A 
Sensor altitude (above sea level) 3.079 km 705 km 
Terrain elevation (above sea level) 579 m 579 m 
Solar zenith angle 34.35o 31.720 
Solar azimuth angle 132.55o 142.170 
Atmospheric model Mid-latitude Summer Mid-latitude Summer 
Aerosol model Continental (rural) Continental (rural) 
Water vapour content 1.5 g/cm2 1.5-2.5 g/cm2 
Ozone column (as per model) 0.319 cm-atm 0.319 cm-atm 
CO2 mixing ratio (as per model) 357.5 ppm 365.00 ppm  
Horizontal visibility 50 km 23 km 

          GMT= Greenwich Mean Time; ASL= Above Sea Level; ppm=parts per million 
Table 2. Input parameters for the MODTRAN 4.2 radiative transfer code for Probe-1 data 
and Hyperion data. 
 
Finally, the post-processing concluded the corrections by removing residuals that still 
remained after the correction of sensor artifacts and atmospheric effects. This step involves 
the calculation of correction gains and offsets using a spectrally flat target pixel approach 
(Staenz et al., 1999). The technique assumes that there are a number of pixels whose 
reflectance spectra are flat or nearly flat (feature-less), and their brightness range covers a 
major portion of the full range for all the pixels in the scene. A second-order polynomial fit 
to the reflectance spectra using χ-squared as a goodness of fit measure is calculated on a 
pixel-by-pixel basis. The pixels with the smallest χ-squared values are selected as “spectrally 
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flat target pixels”. Finally, linear fits are performed on a band-by-band basis providing 
slopes and offsets, which are used as gain and offset for the correction of residual errors in 
the reflectance data.  
 
After all these pre-processing steps, 60 spectral signatures representing different bare soils 
with various optical properties were extracted from bare soil of different agricultural fields 
from the Hyperien and Probe-1 imagery for the analysis (Figures 3 and 4). 
      
 

Fig. 3. Spectral signature of soils extracted from airborne Probe-1 imagery. 
 

Fig. 4. Spectral signature of soils extracted from Hyperion EO-1 satellite imagery. 
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numerical technique which provided a new set of optimal gains. These new gains were then 
applied to the raw digital numbers to calculate at-sensor radiance for the dataset. 

 
3.5.3. Hyperion and Probe-1 surface reflectance retrieval  
The calibrated at-sensor radiance data were converted to surface reflectance using a look-up 
table (LUT) approach to correct for the atmospheric effects (Staenz and Williams, 1997). Two 
five-dimensional raw LUTs, each one for a 5% and 60% spectrally flat reflectance, with 
tunable breakpoints were generated with the MODTRAN 4.2 RT code to provide additive 
and multiplicative coefficients for the removal of atmospheric scattering and absorption 
effects. For this purpose, the midlatitude-summer atmosphere model and a continental-rural 
aerosol model was used. The input parameters for the RT code for Hyperion and Probe-1 
data are presented in Table 2. The initial LUTs were then convolved with the Hyperion and 
Probe-1 spectral sensor characteristics and used in combination with a curve-fitting 
technique in the 940 and 1130 nm water vapor absorption regions to estimate the 
atmospheric water vapour content from the datasets themselves on a pixel-by-pixel basis 
(Green et al., 1991; Gao and Goetz, 1990). The column atmospheric water vapour estimates 
are then used to interpolate the LUTs to retrieve surface reflectance. Subsequently, the 
reflectance data were corrected for smile effects.  
 

Input Parameters/Dataset Probe-1 data Hyperion data 
Date of over flight June 28, 2000 June 30, 2002 
Time of over flight (GMT) 17:10:00 17:36:00 
Aircraft heading 110o N/A 
Sensor altitude (above sea level) 3.079 km 705 km 
Terrain elevation (above sea level) 579 m 579 m 
Solar zenith angle 34.35o 31.720 
Solar azimuth angle 132.55o 142.170 
Atmospheric model Mid-latitude Summer Mid-latitude Summer 
Aerosol model Continental (rural) Continental (rural) 
Water vapour content 1.5 g/cm2 1.5-2.5 g/cm2 
Ozone column (as per model) 0.319 cm-atm 0.319 cm-atm 
CO2 mixing ratio (as per model) 357.5 ppm 365.00 ppm  
Horizontal visibility 50 km 23 km 

          GMT= Greenwich Mean Time; ASL= Above Sea Level; ppm=parts per million 
Table 2. Input parameters for the MODTRAN 4.2 radiative transfer code for Probe-1 data 
and Hyperion data. 
 
Finally, the post-processing concluded the corrections by removing residuals that still 
remained after the correction of sensor artifacts and atmospheric effects. This step involves 
the calculation of correction gains and offsets using a spectrally flat target pixel approach 
(Staenz et al., 1999). The technique assumes that there are a number of pixels whose 
reflectance spectra are flat or nearly flat (feature-less), and their brightness range covers a 
major portion of the full range for all the pixels in the scene. A second-order polynomial fit 
to the reflectance spectra using χ-squared as a goodness of fit measure is calculated on a 
pixel-by-pixel basis. The pixels with the smallest χ-squared values are selected as “spectrally 
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required for these indices. Thus, wavelengths were selected which most closely match the 
wavelengths position proposed for the indices investigated (Table 3). 
 
The relationships between chlorophyll indices and their shortest wavelengths, over bare 
soils, are not unique; they show a considerable scatter caused by changes in soil optical 
properties. In fact, these indices were designed from leaf or canopy spectra to measure 
vegetation pigments. To understand this influence, chlorophyll indices selected for this 
study were plotted against their shortest wavelength position as illustrated in Figure 5. It 
shows that in addition to having different levels of sensitivity to soil properties variation, 
indices studied exhibit different behaviour and trends expressed in terms of the distance 
between index values and the theoretical soil line and the scatter magnitude of their clusters 
within the scatter-plot. 

 
The first group, characterized by a horizontal trend showing clouds of points generally 
parallel to the X-axis of the scatter-plot (theoretical soil line), include CARI, MCARI, TCARI, 
PRI and MTCI indices (Figure 5-A). They have in common the use of wavelengths from the 
red-edge, red, and green spectral regions except for PRI which uses only wavelengths from 
the green portion of the solar spectrum. Such wavelengths are known to be the most 
sensitive to leaf chlorophyll variations and relatively influenced by changes in soil optical 
properties. This may explain their constant behavior as a function of their shortest 
wavelength. It can be seen in Figure 5-A that these indices behavior was not affected by the 
source of data: observed trends are similar, with index values falling basically within the 
same cloud of points for ground, airborne, and space-borne data. Regarding the sensitivity 
magnitude to the soil optical properties, indices of this group exhibit the best overall 
performance in terms of resistance to soil background effects with exception of MTCI which 
is very sensitive.  
 
The second group consists of indices showing higher sensitivity to soil background at low 
reflectance levels of the shortest wavelength, which corresponds to the conditions of dark or 
developed soils. Figure 5-B shows that the indices HNDVI, PSNDa, and PSSRa follow a 
horizontal trend for the shortest wavelength reflectance values exceeding 20%. They appear 
to be more responsive to soil optical properties when this reflectance tends to decrease, 
causing a sudden change of the trend with a steep negative slope for reflectance values of 
less than 20%. Index values of up to 0.5 and 2.5 occur for PSNRa and HNDVI, and PSSRa, 
respectively. As shown in Table 1, indices of this group either have the particularity of being 
a simple ratio (PSSRa) or normalized differences (HNDVI and PSNDa) of red and near-
infrared wavelengths. These are examples of traditional vegetation indices which are not 
adjusted for soil optical effects. As expected in this group, PSSRa is the most sensitive to soil 
influence because as a simple ratio it does not attenuate the background contribution to the 
observed signal. 
 

 
 

 
 
 

4. Results and discussion 

For an accurate interpretation of hyperspectral chlorophyll indices, a “true” chlorophyll 
index value, attributed only to the green vegetation signal and free from any contribution of 
non-photosynthetic elements, is needed. Theoretically, if only bare soils were considered, 
with no vegetation, the value of the “ideal” chlorophyll index should be zero regardless of 
any changes in soil optical properties. Graphically, if a chlorophyll index is computed over 
bare soils and plotted against the reflectance of the shortest wavelength position used in the 
index, the clusters of sampling points should then be perfectly superimposed to the 
theoretical soil line (Huete et al., 1985; Bannari et al., 1996). Unfortunately, chlorophyll 
indices used to estimate vegetation pigments still show various levels of sensitivity to the 
effect of soil optical properties. 
 

Index Required 
Wavelength 

Position 

Wavelength Position 
Available 

From the Hyperion Sensor 

Wavelength Position 
Available 

From the  Probe-1 Sensor 

PRI 531 and 550 nm 529.66 and 550.01 nm 537.5 and 552.8 nm 
SRPI 430 and 680 nm 428.0 and 682.29 nm 435.7 and 675.7 nm 
NDPI 430 and 680 nm 448.47 and 682.50 nm 435.7 and 675.7 nm 
CARI 550, 670 and 700 

nm 
550.22, 672.32 and  

702.01 nm 
552.8, 675.7 and  

705.2 nm 
NPCI 430 and 680 nm 448.47 and 682.50 nm 435.7 and 675.7 nm 
SIPI 445, 680 and 800 

nm 
448.47, 682.50 and 

 803.54 nm 
446.2, 675.7 and  

797.0 nm 
GNDVI 550 and 801 nm 550.22 and 803.54 nm 552.8 and 797.0 nm 
PSNDa 680 and 800 nm 682.54 and 803.54 nm 675.7 and 797.0 nm 
PSSRa 680 and 800 nm 682.50 and 803.54 nm 675.7 and 797.0 nm 

MCARI 550, 670, 700 and  
800 nm 

550.22, 672.32, 702.01 and  
803.54 nm 

552.2, 675.7, 705.2 and  
797.0 nm 

HNDVI 668 and 827 nm 671.02 and 823.65 nm 675.7 and 827.6 nm 
CAI 600 and 735 nm 599.79 and 732.07 nm 599.0 and 735.8 nm 

TCARI 550, 670 and 700 
nm 

550.22, 672.32 and  
702.01 nm 

552.8, 675.7, 705.2 and  
797.0 nm 

MTCI 681.25, 708.75 and  
753.75  nm 

682.29, 712.50 and  
753.17 nm 

675.7, 705.2 and  
751.0 nm 

Table 3. Available wavelength positions form the Hyperion and Probe-1 sensors for spectral 
chlorophyll indices calculation. 
 
To evaluate the sensitivity of chlorophyll indices, included in this study, to changes of soil 
optical properties, the relationship between each of these indices and the shortest 
wavelength position involved in their formula was analyzed for different bare soils 
observed at three different scales using a field spectroradiometer, an airborne sensor (Probe-
1), and a space-borne sensor (Hyperion EO-1). Hence, while field spectroradiometric 
measurements provide the wavelength positions needed for each index, spectra extracted 
from Probe-1 and Hyperion images do not contain all the exact wavelength positions 
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required for these indices. Thus, wavelengths were selected which most closely match the 
wavelengths position proposed for the indices investigated (Table 3). 
 
The relationships between chlorophyll indices and their shortest wavelengths, over bare 
soils, are not unique; they show a considerable scatter caused by changes in soil optical 
properties. In fact, these indices were designed from leaf or canopy spectra to measure 
vegetation pigments. To understand this influence, chlorophyll indices selected for this 
study were plotted against their shortest wavelength position as illustrated in Figure 5. It 
shows that in addition to having different levels of sensitivity to soil properties variation, 
indices studied exhibit different behaviour and trends expressed in terms of the distance 
between index values and the theoretical soil line and the scatter magnitude of their clusters 
within the scatter-plot. 

 
The first group, characterized by a horizontal trend showing clouds of points generally 
parallel to the X-axis of the scatter-plot (theoretical soil line), include CARI, MCARI, TCARI, 
PRI and MTCI indices (Figure 5-A). They have in common the use of wavelengths from the 
red-edge, red, and green spectral regions except for PRI which uses only wavelengths from 
the green portion of the solar spectrum. Such wavelengths are known to be the most 
sensitive to leaf chlorophyll variations and relatively influenced by changes in soil optical 
properties. This may explain their constant behavior as a function of their shortest 
wavelength. It can be seen in Figure 5-A that these indices behavior was not affected by the 
source of data: observed trends are similar, with index values falling basically within the 
same cloud of points for ground, airborne, and space-borne data. Regarding the sensitivity 
magnitude to the soil optical properties, indices of this group exhibit the best overall 
performance in terms of resistance to soil background effects with exception of MTCI which 
is very sensitive.  
 
The second group consists of indices showing higher sensitivity to soil background at low 
reflectance levels of the shortest wavelength, which corresponds to the conditions of dark or 
developed soils. Figure 5-B shows that the indices HNDVI, PSNDa, and PSSRa follow a 
horizontal trend for the shortest wavelength reflectance values exceeding 20%. They appear 
to be more responsive to soil optical properties when this reflectance tends to decrease, 
causing a sudden change of the trend with a steep negative slope for reflectance values of 
less than 20%. Index values of up to 0.5 and 2.5 occur for PSNRa and HNDVI, and PSSRa, 
respectively. As shown in Table 1, indices of this group either have the particularity of being 
a simple ratio (PSSRa) or normalized differences (HNDVI and PSNDa) of red and near-
infrared wavelengths. These are examples of traditional vegetation indices which are not 
adjusted for soil optical effects. As expected in this group, PSSRa is the most sensitive to soil 
influence because as a simple ratio it does not attenuate the background contribution to the 
observed signal. 
 

 
 

 
 
 

4. Results and discussion 

For an accurate interpretation of hyperspectral chlorophyll indices, a “true” chlorophyll 
index value, attributed only to the green vegetation signal and free from any contribution of 
non-photosynthetic elements, is needed. Theoretically, if only bare soils were considered, 
with no vegetation, the value of the “ideal” chlorophyll index should be zero regardless of 
any changes in soil optical properties. Graphically, if a chlorophyll index is computed over 
bare soils and plotted against the reflectance of the shortest wavelength position used in the 
index, the clusters of sampling points should then be perfectly superimposed to the 
theoretical soil line (Huete et al., 1985; Bannari et al., 1996). Unfortunately, chlorophyll 
indices used to estimate vegetation pigments still show various levels of sensitivity to the 
effect of soil optical properties. 
 

Index Required 
Wavelength 

Position 

Wavelength Position 
Available 

From the Hyperion Sensor 

Wavelength Position 
Available 

From the  Probe-1 Sensor 

PRI 531 and 550 nm 529.66 and 550.01 nm 537.5 and 552.8 nm 
SRPI 430 and 680 nm 428.0 and 682.29 nm 435.7 and 675.7 nm 
NDPI 430 and 680 nm 448.47 and 682.50 nm 435.7 and 675.7 nm 
CARI 550, 670 and 700 

nm 
550.22, 672.32 and  

702.01 nm 
552.8, 675.7 and  

705.2 nm 
NPCI 430 and 680 nm 448.47 and 682.50 nm 435.7 and 675.7 nm 
SIPI 445, 680 and 800 

nm 
448.47, 682.50 and 

 803.54 nm 
446.2, 675.7 and  

797.0 nm 
GNDVI 550 and 801 nm 550.22 and 803.54 nm 552.8 and 797.0 nm 
PSNDa 680 and 800 nm 682.54 and 803.54 nm 675.7 and 797.0 nm 
PSSRa 680 and 800 nm 682.50 and 803.54 nm 675.7 and 797.0 nm 

MCARI 550, 670, 700 and  
800 nm 

550.22, 672.32, 702.01 and  
803.54 nm 

552.2, 675.7, 705.2 and  
797.0 nm 

HNDVI 668 and 827 nm 671.02 and 823.65 nm 675.7 and 827.6 nm 
CAI 600 and 735 nm 599.79 and 732.07 nm 599.0 and 735.8 nm 

TCARI 550, 670 and 700 
nm 

550.22, 672.32 and  
702.01 nm 

552.8, 675.7, 705.2 and  
797.0 nm 

MTCI 681.25, 708.75 and  
753.75  nm 

682.29, 712.50 and  
753.17 nm 

675.7, 705.2 and  
751.0 nm 

Table 3. Available wavelength positions form the Hyperion and Probe-1 sensors for spectral 
chlorophyll indices calculation. 
 
To evaluate the sensitivity of chlorophyll indices, included in this study, to changes of soil 
optical properties, the relationship between each of these indices and the shortest 
wavelength position involved in their formula was analyzed for different bare soils 
observed at three different scales using a field spectroradiometer, an airborne sensor (Probe-
1), and a space-borne sensor (Hyperion EO-1). Hence, while field spectroradiometric 
measurements provide the wavelength positions needed for each index, spectra extracted 
from Probe-1 and Hyperion images do not contain all the exact wavelength positions 
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Fig. 5-A. Sensitivity of chlorophyll indices to soil optical properties using field, airborne and 
satellite hyperspectral data for the indices TCARI, MCARI, CARI, PRI, and MTCI. 
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Fig. 5-A. Sensitivity of chlorophyll indices to soil optical properties using field, airborne and 
satellite hyperspectral data for the indices TCARI, MCARI, CARI, PRI, and MTCI. 
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Fig. 5-C. Sensitivity of chlorophyll indices to soil optical properties using field, airborne and 
satellite hyperspectral data for the indices GNDVI, NPCI and NDPI. 
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Fig. 5-B. Sensitivity of chlorophyll indices to soil optical properties using field, airborne and 
satellite hyperspectral data for the indices PSNDa, PSSSRa and HPDVI. 
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Fig. 5-C. Sensitivity of chlorophyll indices to soil optical properties using field, airborne and 
satellite hyperspectral data for the indices GNDVI, NPCI and NDPI. 
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Fig. 5-B. Sensitivity of chlorophyll indices to soil optical properties using field, airborne and 
satellite hyperspectral data for the indices PSNDa, PSSSRa and HPDVI. 
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The third group includes indices formed as normalized differences of reflectances in the 
blue and red regions (NDPI and NPCI) or the green and near-infrared regions (GNDVI). The 
distribution of their values within the ‘’index versus shortest wavelength’’ space in Figure 5-
C does not follow a clear and well common trend, and they show a considerable spread of 
the points representing soil spectra regardless of their data source. These indices are 
significantly inconsistent when the reflectance of the shortest wavelength is lower than 40%. 
Index values vary between 0.0 and 0.6 for GNDVI and between – 0.2 and 0.9 for NDPI and 
NPCI, with a negative slope, as the reflectance on the X-axis increases. 
 
The last group has no distinctive common trend as shown in Figure 5-D; each of its indices 
(CAI, SRPI and SIPI) behaves in a completely different way than all the other indices 
selected for this study. They have in common the fact that each of them is sensitive up to 
various degrees to soil background variability. Trend dissimilarities could be explained by 
the rationale behind the design of each of these indices: SRPI is a simple ratio, SIPI is a ratio 
of reflectance differences, and CAI is an integral of the chlorophyll absorption feature. 
Nevertheless, it seems that SIPI is the worst chlorophyll index (up to 8.5) with respect to the 
resistance against the influence of the changes in soil optical properties; it shows the highest 
sensitivity amongst all the indices used in the present study (Figure 5-D).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. RMSE related to the sensitivity of the chlorophyll indices to the optical proprieties of 
bare soils using field, airborne and satellite hyperspectral data (SIPI, MTCI, and  PSSRa are 
not included in this figure, because they show a very high RMSE). 
 
To complete the analyses discussed above, the RMSE was determined for each of the 
indices selected for this study, using it as a measure to evaluate the performance of the 
indices in terms of their resistance to soil background effects. Obtained results are 
summarized in Table 4 and illustrated in Figure 6. As it can be seen in Table 4, the relative 
magnitude of the RMSE allows the discrimination of three groups of sensitivity to soil 
effects. The first group includes the SIPI, PSSRa and MTCI indices, which have very high 
RMSEs related to the optical properties of bare soils. Accordingly, chlorophyll results 
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Fig. 5-D. Sensitivity of chlorophyll indices to soil optical properties using field, airborne and 
satellite hyperspectral data for the indicies CAI, SIPI and SRPI. 
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The third group includes indices formed as normalized differences of reflectances in the 
blue and red regions (NDPI and NPCI) or the green and near-infrared regions (GNDVI). The 
distribution of their values within the ‘’index versus shortest wavelength’’ space in Figure 5-
C does not follow a clear and well common trend, and they show a considerable spread of 
the points representing soil spectra regardless of their data source. These indices are 
significantly inconsistent when the reflectance of the shortest wavelength is lower than 40%. 
Index values vary between 0.0 and 0.6 for GNDVI and between – 0.2 and 0.9 for NDPI and 
NPCI, with a negative slope, as the reflectance on the X-axis increases. 
 
The last group has no distinctive common trend as shown in Figure 5-D; each of its indices 
(CAI, SRPI and SIPI) behaves in a completely different way than all the other indices 
selected for this study. They have in common the fact that each of them is sensitive up to 
various degrees to soil background variability. Trend dissimilarities could be explained by 
the rationale behind the design of each of these indices: SRPI is a simple ratio, SIPI is a ratio 
of reflectance differences, and CAI is an integral of the chlorophyll absorption feature. 
Nevertheless, it seems that SIPI is the worst chlorophyll index (up to 8.5) with respect to the 
resistance against the influence of the changes in soil optical properties; it shows the highest 
sensitivity amongst all the indices used in the present study (Figure 5-D).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. RMSE related to the sensitivity of the chlorophyll indices to the optical proprieties of 
bare soils using field, airborne and satellite hyperspectral data (SIPI, MTCI, and  PSSRa are 
not included in this figure, because they show a very high RMSE). 
 
To complete the analyses discussed above, the RMSE was determined for each of the 
indices selected for this study, using it as a measure to evaluate the performance of the 
indices in terms of their resistance to soil background effects. Obtained results are 
summarized in Table 4 and illustrated in Figure 6. As it can be seen in Table 4, the relative 
magnitude of the RMSE allows the discrimination of three groups of sensitivity to soil 
effects. The first group includes the SIPI, PSSRa and MTCI indices, which have very high 
RMSEs related to the optical properties of bare soils. Accordingly, chlorophyll results 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 7 5 6 8 9 10 11
Chlorophyll indices

R
M

SE
 (%

)

RMSE - Hyperion RMSE - Probe RMSE - Field

CARI
MCARI

TCARI

NDPI
SRPI

GNDVI
NPCI

HNDVI
PSNDa

PRI

CAI

0

0.1
0.2

0.3

0.4

0.5
0.6

0.7

0.8
0.9

1

0 10 20 30 40 50 60

Reflectance (%) in the channel 600 nm

C
A

I

CAI-Hyperion CAI-Probe CAI - Field

 

0

1

2
3

4

5

6

7
8

9

10

0 10 20 30 40 50 60 70

Reflectance (%) in the channel 445 nm

SI
PI

SIPI - Hyperion SIPI - Probe SIPI - Field

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

0 10 20 30 40 50 60 70

Reflectance (%) in the channel 430 nm

SR
PI

SRPI - Hyperion SRPI - Probe SRPI - Field

 
Fig. 5-D. Sensitivity of chlorophyll indices to soil optical properties using field, airborne and 
satellite hyperspectral data for the indicies CAI, SIPI and SRPI. 
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SIPI, SRPI, NDPI, NPCI, GNDVI, CAI and HNDVI have non-negligible RMSEs related to the 
optical properties of bare soils, and will be very difficult to interpret at low LAIs such as 
found in sparse vegetation. The PSNDa and HNDVI show an RMSE less than 20%; this error 
magnitude is still significant. The PRI index sensitivity varies slightly as a function of soil 
characteristic variation, and shows an RMSE less than 6%. Independently from the data 
source (ground, airborne, and space-borne) and from the bare soil background, the indices 
CARI, MCARI and TCARI with an RMSE of less than 1.2% are basically not sensitive to 
changes in the soil optical properties; their use will permit a better estimation of chlorophyll 
content in sparse crop cover environments. 
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related to the optical properties of bare soils, and would be very difficult to interpret at low 
LAI. The group also includes indices PSNDa and HNDVI which yielded an RMSE lower 
than 20%, but still significant. The most soil resistant index of this group is the PRI with a 
RMSE of less than 6%. Finally, in the third group, and regardless of the data source and of 
the soil background, the indices CARI, MCARI and TCARI with an RMSE of less than 1.2% 
are basically not sensitive to changes in the soil optical properties. Therefore, they would 
permit a better estimation of chlorophyll content in sparse crop cover environment in the 
context of precision agriculture.  
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5. Conclusion 

Hyperspectral indices developed for chlorophyll content estimation using crop canopy 
reflected radiation are sensitive to other vegetation and environmental parameters like 
underlying soil reflectance. This chapter focuses on evaluating and comparing the sensitivity 
of several chlorophyll indices (PRI, NDPI, GNDVI, HNDVI, SIPI, SRPI, NPCI, PSSRa, 
PSNDa, CARI, MCARI, TCARI, CAI and MTCI) to bare soil optical property variations. In 
order to achieve the goal of this investigation, field spectroradiometric measurements were 
used as well as hyperspectral data acquired with the Probe-1 airborne and Hyperion EO-1 
satellite sensors. Spectroradiometric measurements were acquired from 90 bare soil plots 
with various optical properties and selected from different agricultural lands. After the 
image data pre-processing steps, sixty spectral signatures of different bare soils with various 
optical properties were extracted from each image data set and used for the analysis. The 
results show that SIPI, PSSRa and MTCI indices have a very high RMSE related to optical 
background variations; their results would be impossible to interpret correctly. The indices 
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1. Introduction     
 

The Asian dust transported from desert areas in the northern China often covers over East 
Asia in the late winter and spring seasons. It is regarded as a main source of atmospheric 
aerosols over East Asia and has significant effects on the climate change. Moreover, fine 
dust particles in the air have harmful influence on our health on the local and global scales. 
However, it is as yet very difficult to extract optical properties of the widely spread hazy 
dust from satellite data over land surfaces because the radiance received by a satellite sensor 
strongly depends on the surface reflectance. It will be, therefore, necessary to estimate 
optical properties of the Asian dust and the ground reflectance simultaneously from satellite 
data. In particular, the polarimetric information will provide the improvement of estimating 
optical properties of atmospheric aerosols.  
Many authors have investigated dust properties over ocean (Nakajima et al.,1998, Tanre et 
al.,1997) and over dark vegetated areas (Kaufman et al.,1997a, Kaufman et al.,1997b) using 
satellite measurements. In these cases, the surface contribution to the radiance received by 
the satellite sensor is small. However, the linear polarization is less commonly measured 
than the radiance in the remote sensing at optical and near infrared wavelengths.  
The ADEOSII/POLDER and PARASOL/POLDER observe the reflectance and polarization 
of a target quasi-simultaneously in multi-viewing angles at wavelengths of 443nm 
(ADEOSII/POLDER), 490nm (PARASOL/POLDER), 670nm and 865nm, and so POLDER 
data provide enough information to determine optical characteristics of atmospheric 
aerosols and the ground reflectance. We have developed the algorithm for estimating optical 
properties of dust particles and the surface reflectance simultaneously from POLDER data 
(Kusaka et al., 2001, 2002b, 2004). However, absorption of light ray by dust particles is not 
taken into account in the estimation algorithm.  
In order to investigate the usefulness of the polarization for aerosol particles, we have made 
ground-based polarization measurements of the sky radiation by the PSR-1000 
(Masuda,1997), which is the multi-spectral polarimeter produced by Opt Research 
Corporation, Japan and has the same wavelength regions (443nm, 490nm, 565nm, 670nm, 
765nm and 865nm) as the POLDER sensor. In the following sections, we will describe the 
results of ground-based polarization measurements and a new algorithm for estimating 
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aerosol properties over land using the polarized radiance received by the POLDER. In this 
new algorithm, absorption of light by aerosols will be taken into account. 

 
2. Ground-based polarization measurements 
 

The vertical profiles and optical properties of aerosols including Asian dust have been 
investigated by means of Lidar observation (NIES, Japan) and sun photometer 
measurements (AERONET, NASA) from ground stations. However, ground based 
polarization measurements are as yet very sparse.  
We have made polarimetric measurements of the sky radiation at the ground station in the 
Kanazawa city, Japan, which is located at the side of the Sea of Japan, in the spring season 
from 2000. Asian dust clouds often appear together with normal clouds, and so we have 
only measured the degree of polarization of the sky light when the Kanazawa city was 
covered with a thin dust cloud. 

 
2.1 Description of PSR-1000 
The PSR-1000 measures the intensity of the sky radiation. A Glan-Thompson prism is 
implemented between the hood (2 degrees field of view) and the interference filters in the 
PSR-1000 instrument. The prism rotates automatically by a pulse motor and the range of the 
rotation is 0 to 360 degrees. The measurement by the PSR-1000 is controlled by a personal 
computer (PC). The optical instrument attached on the tripod is pointed manually to a 
desired direction to measure the intensity of the sky radiation. Since the received signals 
change sinusoidally against the angle of rotation of the polarizer (Hansen, et al., 1974), the 
maximum signal value, Imax and the minimum value, Imin can be easily obtained from the 
sinusoidal curve. The degree of linear polarization, L , is therefore given by 
 

max dk min dk
max dk min dk

((I I ) (I I ))
((I I ) (I I ))L /  

                       (1) 
 

where Idk is the dark signal that is the signal received in no incident solar radiation. As seen 
from Eq.(1), no absolute calibration of the optical instrument is needed in the polarization 
measurement because the degree of polarization is the relative value. 
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Fig. 1. Degrees of polarization measured at the angle of 90 degrees from the solar direction 
when Kanazawa city was covered with Asian dust 

 

2.2 Polarization measurements of the sky radiation 
Polarizations were measured at angles of 90 and 120 degrees from the solar direction in the 
principal plane in 2000 to 2002. From 2003, polarization measurements were carried out at 
angles of 75, 90, 105 and 120 degrees from the solar direction in the principal plane. 
Figure 1 shows degrees of polarization measured at the angle of 90° from the solar direction 
when the hazy dust was recognized at the meteorological observatory in the Kanazawa city. 
Figure 2 shows degrees of polarization measured at the angle of 90° from the solar direction 
in the clear sky. Figure 3 shows angular dependencies of polarization at 490nm measured on 
April 13 and 27, 2003. As seen from Figure 1 to Figure 3, degrees of polarization measured in 
the sky covered with the hazy dust decrease uniformly as the wavelength increases and are 
lower than those in the clear sky. The wavelength dependencies are slightly different in the 
measurement date. In particular, most of degrees of polarization measured in the clear sky 
show the peak value around the 490nm channel. In polarization measurements in the clear 
sky, we have often similar polarization patterns as measured on April 27, 2003. In this case, 
we pointed out that this will be due to light scattering by small aerosols included in the 
atmosphere (Kusaka, et al., 2002a). 
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Fig. 3. Degrees of polarization at 490nm measured at angles of 75, 90, 115 and 120 degrees 
from the solar direction on April 13 and April 27, 2003 
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aerosol properties over land using the polarized radiance received by the POLDER. In this 
new algorithm, absorption of light by aerosols will be taken into account. 

 
2. Ground-based polarization measurements 
 

The vertical profiles and optical properties of aerosols including Asian dust have been 
investigated by means of Lidar observation (NIES, Japan) and sun photometer 
measurements (AERONET, NASA) from ground stations. However, ground based 
polarization measurements are as yet very sparse.  
We have made polarimetric measurements of the sky radiation at the ground station in the 
Kanazawa city, Japan, which is located at the side of the Sea of Japan, in the spring season 
from 2000. Asian dust clouds often appear together with normal clouds, and so we have 
only measured the degree of polarization of the sky light when the Kanazawa city was 
covered with a thin dust cloud. 

 
2.1 Description of PSR-1000 
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maximum signal value, Imax and the minimum value, Imin can be easily obtained from the 
sinusoidal curve. The degree of linear polarization, L , is therefore given by 
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where Idk is the dark signal that is the signal received in no incident solar radiation. As seen 
from Eq.(1), no absolute calibration of the optical instrument is needed in the polarization 
measurement because the degree of polarization is the relative value. 
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2.2 Polarization measurements of the sky radiation 
Polarizations were measured at angles of 90 and 120 degrees from the solar direction in the 
principal plane in 2000 to 2002. From 2003, polarization measurements were carried out at 
angles of 75, 90, 105 and 120 degrees from the solar direction in the principal plane. 
Figure 1 shows degrees of polarization measured at the angle of 90° from the solar direction 
when the hazy dust was recognized at the meteorological observatory in the Kanazawa city. 
Figure 2 shows degrees of polarization measured at the angle of 90° from the solar direction 
in the clear sky. Figure 3 shows angular dependencies of polarization at 490nm measured on 
April 13 and 27, 2003. As seen from Figure 1 to Figure 3, degrees of polarization measured in 
the sky covered with the hazy dust decrease uniformly as the wavelength increases and are 
lower than those in the clear sky. The wavelength dependencies are slightly different in the 
measurement date. In particular, most of degrees of polarization measured in the clear sky 
show the peak value around the 490nm channel. In polarization measurements in the clear 
sky, we have often similar polarization patterns as measured on April 27, 2003. In this case, 
we pointed out that this will be due to light scattering by small aerosols included in the 
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3. Estimation of dust properties and surface reflectance 
 

A basic idea for estimating optical properties of aerosols and the surface reflectance is very 
simple, and aerosol properties and surface reflectance are estimated, by comparing the 
radiance and polarization obtained from satellite and ground-based measurements with 
those obtained from the computation of multiple scattered light in the atmosphere-ground 
system. 
The radiance and polarization of scattering light are completely described by the Stokes 
parameters (I, Q, U, V), where I is the radiance and the other parameters have same 
dimension. We have V=0 in the linear polarization. The linearly polarized radiance Ip and 
the polarization direction χ can be derived from Q and U as follows (Hansen, et al., 1974): 
 

2U2QpI                                                                  (2) 
                            U/Qtan(2χ )                                                        (3) 

 
The degree of polarization is defined as the ratio Ip/I. 

 
3.1 Estimation of aerosol properties by ground-based polarization measurements 
We estimate optical properties of aerosols using degrees of polarization of sky light 
measured at four scattering angles by the PSR-1000. To do that, we computed degrees of 
polarization at the bottom of the atmosphere in the plane parallel uniform atmosphere 
bounded by the uniform background surface by means of the Monte Carlo integration 
(O’Brien, 1998, Ishimoto, et al., 2002). In the radiative transfer simulation, it was assumed 
that the number size distribution of aerosols is represented by the Junge power-law (radius 
r<0.1μm dN/dr=const., r>0.1μm dN/dr=cr-a, minimum radius: 0.05μm, maximum radius: 
15μm) and the dust particle is spherical, non-absorption matter. Moreover, we assumed that 
the land surface is the uniform Lambertian reflector. 
Therefore, parameters to be estimated from the measured polarizations are the optical 
thickness of aerosols, t, exponent of Junge power-law, a, refractive index of aerosols, Nr, and 
the background reflectance, A. We determined the values of t, a, Nr and A, using the 
following algorithm: 
(1) Degrees of polarizations at the bottom of the atmosphere were computed for typical 
values of t, Nr, a, and A and were saved in the Lookup table (LUT) for the solar zenith angle 
at the measurement time. In this case, only degrees of polarization at angles of 75, 90, 105 
and 120 degrees from the solar direction in the principal plane were computed. 
(2) We used LUT to determine the values of t, Nr, a and A such that the sum of the square 
errors, Q, between the measured polarizations and the computed ones in four directions is 
minimum. In this case, the interpolation scheme by the 3rd order polynomials was adopted 
to obtain the minimum value of Q. 
We used only degrees of polarization at the 490nm channel to estimate values of t, Nr, a, and 
A because the radiance received at the bottom of the atmosphere not so much strongly 
depends on the ground reflectance of the suburban area at 490nm. 
The method described above was applied to degrees of polarization measured on April 13 
and 27, 2003 as shown in Figure 3 (kusaka et al., 2007). As a result, we had optical thickness 
of aerosols t=0.8, refractive index Nr=1.62, exponent of Junge power-law a=4.69 and 

 

background reflectance A=0.0 on April 13, 2003, and t=0.5, Nr=1.48, a=4.59 and A=0.024 on 
April 27, 2003. We used the estimated values of 4 parameters to compute degrees of 
polarization at the bottom of the atmosphere. The computed degrees of polarization and the 
measured ones are shown in Figure 4. 
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Fig. 4. The estimated degrees of polarization and the measured ones at 490nm are shown in 
cases of April 13 and 27, 2003 
 
As seen from Figure 4, the computed polarizations are very close to the measured ones on 
April 27 when the optical thickness of aerosols is thin, but on April 13 when the optical 
thickness of aerosols is thick, the computed polarizations are significantly different from the 
measured ones. On April 13 and 27, 2003, the aerosol measurement by the sun photometer and 
the polarization measurement by the PSR-1000 were carried out at the almost same time. The 
optical thickness of aerosols at the 500nm channel by the sun photometer was 0.85 on April 13, 
and 0.45 on April 27. The estimated optical thickness of aerosols at the 490nm channel was 0.8 
on April 13 and 0.5 on April 27. The difference between the estimated value and the measured 
one is small on April 13 and 27. However, on April 13, the estimated degrees of polarization 
are significantly different from the measured ones at 490nm. Therefore, we may need the 
improvement of the estimation process in the case of the thick Asian dust. 

 
3.2 Estimation of aerosol properties and surface reflectance by POLDER data 
Kusaka, et al. (Kusaka, et al. 2001, 2002b, 2004) proposed a method for estimating optical 
properties of Asian dust and the surface reflectance simultaneously from the radiance and 
polarization observed at each of 443P and 670P channels of the ADEOS&ADEOSII 
/POLDER sensor. It was shown that the method developed by Kusaka, et al. provides 
reasonable surface reflectance and dust properties such as the optical thickness, the 
refractive index, the number size distribution of dust particles at the 670nm channel. 
However, at the 443nm channel, absorption of light ray by dust particles  is not taken into 
account in the algorithm of Kusaka, et al. Therefore, we will need to have a new method for 
estimating dust properties more accurately at shorter wavelengths. 
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3. Estimation of dust properties and surface reflectance 
 

A basic idea for estimating optical properties of aerosols and the surface reflectance is very 
simple, and aerosol properties and surface reflectance are estimated, by comparing the 
radiance and polarization obtained from satellite and ground-based measurements with 
those obtained from the computation of multiple scattered light in the atmosphere-ground 
system. 
The radiance and polarization of scattering light are completely described by the Stokes 
parameters (I, Q, U, V), where I is the radiance and the other parameters have same 
dimension. We have V=0 in the linear polarization. The linearly polarized radiance Ip and 
the polarization direction χ can be derived from Q and U as follows (Hansen, et al., 1974): 
 

2U2QpI                                                                  (2) 
                            U/Qtan(2χ )                                                        (3) 

 
The degree of polarization is defined as the ratio Ip/I. 

 
3.1 Estimation of aerosol properties by ground-based polarization measurements 
We estimate optical properties of aerosols using degrees of polarization of sky light 
measured at four scattering angles by the PSR-1000. To do that, we computed degrees of 
polarization at the bottom of the atmosphere in the plane parallel uniform atmosphere 
bounded by the uniform background surface by means of the Monte Carlo integration 
(O’Brien, 1998, Ishimoto, et al., 2002). In the radiative transfer simulation, it was assumed 
that the number size distribution of aerosols is represented by the Junge power-law (radius 
r<0.1μm dN/dr=const., r>0.1μm dN/dr=cr-a, minimum radius: 0.05μm, maximum radius: 
15μm) and the dust particle is spherical, non-absorption matter. Moreover, we assumed that 
the land surface is the uniform Lambertian reflector. 
Therefore, parameters to be estimated from the measured polarizations are the optical 
thickness of aerosols, t, exponent of Junge power-law, a, refractive index of aerosols, Nr, and 
the background reflectance, A. We determined the values of t, a, Nr and A, using the 
following algorithm: 
(1) Degrees of polarizations at the bottom of the atmosphere were computed for typical 
values of t, Nr, a, and A and were saved in the Lookup table (LUT) for the solar zenith angle 
at the measurement time. In this case, only degrees of polarization at angles of 75, 90, 105 
and 120 degrees from the solar direction in the principal plane were computed. 
(2) We used LUT to determine the values of t, Nr, a and A such that the sum of the square 
errors, Q, between the measured polarizations and the computed ones in four directions is 
minimum. In this case, the interpolation scheme by the 3rd order polynomials was adopted 
to obtain the minimum value of Q. 
We used only degrees of polarization at the 490nm channel to estimate values of t, Nr, a, and 
A because the radiance received at the bottom of the atmosphere not so much strongly 
depends on the ground reflectance of the suburban area at 490nm. 
The method described above was applied to degrees of polarization measured on April 13 
and 27, 2003 as shown in Figure 3 (kusaka et al., 2007). As a result, we had optical thickness 
of aerosols t=0.8, refractive index Nr=1.62, exponent of Junge power-law a=4.69 and 

 

background reflectance A=0.0 on April 13, 2003, and t=0.5, Nr=1.48, a=4.59 and A=0.024 on 
April 27, 2003. We used the estimated values of 4 parameters to compute degrees of 
polarization at the bottom of the atmosphere. The computed degrees of polarization and the 
measured ones are shown in Figure 4. 
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Fig. 4. The estimated degrees of polarization and the measured ones at 490nm are shown in 
cases of April 13 and 27, 2003 
 
As seen from Figure 4, the computed polarizations are very close to the measured ones on 
April 27 when the optical thickness of aerosols is thin, but on April 13 when the optical 
thickness of aerosols is thick, the computed polarizations are significantly different from the 
measured ones. On April 13 and 27, 2003, the aerosol measurement by the sun photometer and 
the polarization measurement by the PSR-1000 were carried out at the almost same time. The 
optical thickness of aerosols at the 500nm channel by the sun photometer was 0.85 on April 13, 
and 0.45 on April 27. The estimated optical thickness of aerosols at the 490nm channel was 0.8 
on April 13 and 0.5 on April 27. The difference between the estimated value and the measured 
one is small on April 13 and 27. However, on April 13, the estimated degrees of polarization 
are significantly different from the measured ones at 490nm. Therefore, we may need the 
improvement of the estimation process in the case of the thick Asian dust. 

 
3.2 Estimation of aerosol properties and surface reflectance by POLDER data 
Kusaka, et al. (Kusaka, et al. 2001, 2002b, 2004) proposed a method for estimating optical 
properties of Asian dust and the surface reflectance simultaneously from the radiance and 
polarization observed at each of 443P and 670P channels of the ADEOS&ADEOSII 
/POLDER sensor. It was shown that the method developed by Kusaka, et al. provides 
reasonable surface reflectance and dust properties such as the optical thickness, the 
refractive index, the number size distribution of dust particles at the 670nm channel. 
However, at the 443nm channel, absorption of light ray by dust particles  is not taken into 
account in the algorithm of Kusaka, et al. Therefore, we will need to have a new method for 
estimating dust properties more accurately at shorter wavelengths. 
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In this section, we describe a new method for the estimation of aerosol properties using the 
polarized radiance effectively and apply this method to PARASOL/POLDER data. 
Since the ground resolution of a POLDER-measured pixel is 6x7 km2 at nadir, the radiance 
and polarization at the top of the atmosphere were obtained from the numerical 
computation of the radiative transfer equation in a uniform plane parallel atmosphere 
bounded by the uniform Lambertian reflector. We used the 6SV-1.0B code developed by 
Vermote et al. (Vermote et al. 2006) to compute values of Stokes parameters at the top of 
atmosphere. In this case, it was assumed that the number size distribution of aerosols is 
represented by the Junge power-law and aerosol particles are  spherical.  
By comparing the radiance and polarization received by the POLDER with those obtained 
from the radiative transfer simulation, we estimate the optical thickness of aerosols, t, the 
exponent of Junge power-law, a, the complex refractive index, Nr (real part) and Ni 
(imaginary part), and the surface reflectance, A. 
The optical thickness of aerosols in the near infrared wavelength is generally thinner than 
that in optical wavelengths and the contribution of light scattering by aerosols to the 
radiance in the near infrared wavelength received by the satellite sensor is relatively small. 
In the present study, the retrieval of aerosol properties and the surface reflectance from 
POLDER data acquired at optical channels will be taken into account. 
It is also shown that the contribution of light reflected by the uniform Lambertian reflector 
to the polarized radiance is very small because the reflected light by the Lambertian surface 
is depolarized. We investigated the dependency of polarized radiance on the surface 
reflectance. Figure 5 shows the polarized radiance nomalized by cos(θs)E/π against the 
surface reflectance at 490nm and 670nm channels, where θs is the solar zenith angle and E 
the solar flux at the top of atmosphere. In Figure 5, polarized radiances were computed 
under the following conditions: 
optical properties of aerosols:  t(550)=0.4, a=4.0, Nr=1.5 and Ni=0.0. 
geomeric conditions:    solar zenith angle 35 degrees, viewing zenith angle 30 degrees,  

relative azimuth angle 180 degrees. 
atmospheric model:  midlatitude winter model. 
We can see from Figure 5 that the polarized radiance received by the satellite sensor is 
independent of the surface reflectance. This indicates that aerosol properties are extracted 
from polarized radiances received by the satellite sensor. 
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Fig. 5. The dependency of polarized radiances on the surface reflectance at 490nm and 
670nm channels. It is assumed that the ground surface is the Lambertian reflector. 

 

3.2.1 Estimation Algorithm at the 670nm channel  
(1) Estimation of aerosol properties  
Absorption of optical light by dust particles decreases as the wavelength is longer. In this 
study, we assume that there is very little absorption for dust particles at 670nm, because we 
have not so much experimental results for it. Therefore, it is assumed that the imaginary 
part of complex refractive index, Ni, is zero at 670nm.  
The polarization (Q and U of Stokes parameters) at a target pixel measured by the POLDER 
change at geometric conditions of the satellite sensor. We create the look-up table, LUT, for 
the polarization to retreive the necessary information easily from it. Using the 6SV-1.0b code, 
we computed in advance the radiance RAD and the polarized radiance POL and the 
polarization direction PD at the top of atmospher as the function of the optical thickness of 
aerosols at 550nm, t(550), refractive index of aerosols, Nr, and index of Junge power-law, a 
under a given geomeric condition such as solar zenith angle, SZA, viewing zenith angle, 
VZA, and relative azimuth angle, RAZ. In this computation, the midlatitude winter model 
given in the 6SV-1.0B code was adopted as the atmospheric model and the surface 
reflectance A was taken as 0. The values of RAD, POL and PD computed for typical values 
of t(550), Nr, a, SZA, VZA and RAZ were saved in the look-up table, LUT. 
The Stokes parameters I, Q, U in different viewing conditions at each pixel of POLDER data 
are computed. Consider that the observed Stokes parameters in different N geometrical 
conditions, each of which consists of a 3-tuple of (SZA, VZA, RAZ), were extracted from 
POLDER data at a target pixel, and polarized radiances POL were computed by Eq. (2). The 
values of POL against all combinations of Nr, a and t(550) given in LUT were interpolated in 
all of viewing conditions, (SZA, VZA, RAZ)i, (i=1, …,N). In this case, we adopted the 
Lagrange 2nd-order polynomials as the interpolation function. The values of POLi in the i-th 
viewing condition, i.e., (SZA, VZA, RAZ)i were restored in the new file, nLUT. 
We use the least square method to estimate optimum values of Nr, a ant t(550). Let the 
polarized radiance observed by the POLDER in a viewing condition, (SZA, VZA, RAZ), be 
OPL. The sum of square errors between the observed values and the computed ones, Q, is 
defined as 

2)
i

POL
n

1i i
(OPLQ 


                                                        (4) 

 
where i represents the i-th geometric condition. 
It is necessary to obtain the unique solution that minimizes Q in the 3-dimensional 
parameter space. In other words, the problem is to find the values of Nr, a and t that 
correspond to the minimum of Q. In general, the hill climbing algorithm starts by making 
the initial guess and needs the partial derivatives of a function Q to compute the better 
solution from the initial solution. In our case, it is difficult to derive the partial derivatives of 
Q given by Eq.(4). We also used the modified hill climbing algorithm adopted by Kusaka, et 
al. (Kusaka, et al., 2004) in which the partial derivatives of Q are not used, to get the 
minimum of Q. The modified hill climbing algorithm provides a local minimum rather than 
a global one. Therefore, we derived the optimum solution of Nr, a and t in the following two 
steps. 
Step 1: Using the values of POL stored in the file, nLUT, we compute the values of Q in all 
combinations of variables (Nr, a, t). Then, we can obtain n values of Nrk, ak and tk that 
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In this section, we describe a new method for the estimation of aerosol properties using the 
polarized radiance effectively and apply this method to PARASOL/POLDER data. 
Since the ground resolution of a POLDER-measured pixel is 6x7 km2 at nadir, the radiance 
and polarization at the top of the atmosphere were obtained from the numerical 
computation of the radiative transfer equation in a uniform plane parallel atmosphere 
bounded by the uniform Lambertian reflector. We used the 6SV-1.0B code developed by 
Vermote et al. (Vermote et al. 2006) to compute values of Stokes parameters at the top of 
atmosphere. In this case, it was assumed that the number size distribution of aerosols is 
represented by the Junge power-law and aerosol particles are  spherical.  
By comparing the radiance and polarization received by the POLDER with those obtained 
from the radiative transfer simulation, we estimate the optical thickness of aerosols, t, the 
exponent of Junge power-law, a, the complex refractive index, Nr (real part) and Ni 
(imaginary part), and the surface reflectance, A. 
The optical thickness of aerosols in the near infrared wavelength is generally thinner than 
that in optical wavelengths and the contribution of light scattering by aerosols to the 
radiance in the near infrared wavelength received by the satellite sensor is relatively small. 
In the present study, the retrieval of aerosol properties and the surface reflectance from 
POLDER data acquired at optical channels will be taken into account. 
It is also shown that the contribution of light reflected by the uniform Lambertian reflector 
to the polarized radiance is very small because the reflected light by the Lambertian surface 
is depolarized. We investigated the dependency of polarized radiance on the surface 
reflectance. Figure 5 shows the polarized radiance nomalized by cos(θs)E/π against the 
surface reflectance at 490nm and 670nm channels, where θs is the solar zenith angle and E 
the solar flux at the top of atmosphere. In Figure 5, polarized radiances were computed 
under the following conditions: 
optical properties of aerosols:  t(550)=0.4, a=4.0, Nr=1.5 and Ni=0.0. 
geomeric conditions:    solar zenith angle 35 degrees, viewing zenith angle 30 degrees,  

relative azimuth angle 180 degrees. 
atmospheric model:  midlatitude winter model. 
We can see from Figure 5 that the polarized radiance received by the satellite sensor is 
independent of the surface reflectance. This indicates that aerosol properties are extracted 
from polarized radiances received by the satellite sensor. 
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Fig. 5. The dependency of polarized radiances on the surface reflectance at 490nm and 
670nm channels. It is assumed that the ground surface is the Lambertian reflector. 

 

3.2.1 Estimation Algorithm at the 670nm channel  
(1) Estimation of aerosol properties  
Absorption of optical light by dust particles decreases as the wavelength is longer. In this 
study, we assume that there is very little absorption for dust particles at 670nm, because we 
have not so much experimental results for it. Therefore, it is assumed that the imaginary 
part of complex refractive index, Ni, is zero at 670nm.  
The polarization (Q and U of Stokes parameters) at a target pixel measured by the POLDER 
change at geometric conditions of the satellite sensor. We create the look-up table, LUT, for 
the polarization to retreive the necessary information easily from it. Using the 6SV-1.0b code, 
we computed in advance the radiance RAD and the polarized radiance POL and the 
polarization direction PD at the top of atmospher as the function of the optical thickness of 
aerosols at 550nm, t(550), refractive index of aerosols, Nr, and index of Junge power-law, a 
under a given geomeric condition such as solar zenith angle, SZA, viewing zenith angle, 
VZA, and relative azimuth angle, RAZ. In this computation, the midlatitude winter model 
given in the 6SV-1.0B code was adopted as the atmospheric model and the surface 
reflectance A was taken as 0. The values of RAD, POL and PD computed for typical values 
of t(550), Nr, a, SZA, VZA and RAZ were saved in the look-up table, LUT. 
The Stokes parameters I, Q, U in different viewing conditions at each pixel of POLDER data 
are computed. Consider that the observed Stokes parameters in different N geometrical 
conditions, each of which consists of a 3-tuple of (SZA, VZA, RAZ), were extracted from 
POLDER data at a target pixel, and polarized radiances POL were computed by Eq. (2). The 
values of POL against all combinations of Nr, a and t(550) given in LUT were interpolated in 
all of viewing conditions, (SZA, VZA, RAZ)i, (i=1, …,N). In this case, we adopted the 
Lagrange 2nd-order polynomials as the interpolation function. The values of POLi in the i-th 
viewing condition, i.e., (SZA, VZA, RAZ)i were restored in the new file, nLUT. 
We use the least square method to estimate optimum values of Nr, a ant t(550). Let the 
polarized radiance observed by the POLDER in a viewing condition, (SZA, VZA, RAZ), be 
OPL. The sum of square errors between the observed values and the computed ones, Q, is 
defined as 
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where i represents the i-th geometric condition. 
It is necessary to obtain the unique solution that minimizes Q in the 3-dimensional 
parameter space. In other words, the problem is to find the values of Nr, a and t that 
correspond to the minimum of Q. In general, the hill climbing algorithm starts by making 
the initial guess and needs the partial derivatives of a function Q to compute the better 
solution from the initial solution. In our case, it is difficult to derive the partial derivatives of 
Q given by Eq.(4). We also used the modified hill climbing algorithm adopted by Kusaka, et 
al. (Kusaka, et al., 2004) in which the partial derivatives of Q are not used, to get the 
minimum of Q. The modified hill climbing algorithm provides a local minimum rather than 
a global one. Therefore, we derived the optimum solution of Nr, a and t in the following two 
steps. 
Step 1: Using the values of POL stored in the file, nLUT, we compute the values of Q in all 
combinations of variables (Nr, a, t). Then, we can obtain n values of Nrk, ak and tk that 
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correspond to Qk (Q1<Q2< … <Qn, k=1,2 … n). The values of Nrk, ak and tk are used as initial 
values. In practical applications, we chose n=3. 
Step 2: The values of Nrk, ak and tk (k=1) are first applied to the modified hill climbing 
algorithm and the new solution (Nr(1), a(1), t(1)) corresponding to the new local minimum 
Q(1) is obtained. This procedure is repeated for n initial values. As a result of it, we have n 
values of 3 parameters corresponding to local minimum values Q(1) , … , Q(n). As the 
optimum solution, we choose Nr(j), a(j) and t(j), corresponding to the minimum value, Q(j), 
among Q(1) , … , Q(n) , where j is one of 1, 2, … n.   
 
(2) Estimation of surface reflectance 
Since optical properties of aerosols such as Nr, a, and t were determined in the previous 
section, we can easily estimate the surface reflectance using the radiance received by the 
POLDER. First of all, by using the estimated Nr, a and t, the radiance, CI, at the top of 
atmosphere is computed for a surface reflectance under a given geometric condition 
received by the POLDER and is compared with the radiance, OI, received by the POLDER.  
After computing the values of CI in typical four surface reflectances, A1, A2, A3 and A4 for 
all viewing conditions of the POLDER, we determine the surface reflectance in the range of 
A1 to A4 that minimizes the sum, QR, of square errors between the observed radiances and 
the computed ones. QR is defined as 
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We also used the modified hill climbing algorithm to obtain the surface reflectance, A. 

 
3.2.2 Estimation algorithm at 490nm 
In general, the refractive index slightly increases as the wavelength is shorter, but the 
measurement for the wavelength dependency of dust particles is as yet very sparse. In the 
present study, we assume that the refractive index, Nr, does not depend on the wavelength 
and so Nr at 490nm is the same as that at 670nm. However, absorption of light by aerosol 
particles will be taken into account. As a matter of course, number size distribution of 
aerosols at this wavelength is taken as that estimated at 670nm. Therefore, optical 
parameters to be estimated at 490nm are the imaginary part of complex refractive index and 
optical thickness of aerosols. 
We generated the look-up table, LUT4, of RAD, POL and PD for typical values of Nr, Ni, a, 
t(550), SZA, VZA and RAZ in the same way as the case at 670nm. Then, the values of POL 
and PD for SZA, VZA, RAZ and Nr, a estimated at 670nm were interpolated from LUT4 and 
were saved in a new file, nLUT4. 
We use the nLUT4 file to estimate aerosol properties, Ni and t(550), and the surface 
reflectance, A in the same way as described at (1) and (2) in the section 3.2.1. 

 
 
 
 

 

3.2.3. Results 
The method described in the previous section was applied to PARASOL/POLDER data 
(P3L1TBG1032192JD) taken on April 28, 2006. Figure 6 shows the POLDER image over 
Japan (B: 490nm, G: 865nm, R: 670nm). We estimated the values of t, Nr, Ni, a and A at two 
target pixels including the symbol + shown in Figure 6.  
 

 
Fig. 6. Parasol/POLDER image over Japan taken on April 28,2006 
 

 670nm 490nm
Point Nr Ni a t(550) A Nr Ni a t(550) A

1 1.35 0 3.92 0.591 0.037 1.35 0.0066 3.92 0.607 0.1
2 1.35 0 3.87 0.6 0.041 1.35 0.0057 3.87 0.6 0.1  

Table 1. Estimation results of aerosol properties and surface reflectances  
 
In the estimation process of 3 parameters at 670nm, we chose POLDER data observed in 
viewing conditions in which the polarized radiances normalized by cos(θs)E/π are larger 
than 0.02. The results are shown in Table 1. The ground surface at two pixel points selected 
for the estimation of parameters represents urban and suburban areas. We can see from 
Table 1 that we have reasonable estimation values for the optical thickness of aerosols and 
surface reflectance. The polarized radiance and the apparent radiance computed by using 
parameters at 670 nm estimated at the point 1 in Table 1 and those received by the POLDER 
are shown in Figure 7, and Figure 8 shows the estimated radiance at the top of atmosphere 
and the observed ones at 670nm. The estimated polarized radiance and observed one at 
490nm are shown in Figure 9 and the computed apparent radiance and observed one at 
490nm are shown in Figure 10. The radiance and polarized radiance shown in Figures 7 to 
10 are normalized by cos(θs)E/π. As seen from Figures 7 to 10, we have a good 
correspondence between the estimated values and observed ones. 
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Fig. 7. The estimaded polarized radiances (EST) and observed ones (OBS) by the POLDER at 
670nm 
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Fig. 8. The estimated radiances (EST) and observed ones (OBS) by the POLDER at 670nm. 
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Fig. 9. The estimated polarized radiances (EST) and observed ones (OBS) at 490nm 
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Fig. 10. The estimated radiances (EST) and observed ones by the POLDER at 490nm 

 
4. Conclusions 
 

Ground-based polarization measurements of the sky radiation were made at the Kanazawa 
city, Japan. The following results were obtained. 
(1)Degrees of polarization measured in the sky covered with Asian dust are lower than 
those measured in the clear sky and decrease uniformly as the wavelength increases. 
(2)The wavelength dependency of polarization is slightly different in the measurement date. 
In particular, most of degrees of polarization measured in the clear sky show the peak value 
around the 490nm channel.  
We also described the method for estimating optical properties of atmospheric aerosols 
including Asian dust and surface reflectances simultaneously from satellite and ground-
based polarization data measured at multi-viewing angles. In addition to it, a new method 
for the estimation of aerosol properties over land using the polarized radiance measured by 
the POLDER effectively was proposed. As a result, it was shown that the method described 
in the present study provides reasonable values for aerosol properties and surface 
reflectances if it is assumed that the ground surface is the Lambertian diffuse reflector. 
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1. Introduction     
 

Recently, Along Track Interferometric Synthetic Aperture Radar systems (AT-InSAR) have 
been applied for traffic monitoring of ground vehicles (Meyer et al. 2006, Chapin & Chen,  
2006, Hinz et al. 2007). 
AT-InSAR systems are composed by more than one SAR antennas (typically two), mounted 
on the same platform and displaced along the platform moving direction. The separation 
distance between the antennas is denoted as baseline.  
From the acquisitions of two or more image signals these systems are able to recover 
additional information about the observed scene: they allow the detection of moving targets 
on the ground and the estimation of their radial velocity (Raney, 1971). This is possible 
because the interferometric phase, i. e. the (-π,π] wrapped phase of the signal obtained from 
the point to point correlation between the complex images acquired from the two 
interferometric antennas, is related to the radial velocity through a known mapping. Then, 
after the so-called Phase Unwrapping (PhU) operation, a map of the target range velocity 
can be retrieved. 
Detection and radial velocity estimation of a ground moving target are challenging  
problems, due to the difficulty of separating the moving target signal from the stationary 
background (clutter) (Chiu, 2003). Several methods, based on very different approaches, 
have been proposed in literature, such as Displaced Phase Centre Antennas (DPCA systems) 
techniques (Gierull & Livingstone, 2004, Chiu & Livingstone 2005), and Space-Time 
Adaptive Processing (STAP) (Ender, 1999, Klemm, 2002, Gierull & Livingstone, 2004). 
Interest in investigating AT-InSAR processor is motivated since such alternative techniques 
attempt to reject or cancel the stationary clutter but have the drawback that can attenuate 
slowly moving targets (Chiu & Livingstone 2005). 
AT-InSAR systems usually use only interferometric phase information in order to estimate 
radial velocity (Chen, 2004, Budillon et al. 2005, Budillon et al. 2008a) while complex data in 
place of phase-only data have already been used in AT-InSAR systems detection 
applications (Gierull, 2004, Zhang et al. 2005, Budillon et al., 2008b) showing that detection 
performance improve when complex data are used. 

12
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In this paper it is proposed to consider both amplitude and phase of the interferometric SAR 
image since in the case of target velocity estimation of not extended targets, the exploitation 
of the image amplitude together with the image phase can add more information, even if the 
amplitude is influenced in a less sensitive way with respect to the phase. AT-InSAR 
approach can be considered clutter-limited since when the signal to clutter ratio decreases, 
the velocity estimation becomes gradually more and more critical, till it fails completely. 
Moreover there are solution ambiguities than can keep the velocity estimation from working 
correctly due to the wrapped phase measurements. 
In this paper both above mentioned problems are solved by using statistical estimation 
methods, and exploiting multi-channel interferograms. The statistical estimation methods 
allow taking into account the correct statistics of the involved noise (likelihood model). The 
use of a multi-channel interferogram, that in this case can be obtained exploiting frequency 
diversity and/or baseline diversity, has a twofold effect: multi-channel interferograms can 
help to reduce the variance of the estimation, and, if properly chosen, can allow avoiding 
solution ambiguities (Budillon et al. 2005, Budillon et al. 2008c).  
It is shown that combining the real and imaginary part of more than two acquired images 
(multi-channel approach) produce significative improvements in the velocity estimation 
accuracy and a sensitive reduction in the false alarm rate compared with AT-InSAR 
conventional systems using phase-only data. 
In section 2 the AT-InSAR statistical model has been presented and the joint interferogram 
amplitude and phase distribution has been derived. Based on this distribution, in section 3 a 
radial velocity estimation maximum likelihood approach using more interferogram 
channels has been reported. Cramer Lower Bounds and Root Mean Squared Error show the 
method performance on simulated data using Terra SAR-X parameters and are evaluated in 
the case of phase-only data and amplitude and phase data. In section 4 a likelihood ratio test 
is adopted to detect the moving target and performance detection in terms of Probability of 
detection and false alarm have been examined comparing results obtained on phase-only 
data and on amplitude and phase data. Moreover a multi-channel detection strategy is 
proposed and compared with the one based on a single interferogram. Finally follow 
conclusions in section 5. 

 
2. AT-InSAR statistical model  
 

In this section is presented the statistical model of the AT-InSAR signal. Consider an AT-
InSAR system constituted by two antennas moving along the direction x (azimuth) (see 
Figure 1), and suppose that the two antennas are separated by a baseline b along the 
azimuth direction x, such that b«H, where H is the platform quota. Assume a target on the 
ground moving with a constant velocity vT = vTx x + vTr r, where vTx and vTr are the velocity 
components along the azimuth and the line of sight direction (range) r, respectively. The 
azimuth velocity component vTx produce a Doppler slope change causing a defocusing in 
the moving target image. The radial velocity component vTr produce a Doppler history 
different from that of the stationary background, and an azimuth displacement of the target. 
Suppose that |vTx|, |vTr|<<|vP|, where vP=vP x is the velocity of the flying platform and 
H»X and H»W, where X and W are the antenna footprint dimensions. 

 

    

Fig. 1. Along-Track Interferometry system single baseline geometry  
 
The SAR image signal formed by each antenna can be modeled as the superposition of the 
contributions of the moving target, of the stationary clutter, and of the additive noise. Then 
in a fixed image pixel we have: 
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Z1 and Z2 are the computed image signals in the considered pixel, Zc1 and Zc2 are the clutter 
signals acquired by the two antennas, N1 and N2 represent the receiver thermal noise, and 
ZT1 and ZT2 denote the SAR images of the moving target produced by the two 
interferometric antennas, which will exhibit a phase factor related to the radial velocity: 
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where A1 and A2 are the target images obtained for zero velocity, and vφ  is given by (Raney, 
1971): 
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where λ  is the wavelength corresponding to the working frequency f=c/ λ of the SAR 
system, and <·>2π represents the “modulo-2π” operation. In (3) the normalized radial 
velocity ur=vr/|vP| has been also introduced. Where the moving target is present, vr≠0 and 
consequently φv≠0, otherwise the along-track inteferometric phase (3) is null. From (3) it is 
easy to derive that the ambiguity velocity value, such that the interferometric phase is equal 
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2. AT-InSAR statistical model  
 

In this section is presented the statistical model of the AT-InSAR signal. Consider an AT-
InSAR system constituted by two antennas moving along the direction x (azimuth) (see 
Figure 1), and suppose that the two antennas are separated by a baseline b along the 
azimuth direction x, such that b«H, where H is the platform quota. Assume a target on the 
ground moving with a constant velocity vT = vTx x + vTr r, where vTx and vTr are the velocity 
components along the azimuth and the line of sight direction (range) r, respectively. The 
azimuth velocity component vTx produce a Doppler slope change causing a defocusing in 
the moving target image. The radial velocity component vTr produce a Doppler history 
different from that of the stationary background, and an azimuth displacement of the target. 
Suppose that |vTx|, |vTr|<<|vP|, where vP=vP x is the velocity of the flying platform and 
H»X and H»W, where X and W are the antenna footprint dimensions. 

 

    

Fig. 1. Along-Track Interferometry system single baseline geometry  
 
The SAR image signal formed by each antenna can be modeled as the superposition of the 
contributions of the moving target, of the stationary clutter, and of the additive noise. Then 
in a fixed image pixel we have: 
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Z1 and Z2 are the computed image signals in the considered pixel, Zc1 and Zc2 are the clutter 
signals acquired by the two antennas, N1 and N2 represent the receiver thermal noise, and 
ZT1 and ZT2 denote the SAR images of the moving target produced by the two 
interferometric antennas, which will exhibit a phase factor related to the radial velocity: 
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where A1 and A2 are the target images obtained for zero velocity, and vφ  is given by (Raney, 
1971): 
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where λ  is the wavelength corresponding to the working frequency f=c/ λ of the SAR 
system, and <·>2π represents the “modulo-2π” operation. In (3) the normalized radial 
velocity ur=vr/|vP| has been also introduced. Where the moving target is present, vr≠0 and 
consequently φv≠0, otherwise the along-track inteferometric phase (3) is null. From (3) it is 
easy to derive that the ambiguity velocity value, such that the interferometric phase is equal 
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to ± π, is given by ur,amb=± λ /(4b). For |ur|> λ /(4b) the interferometric phase wraps, as 
evidenced also by the “modulo-2 π” operation. Also disturbing effects have to be taken into 
account, they are  related to different parameters such as the signal to clutter ratio (SCR), the 
clutter to thermal noise ratio (CNR), and the clutter coherence γc. Since the time elapsing 
between the two interferometric acquisitions is very small (typically of the order of a 
millisecond) the clutter coherence can be considered equal to one. Then only the effect of 
SCR and CNR has to be considered. 
To analyze the effect that the clutter and noise signals have on the velocity estimation 
accuracy, a statistical model for the involved signals has to be introduced. It is well known 
that the clutter signals Zc1 and Zc2 can be assumed random processes, whose real and 
imaginary parts are mutually uncorrelated Gaussian signals, with zero mean and same 
variance 2

cσ , since they are resulting from the superposition of the signals backscattered 
from many scattering centres lying in the resolution cell. N1 and N2 can be modelled as two 
additive (to the clutter) zero mean Gaussian complex processes independent of each other, 
independent on the clutter and with same variance 2 2

Nσ . 
When the moving target is present, a deterministic model is applicable to the case of a target 
whose Radar Cross Section (RCS) can be expressed by a deterministic function of the 
incidence angle (Budillon et al., 2008a). This model applies to canonical scattering objects 
(such as corner reflectors, spheres, etc.), and to complex or extended targets whose RCS does 
not rapidly change between the interferometric acquisitions. An accurate knowledge of the 
average RCS values can be available only for accurately characterized targets (Palubinskas 
et al. 2004). 
A Gaussian model for the target allows to take into account the lack of knowledge of the 
target RCS values (that can be described in terms of variance σT2), and then of the SCR, and 
applies to complex or extended targets which can be considered to consist of a large number 
of isotropic scattering elements, randomly distributed in a region whose dimensions are 
large compared to the wavelength of the illuminating radiation, and all contributing to the 
overall signal with the same weight. In the following the target signals ZT1 and ZT2, have 
been modelled as zero mean (complex) Gaussian processes. 
Then, when the moving target is absent (ZT1 = ZT2 = 0), the two processes Z1 and Z2 are 
Gaussian with zero-mean and correlation coefficient γH0 given by: 
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where [ ]⋅E  denotes the expectation operation, * denotes the conjugate, γc is the clutter 
coherence (real valued, in the ATI application can be considered equal to one), representing 
the correlation between images Zc1 and Zc2, and CNR = 2

cσ / 2
Nσ , where 2 2

cσ and 2 2
Nσ  are 

the clutter and thermal noise powers respectively (the factor two is due to the sum of the 
powers of the real and imaginary parts). 
Instead, when we are in presence of the moving target (ZT1 ≠ 0, ZT2 ≠ 0), the expression of 
correlation coefficient change with respect to (4) and γH1 is given by: 
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where SCR = 2
Tσ / 2

cσ , where 2 2
Tσ  is the target power, and γT is the target (complex) 

coherence that depends on the target velocity through the nominal phase (3): 
 

* *

2 2 2 2

E

E E E E

v vj j
T A

Z Z E A A
γ e γ e

Z Z A A

ϕ ϕ
      = = =

       
       

T1 T2 1 2

T1 T2 1 2

,                  (6) 

 

where Aγ  is the target coherence for zero radial velocity that is usually assumed equal to 
one.  
The two processes Z1=Z1r+jZ1i and Z2=Z2r+jZ2i are Gaussian, then the joint probability 
density function of Z=[Z1r  Z2r  Z1i  Z2i]T, is Gaussian with zero mean and covariance matrix 
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where the matrices Cc, CN and CT are respectively the clutter, noise and target covariance 
matrix.  It can be easily shown (Davenport & Root, 1958) that:  
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where, in the hypothesis H0, has to be taken 2
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Then the joint probability density function of Z=[Z1r  Z2r  Z1i  Z2i]T, is Gaussian, i.e. 
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The SAR interferometric amplitude and phase distribution can be derived from (9) 
introducing the interferometric signal I: 
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where SCR = 2
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cσ , where 2 2
Tσ  is the target power, and γT is the target (complex) 
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The SAR interferometric amplitude and phase distribution can be derived from (9) 
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The joint W and Φ pdfs, in the hypothesis H1 and H0, derived from (9) via variables 
transformations (Davenport & Root, 1958), are respectively: 
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where K0 denote the modified Bessel function of order zero, πφ 20,0w ≤≤≥  and φ0 is γH1 
phase. The analytical expressions of the pdfs ( (9) and (11)) and of the coherences ( (4) and 
(5)), reveal their dependence on CNR, SCR, radial velocity (trough the phase φ v), clutter 
coherence γc  and target coherence γA. As far as the coherence values are concerned, they are 
assumed equal to 1 in ATI applications. 
In Figure 1 and Figure 2 the joint pdf of W and Φ, respectively in the hypothesis H0 and H1, 
with CNR= 10 dB, SCR= 10 dB), ur=ur,amb/2 corresponding to phase 1.5 rad, are shown. 
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Fig. 2. Inteferogram joint amplitude phase pdf in the hypothesis H0 for CNR=10 dB. 
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Fig. 3. Inteferogram joint amplitude phase pdf in the hypothesis H1 for CNR= 10 dB, SCR= 
10 dB, ur=ur,amb/2, corresponding to phase 1.5 rad. 

 
3. Multi-Channel AT-InSAR moving target velocity estimation 
 

3.1 Joint estimation of velocity and SCR via Maximum likelihood approach 
Since interferometric phase is measured in the interval (-π,π], then a Phase Unwrapping 
(PhU) operation is required to retrieve the target radial velocity. The PhU operation presents 
solution ambiguities when only one phase interferogram (single-channel) is used. It has 
already been shown in (Budillon et al. 2005, Budillon et al. 2008c) that the joint use of multi-
channel configurations (deriving from the use of more than two interferometric images 
acquired with different baselines or at different working frequencies) and of classical 
statistical estimation techniques allows to obtain very accurate solutions and to overcome 
the limitations due to the presence of ambiguous solutions, intrinsic in the single-channel 
configurations.  
Different baseline data sets (at least two) can be generated when the AT-InSAR system is 
constituted by more than two antennas (at least three). Different frequency data sets can be 
generated in two ways. In the first, we can suppose that the SAR sensors can operate at 
different working frequencies, for instance in X and C bands simultaneously. In the second, 
the multi-frequency interferograms can be obtained by sub-band filtering the interferometric 
images splitting the overall bandwidth (Budillon et al. 2008c). Note that while the use of a 
different working frequency or baseline does not affect the SCR values, the generation of 
adding frequencies by partitioning the available band reduces the SCR value. This SCR 
reduction is in inverse relation to the number of looks, as the spatial resolution worsens 
increasing the number of looks. 
Likelihood function is easily derived from either pdf (9) or (11) in the H1 hypothesis.  As 
discussed in the previous section, it depends on CNR, SCR and radial velocity since clutter 
and target coherence are assumed equal to 1 in ATI applications. CNR value can be easily 
computed from the data isolating an area where the target is absent. Then, the final 
estimation can be casted as a joint maximum likelihood estimation (Kay, 1993) of velocity 
and SCR: 
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where K0 denote the modified Bessel function of order zero, πφ 20,0w ≤≤≥  and φ0 is γH1 
phase. The analytical expressions of the pdfs ( (9) and (11)) and of the coherences ( (4) and 
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assumed equal to 1 in ATI applications. 
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where the samples { }  )( N1,kk =Z  represent the SAR signals acquired in N channels. The 

factorization in (12) comes from the assumed statistical independence of the multi-channel 
interferograms. 

 
3.2 Performance assessment 
Estimation performance evaluation has been carried out using Terra SAR-X parameters in 
Table 1, but in order to consider a multi-channel system a second baseline b2=1.8b1 [m] 
(b1=1.2 [m]), has been adjoined. By sub-band filtering the interferometric images also 4 
azimuth looks have been considered, obtaining in total N=8 channels. The maximum 
normalized radial velocity value that can be unambiguously detected results 
|ur,max|=λ/(4b)=6.5×10-3,  corresponding to a not normalized velocity |vr,amb| of about 49.4 
m/sec (178 Km/h). 
 

TerraSAR-X 
Quota 514.8 Km 
Platform velocity 7.6 Km/s 
Along track antenna dimension 4.8 m 
Across track antenna dimension 0.8 m 
Along track baseline 1.2 m 
Working frequency X band– fX=9.65 GHz 
Wavelength 3.12 cm 
Range bandwidth 150 MHz 

Table 1. Main parameters of Terra SAR X system 
 
To evaluate the performance of the ML estimator (12), the Cramer Rao Lower Bounds 
(CRLBs) (Kay, 1993) and the Root Mean Square Errors (RMSEs) for the unknown parameters 
( SCR,vr ) have been computed. CRLBs depend on the data model and represent the 
maximum accuracy attainable with given data. In order to point out the advantages of 
taking into account amplitude and phase information they have been compared with the 
ones obtained using a phase-only approach, i.e. a maximum likelihood estimation based on 
the phase-only distribution (Budillon et al. 2008a). 
The CRLB1/2  relative to the not normalized radial velocity vr and SCR are reported 
respectively in Figures 4 and 5. In Figure 4(a) it is shown the CRLB1/2 relative to the 
estimation of the not normalized radial velocity vr, Vs. the radial velocity and relevant to the 
model based on phase-only data. It is evident the significative improvements in the 
maximum accuracy attainable using the amplitude and phase model reported in Figure 4(b). 
The CRLB1/2 have been evaluated numerically and for different values of vr in the range (0, 

 

vr,amb), for CNR=10 dB, and varying SCR (0,5,10,15,20 dB). It can be appreciated that as 
expected the CRLB1/2 are lower for higher SCRs.  
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(a)                                                                              (b) 

Fig. 4.  CRLB1/2 relative to the estimation of  the radial velocity vr,Vs. the radial velocity   and 
relevant to the model based on phase-only data  (a) and to the model based on amplitude 
and phase data  (b),   for CNR=10 dB, and varying SCR (0,5,10,15,20 dB) . 
 
In Figure 5(a) the CRLB1/2 relative to the estimation of the SCR, Vs. the SCR and relevant to 
the model based on phase-only data is shown. Also for this parameter it is evident the 
significative improvements in the maximum accuracy attainable using the amplitude and 
phase model reported in Figure 5(b). Moreover it can be seen that using the amplitude and 
phase model the accuracy is slightly dependent on the SCR values, in both case the CRLB1/2   
is smaller for higher values of radial velocities, i.e. as expected it is easier to estimate the 
SCR of a faster target. In Figure 6(a)  are shown the CRLB1/2 and the RMSE relative to the 
estimation of  the not normalized radial velocity vr, Vs. the radial velocity and relevant to 
the model based on phase-only data, for CNR=10 dB, and SCR=10 dB. They can be 
compared with the correspondent CRLB1/2 and the RMSE relevant to the model based on 
amplitude and phase data in Figure 6(b). It is noticeable that the performances are improved 
and also the RMSE is closer to the CRLB1/2 when the estimation is based on the amplitude 
and phase model. In Figures. 7(a) and 7(b) the statistical mean values and the RMSEs for 
different estimated velocities in the range (0, vr,amb), for CNR=10 dB and SCR=10 dB, 
respectively for the model based on phase-only data and to the model based on amplitude 
and phase data, are reported. Finally in Figures. 8(a) and 8(b) CRLB1/2 and the RMSE 
relative to the estimation of  SCR,Vs. the radial velocity are shown respectively for the two 
models. It is evident again the improvement attainable in case it is assumed the amplitude 
and phase model. 
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where the samples { }  )( N1,kk =Z  represent the SAR signals acquired in N channels. The 

factorization in (12) comes from the assumed statistical independence of the multi-channel 
interferograms. 
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Table 1. Main parameters of Terra SAR X system 
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Fig. 4.  CRLB1/2 relative to the estimation of  the radial velocity vr,Vs. the radial velocity   and 
relevant to the model based on phase-only data  (a) and to the model based on amplitude 
and phase data  (b),   for CNR=10 dB, and varying SCR (0,5,10,15,20 dB) . 
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and also the RMSE is closer to the CRLB1/2 when the estimation is based on the amplitude 
and phase model. In Figures. 7(a) and 7(b) the statistical mean values and the RMSEs for 
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respectively for the model based on phase-only data and to the model based on amplitude 
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relative to the estimation of  SCR,Vs. the radial velocity are shown respectively for the two 
models. It is evident again the improvement attainable in case it is assumed the amplitude 
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Fig. 5.  CRLB1/2 relative to the estimation of  SCR,Vs. SCR  and relevant to the model based 
on phase-only data  (a) and to the model based on amplitude and phase data  (b), for 
CNR=10 dB, and varying vr  in the range (0, vr,amb). 
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Fig. 6. CRLB1/2 and RMSE relative to the estimation of  the radial velocity vr,Vs. the radial 
velocity  and relevant to the model based on phase-only data  (a) and to the model based on 
amplitude and phase data  (b), for CNR=10 dB, and SCR=10 dB.  
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Fig. 7. Mean value  and RMSE relative to the estimation of  the radial velocity vr,Vs. the 
radial velocity and relevant to the model based on phase-only data  (a) and to the model 
based on amplitude and phase data  (b), for CNR=10 dB, and SCR=10 dB. 
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Fig. 8. CRLB1/2 and RMSE relative to the estimation of  SCR,Vs. the radial velocity  and 
relevant to the model based on phase-only data  (a) and to the model based on amplitude 
and phase data  (b), for CNR=10 dB, and SCR=10 dB.  
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Fig. 5.  CRLB1/2 relative to the estimation of  SCR,Vs. SCR  and relevant to the model based 
on phase-only data  (a) and to the model based on amplitude and phase data  (b), for 
CNR=10 dB, and varying vr  in the range (0, vr,amb). 
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Fig. 6. CRLB1/2 and RMSE relative to the estimation of  the radial velocity vr,Vs. the radial 
velocity  and relevant to the model based on phase-only data  (a) and to the model based on 
amplitude and phase data  (b), for CNR=10 dB, and SCR=10 dB.  
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Fig. 7. Mean value  and RMSE relative to the estimation of  the radial velocity vr,Vs. the 
radial velocity and relevant to the model based on phase-only data  (a) and to the model 
based on amplitude and phase data  (b), for CNR=10 dB, and SCR=10 dB. 
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Fig. 8. CRLB1/2 and RMSE relative to the estimation of  SCR,Vs. the radial velocity  and 
relevant to the model based on phase-only data  (a) and to the model based on amplitude 
and phase data  (b), for CNR=10 dB, and SCR=10 dB.  
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4. Multi-Channel AT-InSAR moving target detection 
 

4.1 Likelihood ratio test 
A moving target can be detected in the conventional way by comparing the interferometric 
phase φ with a threshold ηT in the interval (-π,π]. 
The performance of the detection process can be evaluated using the interferometric phase 
statistics (Budillon et al. 2088a). They are, as expected, better for high values of SCR, i.e. 
when the moving targets power is significantly larger than the clutter power. For moving 
targets mingling with the background clutter, the detection capability worsen, so that if one 
wants low values of PFA, the PD can decrease to very low values, not consistent with the 
applications. 
As in the case of the velocity estimation (see Section 3) both amplitude and phase of the 
interferogram are considered instead of taking into account only the interferometric phase. 
Based on the pdfs (11) a constant false alarm rate (CFAR) detector can be designed.  
In order to detect a moving target a likelihood ratio test is proposed, likelihood is derived 
from (11): 
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Probability of false alarm PFA and Probability of detection PD are derived from (13) 
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The threshold η depends on a fixed PFA .  

 
4.2 Performance assessment 
The detection performance evaluation has been carried out using the same multi-channel 
system presented in section 3.2. 
The proposed approach provides curves of separation between the two classes (see Figure 9-
10). In Figure 9 the separation curve for the two hypothesis, presence and absence of a 
moving target, has been evaluated for CNR=10 dB, SCR=10 dB, ur=ur,amb/2=3.25×10-3 
(corresponding to the nominal noise-free value φv=π/2), a threshold has been chosen such 
that PD=0.91 and PFA=0.001. Figure 10 shows the separation curve for the two hypothesis for 
CNR=10 dB, SCR= 0 dB, ur=ur,amb/2=3.25×10-3, a threshold has been chosen such that PD=0.7 
and PFA=0.05. 
For comparison with the conventional interferometric approach, the two Receiver Operating 
Characteristics (ROC) have been derived in both case SCR= 10 dB and SCR= 0 dB, for the 
amplitude and phase approach (solid line) and for the phase-only case (dashed line) (see 
Figure 11). It is clear the advantage in considering both amplitude and phase, for a fixed PFA 
a higher PD can be obtained. 
In Figure 12 it can be appreciated the ROC dependence, in the amplitude and phase 
approach, on the radial velocity (Figure 12(a)), for CNR=10 dB, SCR=10 dB and on SCR 

 

(Figure 12 (b)), for CNR=10 dB and ur=ur,amb/2. As expected it is easier to detect a faster and 
stronger (in terms of reflectivity) target. 
In order to exploit the multi-channel interferograms in the detection process, suppose that 
the detection probability of one of the channel corresponding to the first baseline is equal to 
PD1, and that the detection probability of one of the channel corresponding to the second 
baseline is equal to PD2.  
The probability that the target is detected from (N/2+j) channels (j=1,…,N/2) on a total of N 
channels results:  
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The proposed multi-channel detection strategy consists in considering the moving target 
present when the majority of the interferogram values are above prefixed thresholds, so that 
the detection probability results: 
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For the estimation of the false alarm probability can be used the same reasoning.  
In Figure 13 the ROC in the multi-channel amplitude phase approach (solid line) for 
CNR=10 dB, SCR=10 dB, N=8 interferograms compared with the single channel amplitude 
phase approach is reported (dashed lines). It is evident the advantages in considering a 
multi-channel approach that allows to keep low PFA and at the same time high PD.  
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Fig. 9. Inteferogram joint amplitude phase pdf in the hypothesis H0 and H1 for ur=ur,amb/2, 
CNR=10 dB, SCR=10 dB, and the separation curve. 
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Fig. 9. Inteferogram joint amplitude phase pdf in the hypothesis H0 and H1 for ur=ur,amb/2, 
CNR=10 dB, SCR=10 dB, and the separation curve. 
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Fig. 10. Inteferogram joint amplitude phase pdf in the hypothesis H0 and H1 for ur=ur,amb/2, 
CNR=10 dB, SCR=0 dB, and the separation curve. 
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(a)                                                              (b) 

Fig. 11. ROC in the amplitude phase approach (solid line) and in the phase-only approach 
(dashed line) for ur=ur,amb/2, CNR=10 dB, SCR=10dB (a) and SCR=0 dB (b). 
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Fig. 12. ROC in the amplitude phase approach for CNR=10 dB, SCR=10 dB, varying ur in the 
range (0, ur,amb) (a) and  for ur=ur,amb/2, varying SCR (-5 dB, 0 dB, 5 dB, 10 dB) (b). 
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Fig. 13. ROC in the multi-channel amplitude phase approach (solid line) for CNR=10 dB, 
SCR=10 dB, N=8 interferograms compared with the single channel amplitude phase 
approach (dashed line baseline b1 dotted line baseline b2).  
 
5. Conclusion 
 

In this paper it has been presented the performance evaluation of multi-channel AT-InSAR 
systems, exploiting both amplitude and phase interferogram information, in terms of target 
radial velocity estimation accuracy and moving target detection ability.  
A Gaussian target response model has been considered and the amplitude and phase joint 
pdf of the inteferogram has been derived. Based on this model a maximum likelihood 
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Fig. 11. ROC in the amplitude phase approach (solid line) and in the phase-only approach 
(dashed line) for ur=ur,amb/2, CNR=10 dB, SCR=10dB (a) and SCR=0 dB (b). 
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SCR=10 dB, N=8 interferograms compared with the single channel amplitude phase 
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1. Introduction    
 

Thick deposits of peat underneath tropical peat swamp forests are among the world's largest 
reservoirs of carbon. Although occupying only about 0.3% of the global land surface, they 
contain as much as 20% of the global peat soil carbon stock, representing 63-148 Giga ton of 
carbon (Rieley and B. Setiadi, 1997; MacDicken, 2002). A value of approximately 70 Giga ton 
of carbon is cited by (Sabine et al., 2004). This wide range of values illustrates a large 
uncertainty. The uncertainty is large as peat depth and carbon densities are poorly 
described. Tropical peat swamp forests have an uneven global distribution. Most of the 
areas occur in South-East Asia. The carbon stored in South–East Asian peatlands is 
estimated to be over 42 Giga ton (Hooijer et al., 2007).The tropical peat swamp forests of 
South-East Asia account for approximately 26.5 million ha of the total tropical resource of 
approximately 38 million ha, with Indonesia alone contributing an estimated 17-27 million 
ha (Waldes and Page, 2002). 
 
Tropical peat swamp forests are threatened by large scale deforestation, canal drainage and 
forest fire, causing enormous carbon emissions (Goldammer, 1999; IUCN/WWF, 2000; 
Hooijer et al., 2007; Van der Werf et al., 2008). Large scale conversion of peat swamp forest 
into, for example, oil palm or Acacia plantations, requires draining. The associated sustained 
low soil water levels cause oxidation of the peat and, consequently, large emissions of 
carbon dioxide (e.g. Fargioni et al., 2008). Forest and peat fires are an additional source of 
carbon dioxide emission. Emissions from peat swamp fires in Indonesia during the strong 
1997-1998 El Niño Southern Oscillation (ENSO) event, for example, have been estimated at 
0.8-2.5 Giga ton of carbon. This was equivalent to 13-40% of the global annual emission from 
anthropogenic fossil fuel combustion (Page et al, 2002). 
 
Despite the relevance of this ecosystem for biodiversity and climate, relatively little is 
known about its functioning and existing maps are often outdated and of poor quality. 
However, unique observing capabilities of L-band satellite radar may provide a powerful 
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A certain level of understanding of the physical interaction between the radar wave and the 
terrain is necessary to allow for an accurate interpretation of L-band SAR images. Biomass 
and flooding are the two main terrain parameters and polarisation is one of the most 
important radar wave parameters describing this interaction. The effect of biomass is an 
increase of the radar echo (or backscatter) intensity with increasing biomass up to a level of 
around 100 ton/ha. Notably the so-called HV-polarisation is sensitive for biomass variation. 
Above this biomass level the radar image intensity saturates and the radar wave does not 
penetrate the vegetation well. Below this biomass level, or in open canopies, the effect of 
flooding is noticeable. In this case the interaction mechanism is somewhat different. Since 
radar instruments are side-looking and the water surface acts as a mirror, smooth open 
water surfaces yield no radar return, i.e. these areas appear black in the image. However, 
when vegetation is present it causes additional reflection (mainly by tree trunks) in the 
direction of the radar, or the so-called backscatter direction. This effect is particularly strong 
for the HH-polarisation. In practice, for forested peat domes, the combined effect of flooding 
and biomass is a variation in the image intensity for which the range of variation is mainly 
determined by the biomass level (i.e. low biomass areas show large variations in time; high 
biomass areas small variations) and for which the relative brightness is mainly determined 
by the intensity of flooding (i.e. dry terrain shows a relatively low intensity; flooded terrain 
a relatively high intensity). Examples for a variety of vegetation cover will be shown later. 
 
Both PALSAR and ASAR are useful for detection of deforestation. Though the contrast 
between forest and recently deforested terrain is highest for the L-band with HV-
polarisation, also L-band with HH-polarisation and C-band shows a certain level of 
sensitivity. The contrast also strongly depends on the elapsed time since deforestation. 
Depending on the vigour of regeneration the contrast fades away quickly in L-band (within 
approx. 4-6 months), and even faster in C-band (within approx. 2-3 months). The preference 
for C-band is related to the fact that L-band HV observations are only made once a year, L-
band HH observations are less sensitive and ASAR C-band dual-polarisation data (APP 
mode) can be observed routinely every 35 days. Moreover, ASAR data can be made 
available very quickly, within two days of satellite overpass, which allows fast response to 
supposed illegal logging. Table 1 summarises the main characteristics of the radar systems 
discussed in this chapter. 
 

 JERS-1 PALSAR 
Fine beam 

PALSAR 
ScanSAR 

ASAR 
Alternating polarisation 

Centre frequency 1275 MHz 1270 MHz 1270 MHz 5331 MHz 

Image mode 
(Polarisation) 

(HH) - FBS (HH) 
- FBB (HH/HV) 

WB (HH) 
 

APP (VV/HV) 

Incidence angle 
range 

36º~42º 36.6°~40.9° 18.1°~43.0° - IS2: 19.2°~26.7° 
- IS4: 31.0°~36.3° 

Swath width 75 km 70 km 360 km - IS2: 105 km 
- IS4: 88 km 

Ground resolution ~18 m ~10 m 
~20 m 

~100 m ~30 m 
 

Table 1. Brief overview of radar system characteristics 

 

 

tool to observe seasonal dynamics of flooding, the impact of drainage by canals and the 
condition of the peat swamp forest cover. 
 
The use of L-band radar for wetlands monitoring was first demonstrated on large scale with 
SAR (Synthetic Aperture Radar) data from the Japanese JERS-1 satellite acquired in the 
period 1992-1998. For all major tropical rain forest areas of the world multi-temporal (2-3 
dates) radar mosaics were created, including South-East Asia (Shimada and Isoguchi, 2002), 
thus providing a benchmark overview for the past decade. Locally, more data were acquired 
allowing in-depth studies of tropical forest inundation patters (e.g. Rosenqvist et al., 2002) 
and tropical coastal vegetation (e.g. Simard et al., 2002). Recently, some first results have been 
published for tropical peat swamp forests (Hoekman, 2007; Hoekman and Vissers, 2007). 
 
With the launch of the Advanced Land Observing Satellite (ALOS) on January 24, 2006, a 
new Japanese spaceborne L-band radar system became available. The Phased Array L-band 
Synthetic Aperture Radar (PALSAR) on-board ALOS has several observations modes. The 
PALSAR observation strategy has been designed to provide consistent wall-to-wall 
observations at fine resolution (Fine Beam mode) of all land areas on Earth on a repetitive 
basis. For the world’s major wetlands areas up to eight additional observations per year in 
ScanSAR mode are made to capture seasonal dynamics (Rosenqvist et al., 2007a; Rosenqvist 
et al., 2008). The entire island of Borneo is one of these major wetland areas. Of particular 
interest is the ability of PALSAR to contribute to objectives of the Ramsar (wetlands) UN 
convention (Davidson and Finlayson, 2007; Rosenqvist et al., 2007b).  
 
In this chapter methodologies are discussed for mapping biophysical parameters, 
hydrological modelling and monitoring based on historical JERS-1 radar data, and currently 
available ALOS PALSAR. Also the use of C-band ENVISAT ASAR, which is off special 
interest for peat swamp deforestation monitoring, is discussed. Unique features of radar for 
observation of peat swamp forests are briefly outlined in Section 2. A test site located in the 
Mawas peat swamp conservation area in Central Kalimantan is used for method 
development and features a 23 km long research bridge, which crosses an entire intact peat 
dome. This test site is discussed in Section 3. Sections 4 until 7 discuss various 
methodologies and results. 

 
2. Radar observation 

The use of spaceborne radar to map and monitor peat swamp forests has certain unique 
advantages. In the first place, observation by radar systems is unimpeded by cloud cover, 
which is an advantage over optical data in the humid tropics. In the second place, radar can 
penetrate vegetation cover to a certain extent, depending on wavelength. The JERS-1 and 
ALOS imaging radar (or SAR) systems use a relatively long wavelength (23.5 cm, or 1.275 
GHz), also referred to as L-band. It allows observation of flooding under a closed forest 
canopy. Hence, in principle, seasonal flooding dynamics can be revealed well. The 
ENVISAT ASAR C-band radar has a shorter wavelength (5.6 cm, or 5.331 GHz) and, 
compared to L-band, observes higher parts of the vegetation canopy. Though ASAR, for this 
reason, is less suitable to observe hydrological features of wetlands, it is still of large  
interest to monitor deforestation for technical reasons to be discussed later. 
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Fig. 2. Water table variation WL-time (solid curve) and peat soil surface roughness (dashed 
curve). The vertical axis shows water level and soil surface height (both in cm). The 
horizontal axis shows horizontal distance (in cm) along the soil surface roughness profile 
(i.e. from -1000 to 1000 cm) as well as time (i.e. from 9-Nov-03 to 14 Mar-04). The position of 
the water table measurement is at the centre of this profile. These measurements are made 
every hour. The results for the period 9 Nov2003 until 14 March 2004 are shown (also along 
the horizontal axis). The three horizontal lines show the maximum (WL-Max), average WL-
Ave) and minimum (WL-Min) water level. The percentage terrain flooding, thus, can be 
deduced from the combined roughness and water table measurements. 

 
4. Observation of severe peat dome degradation events by JERS-1 
 

Time series of L-band radar data can provide information on hydrology in peat swamps. For 
many peat swamp areas in Borneo and Sumatra large series of JERS-1 images (i.e. 15-30) 
collected in the period 1992-1998 exist. Figures 3 and 4 give examples of biophysical 
characteristics and events observed for the Mawas conservation area and the adjacent 
Kahiyu area. Figure 3 shows temporal dynamics in flooding, which reveals three large 
domes. The areas labelled as A are a complex of two flooded domes divided by a river 
originating from a central depression (B). The feature labelled as C is a relatively flat and 
wet fringe of a dry dome. Since tropical rainfall can be very localised and surface run-off is 
fast, the availability of large time series strongly supports proper interpretation.  
 
Another combination of three images, all collected in the dry season, is shown in Figure 4. It 
shows deforestation caused by excess drainage as the three large blue areas intersected by 
canals labelled as A and B in the image. These areas appear blue because the radar echo 
strength in the third image (of this composite time series image) is much higher due to the 
combined effect of flooding and presence of sparse vegetation, while in the first two images 
(the red and green channels) the vegetation was still dense. Smaller blue areas labelled as C 
along rivers relate to fire scars and shifting cultivation in secondary forest.  
 

 

3. Field station and hydrological characterisation 
 

To study peat swamp hydrology, ecology and radar wave interaction in a systematic way a 
dedicated research station has been established in the Mawas peat swamp forest 
conservation area, which is located some 80 km east of Palangkaraya, in the province 
Central Kalimantan. The main feature is a research bridge, 23 km in length, crossing an 
entire peat dome (Figure 1). Instruments placed along this bridge automatically measure 
rainfall and water level every hour. In December 2004, an airborne radar survey (the ESA 
INDREX-2 campaign) was carried out along this bridge to test a variety of advanced 
imaging radar techniques (Hajnsek et al., 2005; Hajnsek and Hoekman, 2006). The intention 
is to collect data over an extended period (i.e. 10 years) to develop hydrological modelling, 
examine relationships between hydrological, soil and vegetation characteristics, study 
carbon sequestration and to relate biomass and water (flooding) levels to L-band radar 
observations of the ALOS PALSAR instrument. 
 

                      
Fig. 1. Field photograph of a section of the 23 km long research transect in the Mawas peat 
swamp conservation area. The transect crosses an entire ombrogenous peat dome. Along the 
transect ground water level dynamics are recorded. 
 
Peat domes are formed in ombrogenous peat swamp areas, which are purely rain-fed and, 
consequently, nutrient poor. Vegetation types are located in concentric zones, with the 
'poorer' forest types located towards the centre of the dome. Typically, the outer ring 
consists of relatively dense and high ‘mixed’ peat swamp forest, which gradually changes in 
a lower, more open, ‘pole’ peat swamp type. At the top the open ‘padang’ shrubland type 
may be found. To characterize the hydrology of such a dome, where water is flowing from 
the top in the centre towards the edges, the water level variation along the flow is 
monitored. An example result for one of the instruments along the bridge is shown in Figure 
2 (Hoekman, 2007). 
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Fig. 2. Water table variation WL-time (solid curve) and peat soil surface roughness (dashed 
curve). The vertical axis shows water level and soil surface height (both in cm). The 
horizontal axis shows horizontal distance (in cm) along the soil surface roughness profile 
(i.e. from -1000 to 1000 cm) as well as time (i.e. from 9-Nov-03 to 14 Mar-04). The position of 
the water table measurement is at the centre of this profile. These measurements are made 
every hour. The results for the period 9 Nov2003 until 14 March 2004 are shown (also along 
the horizontal axis). The three horizontal lines show the maximum (WL-Max), average WL-
Ave) and minimum (WL-Min) water level. The percentage terrain flooding, thus, can be 
deduced from the combined roughness and water table measurements. 
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Fig. 1. Field photograph of a section of the 23 km long research transect in the Mawas peat 
swamp conservation area. The transect crosses an entire ombrogenous peat dome. Along the 
transect ground water level dynamics are recorded. 
 
Peat domes are formed in ombrogenous peat swamp areas, which are purely rain-fed and, 
consequently, nutrient poor. Vegetation types are located in concentric zones, with the 
'poorer' forest types located towards the centre of the dome. Typically, the outer ring 
consists of relatively dense and high ‘mixed’ peat swamp forest, which gradually changes in 
a lower, more open, ‘pole’ peat swamp type. At the top the open ‘padang’ shrubland type 
may be found. To characterize the hydrology of such a dome, where water is flowing from 
the top in the centre towards the edges, the water level variation along the flow is 
monitored. An example result for one of the instruments along the bridge is shown in Figure 
2 (Hoekman, 2007). 
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Fig. 4. Deforestation in Central Kalimantan caused by excess peat swamp forest drainage 
shows up as the three large blue areas intersected by canals labelled as A and B. Smaller 
blue areas along rivers labelled as C relate to fire scars and shifting cultivation in secondary 
forest. JERS-1 SAR multi-temporal composite image (Red 25 Jul 1994; Green 24 Jul 1997; Blue 
16 Jul 1998). 
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                         (d)    (e) 
Fig. 5. JERS-1 SAR time series of the collapse of the peat dome in Kahiyu: (a) 12 Jul 1995; (b) 
19 Mar 1997; (c) 11 Sep 1997; (d) 25 Oct 1997; (e) 21 Jan 1998. 
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The large blue area labelled as B in Figure 4 is one of the domes. In this area all trees died of 
drought and ground fires, which burned the root system causing the remaining trunks to 
fall down. The dome’s destruction is shown in more detail in the time sequence of events in 
Figure 5. Until 1996 the dome was still hydrologically intact. In 1997 the construction of a 
very wide canal is visible. A low-altitude aerial photograph of this canal is shown in Figure 
6. In Figure 5(c) (September) the canal is filled with water (the canal becomes black) and a 
small somewhat brighter area appears. This area grows very fast and becomes even brighter 
as shown in Figure 5(e) until the destruction is completed (January 1998). The physical 
interpretation of the radar brightness changes in the dome area can be associated with an 
initial period of excess drought under a dense canopy, i.e. the area becomes somewhat 
darker, like in Figure 5(b), followed by a period in which trees collapse and the brightness 
increases due to direct radar reflections from exposed trunks, like in Figures 5(d-e). It is 
interesting to note that the spatial extent of the destruction halted at the relatively flat and 
wet fringe well visible in Figure 3. The obvious cause of the destruction is the huge drainage 
caused by the wide canal. The coinciding strong El Niño Southern Oscillation (ENSO) 
period may have accelerated the process. 
 

  

         
Fig. 3. Temporal dynamics in flooding intensity can be related to the hydrology of 
ombrogenous peat swamp forests and, indirectly, to peat depth. The blue areas labelled as A 
are flooded parts of the relatively flat tops of a complex of two peat domes, with a river 
originating from a central depression (B). The feature labelled as C shows the relatively flat 
and wet fringe of a dry peat dome. Mawas area, Central Kalimantan; JERS-1 SAR multi-
temporal composite image (Red 7 Sep 1994; Green 12 Jul 1995; Blue 4 Jan 1996). 
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Fig. 7. Decadal change as observed by PALSAR data in 2007. The black frame outlines the 
area of Figs 4 and 5. The most striking features are the wet padang vegetation areas on top of 
the domes (A, C); a dry dome top (B); indications of re-generation  on the top of the Kahiyu 
dome (D); and the dry low biomass peat area (blue area) indicating further degradation of 
the vegetation cover (E). PALSAR multi-temporal composite (Red FBD HV; Green FBD HH; 
Blue WB HH; FBD 7 and 24 Aug 2007 (2 images); WB 29 Mar 2007). Courtesy: ALOS K&C © 
JAXA/METI. 

 
5. Monitoring of fire damage and deforestation by ENVISAT ASAR 
 

Due to smoke and persistent cloud cover optical satellite sensors fail to detect forest cover 
area change in a timely manner. To monitor deforestation over large areas in a feasible way, 
a system using both traditional satellite imagery (i.e. Landsat ETM+) and ASAR APP radar 
imagery from the European Space Agency’s ENVISAT satellite has been proposed, 
developed and implemented. This was done for a 60,000 km2 area of peatland in Central-
Kalimantan to support peatland restoration and protection activities carried out in the 
framework of the Central Kalimantan Peat Programme (CKPP, 2009). 
 
For this area more than 90 ENVISAT ASAR APP radar images were collected between 2005 
and 2007 and systematically analysed using semi-automated computer techniques to detect 
change. The approach works best using two polarisations (HH and HV or VV and HV) and 
incorporates analysis of changes in both the strength and polarisation of the radar return 
signal both within a small timeframe (every 35 days, which is the revisiting cycle of the 
satellite) as well as in a large timeframe (1 year). This is necessary to improve accuracy of the 
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Fig. 6. Low altitude aerial photograph of the main East-West oriented double canal system 
passing South of Mawas. It shows the crossing of the Mentangai river, canal blocking 
activities and stretches of burnt forest areas along the canal, covered with small bushes and 
ferns. January 2005. Courtesy: Ruandha Agung Sugardiman, Indonesian Ministry of 
Forestry. 
 
The possibility to observe peat swamp forest hydrology ceased at the end of the lifetime of 
the JERS-1 SAR instrument in 1998. Only since the year 2006, with the launch of ALOS, a 
new window of opportunity has been opened. During this eight year time span drastic 
changes occurred in many of the South-East Asian peatlands. This is illustrated in Figure 7 
where new PALSAR observations are compared with the historical JERS-1 SAR data shown 
in Figs 3 and 4. The most striking features are the wet padang vegetation areas on top of two 
of the three domes (A, C). Compared to Fig. 3 the second dome (B) is now dryer, which may 
be an effect of local rainfall. The top of the Kahiyu dome (C) is wet. It shows regeneration of 
padang peat swamp bush (bright centre) and denser vegetation (the red fringe around this 
bright centre, D). South of the main East-West canal the presence of a dry and low biomass 
peat area (blue area, E) is an indication of further degradation of the vegetation cover. 
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passing South of Mawas. It shows the crossing of the Mentangai river, canal blocking 
activities and stretches of burnt forest areas along the canal, covered with small bushes and 
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The possibility to observe peat swamp forest hydrology ceased at the end of the lifetime of 
the JERS-1 SAR instrument in 1998. Only since the year 2006, with the launch of ALOS, a 
new window of opportunity has been opened. During this eight year time span drastic 
changes occurred in many of the South-East Asian peatlands. This is illustrated in Figure 7 
where new PALSAR observations are compared with the historical JERS-1 SAR data shown 
in Figs 3 and 4. The most striking features are the wet padang vegetation areas on top of two 
of the three domes (A, C). Compared to Fig. 3 the second dome (B) is now dryer, which may 
be an effect of local rainfall. The top of the Kahiyu dome (C) is wet. It shows regeneration of 
padang peat swamp bush (bright centre) and denser vegetation (the red fringe around this 
bright centre, D). South of the main East-West canal the presence of a dry and low biomass 
peat area (blue area, E) is an indication of further degradation of the vegetation cover. 
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(a)          (b)                 (c) 
Fig. 9. South-East section of Sebangau National Park, East-Kalimantan. (a) Cumulative 
deforestation recorded in the year 2006 by ENVISAT ASAR (Green: forest; Orange: forest 
loss); (b) Idem, with MODIS hot spot fire detections (small red circles) of the 2006 dry season 
superimposed; (c) Landsat ETM+ image of 4 July 2007 (RGB: bands 4-5-7). Central 
Kalimantan Peatlands Programme. ASAR APP data courtesy ESA. Image processing and 
analysis by SarVision & Wageningen University, 2007. 
 
This unique capability on ASAR APP to follow deforestation patterns nearly real time (i.e. 
within ±5 weeks) is nicely illustrated in Figure 9. It shows the development of a (probable 
illegal) road from an already deforested area in the direction of a small rock outcrop in the 
Sebangau National Park. Already in December 2005 the first section is visible and 
construction work is proceeding until September 2006. Good trafficability on a road in peat 
swamp forest requires the construction of canals for drainage on both sides of the road. 
However, these canals drain a large area of the surrounding peat soil and make it vulnerable 
to fire. The October-December map sequence shows the damaging effects of forest fire.  
 
 

 

changes and reduce false alarms. For this system a relatively small incidence angle was used 
(IS2; see Table 1; see footnote1

                               
Fig. 8. Low altitude aerial photograph of sub-surface peat forest fires along a canal in the 
Sebangau National Park. 6 September 2004. (Photo: Dirk Hoekman). 

) to provide continuity with the predecessor of ENVISAT 
ASAR, viz. the ESA ERS-2 SAR. Whenever available, Landsat ETM+ was integrated.  Output 
of this change detection process is a consistent series of change maps showing forest, forest 
cover change (deforestation, fire damage, road building etc.), other land and water These 
results have been used to support law enforcement and projects for the generation of 
voluntary carbon credits. Some results are shown in Figs 8-10. 
 
Figure 8 is a low altitude aerial photograph of sub-surface peat forest fires along a canal in 
the Sebangau National Park. This photograph clearly illustrates the need for radar. Optical 
observation fails to detect the ground fires because the forest seems intact, and observation 
is obscured by smoke, haze, and or clouds. Thermal infrared (hot spot) observation, such as 
from the MODIS, AVHRR or AATSR instruments, fail because the fire is underground and 
under the forest. L-band radar (HH-polarisation) works because it detects the excess 
drought in the soil. ENVISAT APP radar detects damage very fast because it registers falling 
trees directly (with an update frequency of 35 days). Figure 9a shows the cumulative 
damage for the year 2006 as recorded by ASAR, which was a dry year because of a moderate 
El Niño. Figure 9b shows fire hot spots which are detectable as soon as the ground fires have 
developed in open fires. The correspondence is large. Figure 9c shows the first available 
cloud free Landsat ETM+ scene of the same area after the fire period. It shows the burned 
forest area (in cyan) at exactly the same locations where ENVISAT already mapped 
deforestation 10 months (!) earlier. 
 

                                                                 
1 Though IS2 images were used here, and demonstrated to be suitable for deforestation 
monitoring, it is noted that IS4 images are even better suited because of a higher incidence 
angle, which increases the contrast between forest and non-forest. Even higher incidence 
angles are possible (from IS5-7 modes) but these provide no full coverage at the equator.  
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and auxiliary data. An example is given in Figures 11 and 12. In the JERS-1 image of January 
1998 (dry period) shown in Figure 11 the area demarcated by the red line is an area within 
the Mawas area suffering from excess drought. In the PALSAR image of 9 November 2006 
(dry period) this area has decreased above the main East-West canal because of the 
construction of dams in the canal going North (canal Neraka). In the area south of the main 
East-West canal a large network of canals is still present and the continued drainage has 
worsened the situation. Note the very low radar backscatter (intense black) caused by very 
dry bare peat areas and the bright white area, which is a strongly degraded open forest with 
fire damage. The areas demarcated in blue are hydrologically intact, allowing forests 
previously damaged to regenerate. The fire damage is visible in the PALSAR area as a very 
bright area (B) associated with sparse open vegetation with many dead standing trunks. 
This area is also visible in the ENVISAT deforestation map created directly after the fire 
damage (Fig.12a) and Landsat ETM+ 10 months later (Fig.12b). 
 

 (a) 

(b) 
Fig. 11. Peat swamp degradation (B) and restoration (A) in the Mawas area between 1998 
(JERS-1) (a) and 2006 (PALSAR) (b). The red area is degraded; the blue area is intact or 
regenerating. Courtesy: ALOS K&C © JAXA/METI. 

 

 
Fig. 10. ASAR Alternating Polarisation radar deforestation time series example showing 
forest (green), water (blue), non-forest areas (yellow) and recent deforestation (red). The top 
3 images show the development of a new road in the forest (period December 2005 until 
September 2006). The lower 3 images show major deforestation because of forest fires in the 
dry season along this new road and along the forest boundaries (period October-December 
2006). This example covers an area of ~ 30 km by 20 km and is part of a larger area of ~ 300 
km x 200 km where this new radar monitoring technique has been applied pre-
operationally. Central Kalimantan Peatlands Programme. ASAR APP data courtesy ESA. 
Image processing and analysis by SarVision & Wageningen University, 2007. 

 
6. Peat swamp restoration impact assessment using L-band backscatter 
change 
 

Historical JERS-1 L-band radar data provide insight in the pre-disturbance or early 
disturbance state of the hydrological functioning of peat domes and may be used as a 
baseline for restoration planning. In Mawas, in the framework of CKPP, canal blocking was 
performed. The effect of such activities may be assessed and monitored by PALSAR images, 
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flooding. Mangrove, mixed peat swamp forest and pole peat swamp forest show a moderate 
increase during the wet season. Therefore, it is necessary to make a classification of the area 
first (this can be done with PALSAR) before thresholding the backscatter intensities (per 
class) to determine the incidences of flooding. Figure 14 shows a mapping result of the flood 
frequency or flood duration. 
 

11-Nov-2006 
27-Dec-2006 
11-Feb-2007 

29-Mar-2007 
14-May-2007 
14-Aug-2007 

29-Sep-2007 
14-Nov-2007 
30-Dec-2007 

Table 2. ALOS PALSAR ScanSAR HH (WB1) input data of nine consecutive (46 day) cycles 
used for the production of the Central-Kalimantan flood frequency map. 
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Fig. 13. Temporal signatures of L-band HH-polarisation backscatter for several key 
vegetation types.  The first observation is made at the end of the dry season, at 11 November 
2006. During the next wet season terrain with moderate but high vegetation cover shows a 
strong increase in backscatter because of flooding. Terrain with low vegetation shows a 
decrease in backscatter because of flooding. Mangrove, mixed peat swamp forest and pole 
peat swamp forest show a moderate increase during the wet season. Also the return to dry 
conditions during the 2007 dry season is well visible. PALSAR ScanSAR, period November 
2006 until December 2007. 
 

 

                    (a) 

                    (b) 
Fig. 12. Forest loss south of Mawas during the 2006 moderate El Niño period. (a) ENVISAT 
ASAR deforestation map (Forest: green; Burnt forest: red); (b) Landsat ETM+ image of 4 July 
2007 (RGB: bands 5-4-3). The correspondence between both images is striking. The burnt 
forest areas mapped by ASAR directly after the fires (September 2006) are also observed in 
the first available Landsat image acquired 10 months later.  

 
7. Flood frequency map Central Kalimantan 
 

To support peatland restoration efforts knowledge on hydrological dynamics are 
imperative. The PALSAR ScanSAR mode provides a unique capability to assess these 
dynamics. As explained before (Section 2) the effect of flooding on the radar image intensity 
depends on the amount of vegetation and the height of vegetation. This is exemplified in 
Figure 13 where the temporal signature of HH-polarisation backscatter is plotted for the 
nine observations made in the period November 2006 until December 2007, as listed in Table 
2. Terrain with moderate but high vegetation cover shows a strong increase in backscatter 
because of flooding. Terrain with low vegetation shows a decrease in backscatter because of 
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flooding. Mangrove, mixed peat swamp forest and pole peat swamp forest show a moderate 
increase during the wet season. Therefore, it is necessary to make a classification of the area 
first (this can be done with PALSAR) before thresholding the backscatter intensities (per 
class) to determine the incidences of flooding. Figure 14 shows a mapping result of the flood 
frequency or flood duration. 
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More information is needed to support protection and restoration efforts. The availability of 
better vegetation and peat depth maps may be very useful. However, the most crucial 
factors may appear to be the knowledge on the hydrological functioning and the 
relationships between hydrological and ecological characteristics. These latter points are still 
poorly understood. Radar, unimpeded by cloud cover, can provide continuous observations 
which can be related to hydrological characteristics, may become a key instrument in future 
protection and restoration efforts. Exploitation of PALSAR time series collected by the 
ALOS satellite may provide important support for peat land management, protection and 
restoration, such as described in the Ramsar “Guidelines for Global Action on Peatlands 
(GGAP, 2002)”. Moreover, it may significantly support other international treaties, such as 
the CBD and the Kyoto Protocol, a possible post-Kyoto protocol, and carbon cycle science.  
 
The methodology may eventually be applied on a large scale using systematic observations 
of PALSAR and ENVISAT, and its successors PALSAR-2 and SENTINEL-1. The latter two 
instruments may be available from 2013 onwards, providing continuity of L- and C-band 
radar observation. PALSAR-2 ScanSAR observations will be even powerful because it uses 
dual polarisation, providing HV-polarisation in addition, which is important to improve 
assessment of biomass level dynamics and deforestation. SENTINEL-1 is a major 
improvement over ENVISAT ASAR because it allows a 4 times higher temporal observation, 
i.e. (illegal) deforestation may be reported every 8 days, instead of the current 35 days. 
 
PALSAR radar proved particularly useful for improving information related to flooded 
cover types and biomass levels. ASAR deforestation maps provide at least as much accuracy 
and detail as the best available maps based on visual interpretation of Landsat imagery, 
however, provide this information near real time. Many of the results shown in this chapter 
are operationally used by local governmental and non-governmental agencies for spatial 
planning of sustainable peatland management strategies. 
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Fig. 14. Map of flooding frequency in 2007 for the Ex-Mega Rice Project (EMRP) area and 
Sebangau National park in Central Kalimantan based on nine PALSAR WB1 HH images. 
For ease of reference the degraded area indicated in Figure 11 is demarcated with red dots. 
PALSAR data courtesy: ALOS K&C © JAXA/METI. 

 
8. Discussion 
 

Many of the tropical peat swamp forests in Borneo and Sumatra are seriously threatened by 
(illegal and legal) logging and conversion to plantations for the oil palm and pulp and paper 
industries. In all cases the hydrology is affected by excess drainage, leading to destruction of 
remaining forests, notably in dry years. Beyond a certain point the hydrological integrity of 
ombrogenous areas is lost, leading to an irreversible process of total destruction and the 
combustion and oxidation of the remaining thick peat layers. Unless rigorous measures are 
taken very soon, this most likely will lead to major negative effects on biodiversity and 
global climate. 
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1. Introduction     
 

The importance of the dynamic side of natural and man-made phenomena has become an 
urgent need when trying to mitigate the human impact on environment. Remote Sensing is 
one of the most effective way to quantify and map the changes of environmental conditions 
on our planet: the tools used for this purpose are called Change Detection Techniques. 
Techniques among which an important role is played by those methodologies based on 
multi-spectral remote sensing data and exploiting multivariate analysis derived 
methodologies, also demonstrating their capabilities through some test cases, covering flood 
events and urban growth studies. 
Multi-temporal and multi-spectral techniques for Change Detection exist in a wide variety 
of approaches, often far too sector oriented and not straightforward. Compression and 
decorrelation techniques, on the other side, tend not to exploit the whole spectral content of 
remotely sensed data. The Normalized Difference Reflectance (NDR) here introduced is a 
general approach for bi-temporal land cover change mapping and detection that exploits the 
whole spectral capabilities of panchromatic, multi-spectral or hyper-spectral images. NDR is 
a general and simple measure that can be used in the frame of what are called Normalized 
Difference Change Detection Techniques (NDCD), which starts using as a input the NDR 
derived results. This Chapter includes a large test case which is a good benchmark for NDR 
approach, using Minimum Noise Fraction implementation  of NDCD for mapping 
Hurricane Katrina aftermaths over the city of New Orleans, U.S., thus fusing together urban 
and flood change applications. 
The purpose of the chapter is to give an overview of multivariate difference-based 
techniques for land cover change mapping using multispectral remote sensing data, and to 
introduce and demonstrate the Normalized Difference Reflectance approach in the frame of 
Normalized Difference Change Detection techniques. Two examples of NDCD results are 
given as a complement to theoretical aspects of the methodology, and an application study 
has been used as benchmark for the technique performances evaluation, in comparison with 
other established Change Detection techniques. 

14



Geoscience and Remote Sensing278

 

)()(
)()(

preRpostR
preRpostR

NDR norm
j

norm
j

norm
j

norm
j

j +
−

=
 

(1) 

where: 
NDR = normalized difference reflectance 
Rnorm (post) = normalized reflectance for the post flood scene 
Rnorm (pre) = normalized reflectance for the pre flood scene 
j = spectral band number 
 
The NDR is a multi-spectral quantity which spans over the range of values from -1 to +1 and 
shows the amount of change in surface reflectance for every band in the original data, in 
terms of the relative difference in spectral signature of ground objects (-1.00 = maximum 
reflectance decrease, 0.00 = no change, +1.00= maximum reflectance increase). This 
approach is a quantitative base for building the successive phase of change detection, 
through the use of multi-spectral normalized reflectance values. A first and simple visual 
inspection of NDR band compositions permits a prompt and clear preliminary assessment 
of changes, thus supporting the choice of an apt change detection algorithm or technique for 
the phase of change mapping. Figure 1 shows an example of NDR calculated for calculated 
for an urban scenario, located in Maryland, U.S, using multi-temporal Terra ASTER data. 
 

   

                           a)                     b)             c) 
Fig. 1. NDR calculated for an urban scenario, located in Maryland, U.S.: CIR visualization 
(RGB=3N,2,1), ASTER scene of April 9th, 2000 (a); CIR visualization (RGB=3N,2,1),  ASTER 
scene of August 24th, 2003 (b); CIR visualization (RGB=3N,2,1), NDR values derived (c). 
Different colours in (c) are inked to different kind of variations in surface reflectance 
between (a) and (b) images: grey areas represent not changed features, cyan areas represent 
a decreasing response in near infrared (linked to newly exposed areas, construction sites 
and new impervious surfaces), red areas represent increasing near infrared response (linked 
to phenological conditions of vegetation, going to an April scene to an August one), white 
areas represent increased response in all the visualized bands. 
 
This approach allow to promptly visualize in RGB channels different triplets of bands at a 
time, thus bringing the user to a straightforward inspection of multi-spectral change 
features of surface objects; beginning with this visualization of multi-date information every 
end-user has the possibility to decide which may be the best Change Detection Technique to 
retrieve a land cover change map. NDR not only permits an easy and straightforward multi-

 

2. Multivariate Differences in Change Detection 
 

Multi-temporal differencing is an established change detection technique for environmental 
mapping and monitoring with remotely sensed data (Singh, 1989; Lu et al., 2004; Coppin et 
al., 2004). Following a difference normalization approach, introduced in remote sensing for 
vegetation studies with the normalized difference vegetation index (NDVI), a multi-
temporal implementation of this standardization technique for forest change analysis was 
first proposed for univariate vegetation indexes (VIs) (Coppin & Bauer, 1994), and then in 
comparison with other change detection methodologies (Coppin et al., 2001), always for 
forest mapping purposes. 
During this work it has been introduced a quantitative method to evaluate land cover 
change through multi-spectral variation in radiometric response of surface features. In order 
to detect interesting changes, a pair of satellite scenes, geometrically registered and 
atmospherically corrected, is to be radiometrically normalized. After that, a map of spectral 
variations is produced using a multi-spectral difference index named Normalized Difference 
Reflectance (NDR). The NDR is therefore an approach to Change Feature Identification 
phase in Change Detection.  
The phase of Change Mapping is then performed using NDR measures as inputs for Change 
Detection methodologies and techniques, in the frame of what are called Normalized 
Difference Change Detection (NDCD) techniques. The NDCD is a technique which, given an 
image pair, performs calculations on radiometric normalized reflectance data through the 
definition of the normalized difference reflectance (NDR) and produces a standardized 
difference of the reflectance values. 
The use of NDR and NDCD will be presented through case studies showing change analysis 
covering flood events and urban environment: one case is over a flood event occurred in 
Bangladesh and exploiting Landsat-7/ETM+ scenes, another case regards the urban 
expansion scenario of Washington outskirts, U.S., and exploiting Terra ASTER data, the last 
and most complete case study is the analysis of the damages to the urban area of the city of 
New Orleans (Louisiana, USA) resulting from the passage of hurricane Katrina, using both 
SPOT-4/HRVIR and Landsat-5/TM data. 

 
3. Normalized Difference Reflectance (NDR) 
 

The Normalized Difference Reflectance (NDR) here introduced is a general approach for bi-
temporal land cover change mapping and detection that exploits the whole spectral 
capabilities of panchromatic, multi-spectral or hyper-spectral images. Given an image pair, 
the NDR produces a standardized difference by analyzing the changes in the reflectance 
properties of each spectral band, so without losing any spectral richness as when applying 
indexes, feature reduction or compression techniques (Villa & Lechi, 2007). 
The image reflectance differences were modified to a normalized version on the sum of 
spectral values, in order to minimize the confusion among difference values which are 
numerically equal, but come from different land cover change events. 
Hence, for every spectral band the NDR is defined as follows: 
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where: 
NDR = normalized difference reflectance 
Rnorm (post) = normalized reflectance for the post flood scene 
Rnorm (pre) = normalized reflectance for the pre flood scene 
j = spectral band number 
 
The NDR is a multi-spectral quantity which spans over the range of values from -1 to +1 and 
shows the amount of change in surface reflectance for every band in the original data, in 
terms of the relative difference in spectral signature of ground objects (-1.00 = maximum 
reflectance decrease, 0.00 = no change, +1.00= maximum reflectance increase). This 
approach is a quantitative base for building the successive phase of change detection, 
through the use of multi-spectral normalized reflectance values. A first and simple visual 
inspection of NDR band compositions permits a prompt and clear preliminary assessment 
of changes, thus supporting the choice of an apt change detection algorithm or technique for 
the phase of change mapping. Figure 1 shows an example of NDR calculated for calculated 
for an urban scenario, located in Maryland, U.S, using multi-temporal Terra ASTER data. 
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Fig. 1. NDR calculated for an urban scenario, located in Maryland, U.S.: CIR visualization 
(RGB=3N,2,1), ASTER scene of April 9th, 2000 (a); CIR visualization (RGB=3N,2,1),  ASTER 
scene of August 24th, 2003 (b); CIR visualization (RGB=3N,2,1), NDR values derived (c). 
Different colours in (c) are inked to different kind of variations in surface reflectance 
between (a) and (b) images: grey areas represent not changed features, cyan areas represent 
a decreasing response in near infrared (linked to newly exposed areas, construction sites 
and new impervious surfaces), red areas represent increasing near infrared response (linked 
to phenological conditions of vegetation, going to an April scene to an August one), white 
areas represent increased response in all the visualized bands. 
 
This approach allow to promptly visualize in RGB channels different triplets of bands at a 
time, thus bringing the user to a straightforward inspection of multi-spectral change 
features of surface objects; beginning with this visualization of multi-date information every 
end-user has the possibility to decide which may be the best Change Detection Technique to 
retrieve a land cover change map. NDR not only permits an easy and straightforward multi-
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expansion scenario of Washington outskirts, U.S., and exploiting Terra ASTER data, the last 
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New Orleans (Louisiana, USA) resulting from the passage of hurricane Katrina, using both 
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4. Normalized Difference Change Detyection (NDCD) 
 

The further step to exploit the NDR approach defined and described in the previous section 
is its implementation in the frame of the so called Normalized Difference Change Detection 
(NDCD) techniques. 
The NDCD technique uses the NDR defined in Equation (4.1) as input variables for deriving 
a land cover/land use change map through the use of one particular change detection 
method, thus leading to a specific implementation of the NDCD. Out of a range of 
techniques, such as multi-spectral transforms (e.g. Principal Components Analysis and 
Minimum Noise Fraction), image classification techniques (both supervised and 
unsupervised), image segmentation algorithms, Neural Networks or Support Vector 
Machines, one could be used (Lu et al., 2004). 
The possible applications and purposes of this approach are manifold and diverse. In the 
following we will show the effectiveness of the NDCD for flood mapping. Nevertheless, this 
approach is a general one and might be applied not only for such mapping purposes, but 
also for urban growth, burnt areas mapping and other land cover change analyses. 
During this work we particularly focused our research on the Minimum Noise Fraction 
(MNF) (Green et al., 1988; Gianinetto & Villa, 2007) implementation of the normalized 
difference change detection technique (NDCD-MNF), where the MNF transform is applied 
to the NDR data to obtain the final change detection map, for the case study analysis of the 
flood event due to Hurricane Katrina aftermath over the city of New Orleans, in Louisiana, 
U.S.. The case study and its results will be presented in the next section. 
In order to give a demonstration of how the NDR and NDCD approaches work, in the 
following paragraphs a couple of implemented examples are show, covering a flood hazard 
mapping case for the monsoonal flood occurred in autumn 2000 and an urban sprawl 
assessment case for the suburban areas of Washington, U.S.. 

 
4.1 Flood Hazard, an Example 
 

   

                           a)                     b)             c) 
Fig. 3. Change Detection for an monsoon flood event, which took place in the Haor region, 
North-East of Bangladesh: band composition visualization (RGB=7,5,3), ETM+ scene of 
February 28th, 2000 (a); band composition visualization (RGB=7,5,3), ETM+ scene of 
October 25th, 2000 (b); Change map derived with Max. Likelihood classification of NDR 
values. 

 

spectral comparison and evaluation of land cover changes, but permits enhanced 
individualization of radiometric response change, in comparison with simple Reflectance 
Differencing (RD). In fact, the same amount of reflectance difference between two surface 
features can be due to different land cover changes depending on the reference amount of 
spectral response. The NDR approach takes into account this issue and outputs different 
values of NDR for the same RD situation, when corresponding to different changes, as 
illustrated in the example of Figure 2 and Table 1. 
 

              
 

              
  (pre-change: Apr, 2000)           (post-change: Aug, 2003) 

Fig. 2. Particular of two changed areas in an urban environment, located in Maryland, U.S.: 
CIR visualization (RGB=3N,2,1), ASTER scene of April 9th, 2000 (pre-change: A-1; B-1); CIR 
visualization (RGB=3N,2,1),  ASTER scene of August 24th, 2003 (post-change: A-2; B-2): in 
the A area (above) a change in land cover from Bare Soil to Vegetation is highlighted in the 
yellow square, whereas in the B area a change in land cover from dark construction asphalt 
to paving concrete is highlighted in the yellow square. 
 
Area Land Cover NIR Reflectance 

Response 
[760-900 nm] 

Reflectance 
Difference (RD) 

Normalized 
Difference 
Reflectance (NDR) 

Fig. 2 Pre (A-1; B-
1) Post (A-2; B-2) pre post   

A Bare Soil Grass 
Vegetation 0.311 0.412 0.101 0.140 

B Construction 
Asphalt 

Construction 
Concrete 0.103 0.207 0.104 0.335 

Table 1. Normalized Reflectance Difference (NDR) results compared with common 
Reflectance Difference (RD) results, calculated for particular spots in Figure 2, to show the 
enhanced discrimination capabilities of NDR. 
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individualization of radiometric response change, in comparison with simple Reflectance 
Differencing (RD). In fact, the same amount of reflectance difference between two surface 
features can be due to different land cover changes depending on the reference amount of 
spectral response. The NDR approach takes into account this issue and outputs different 
values of NDR for the same RD situation, when corresponding to different changes, as 
illustrated in the example of Figure 2 and Table 1. 
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Fig. 2. Particular of two changed areas in an urban environment, located in Maryland, U.S.: 
CIR visualization (RGB=3N,2,1), ASTER scene of April 9th, 2000 (pre-change: A-1; B-1); CIR 
visualization (RGB=3N,2,1),  ASTER scene of August 24th, 2003 (post-change: A-2; B-2): in 
the A area (above) a change in land cover from Bare Soil to Vegetation is highlighted in the 
yellow square, whereas in the B area a change in land cover from dark construction asphalt 
to paving concrete is highlighted in the yellow square. 
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Difference (RD) 
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Difference 
Reflectance (NDR) 
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A Bare Soil Grass 
Vegetation 0.311 0.412 0.101 0.140 

B Construction 
Asphalt 

Construction 
Concrete 0.103 0.207 0.104 0.335 

Table 1. Normalized Reflectance Difference (NDR) results compared with common 
Reflectance Difference (RD) results, calculated for particular spots in Figure 2, to show the 
enhanced discrimination capabilities of NDR. 
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retrieved classes a land cover change significance. The results are displayed in Figure 4 for a 
small area of detail and class colour code illustrated in caption. 
The two examples presented exploit supervised or unsupervised classification of NDR 
values to produce change maps of a flood event (see Figure 3) or an urban growth situation 
(see Figure 4); the case studies tests showed a good performance in change areas delineation 
and identification, as a visual inspection of resulting maps witnesses. It should be pointed 
out that those example are only representative of a first assessment of NDR approach as an 
aid to Change Detection; in fact, a thoroughly assessment of the NDCD approach 
capabilities , together with a comparison with other Change Detection techniques results, 
will be done in the next section over the complete case study covering Hurricane Katrina 
struck New Orleans city. 

 
5. Application Study – Flood damage assessment with NDCD  
 

5.1 Introductive section 
Recent years have seen a tremendous increase in economic and human losses from weather 
hazards all over the world. Major global climatic alterations are projected to occur during 
the 21st century and there is great concern about expected negative economic and social 
consequences resulting from such changes (United Nations, 2007). 
Hurricane Katrina was the costliest and one of the deadliest hurricanes in the history of the 
USA. It was the sixth-strongest Atlantic hurricane ever recorded and the third-strongest 
land falling U.S. hurricane on record. At its highest intensity, Katrina was a category 5 storm 
on the Saffir-Simpson scale (Simpson, 1974) with wind speeds of 280 km/h. 
The storm made initial landfall at Plaquemines Parish in south-eastern Louisiana on the 
morning of August 29 2005, and the cities of New Orleans (Louisiana), Mobile (Alabama) 
and Gulfport (Mississippi) bore the brunt of Katrina’s force as it moved inland.  
Thanks to the increasing number and observation capabilities of operational remote sensing 
satellites, remote sensing technology is becoming more and more used for natural hazards 
monitoring and management, with the great advantage of providing a synoptic vision over 
a wide area in a short time and in a very cost effective manner (Wang et al., 2002; Brivio et 
al., 2002; Sanyal & Lu, 2004; Villa & Gianinetto, 2006). In particular, remotely sensed data 
collected both by radar and optical satellites have been largely used for flood extent 
evaluation during the last 20 years and now the processing techniques are mature for an 
operational use (Imhoff et al., 1987; Hess et al., 1995; Frazier et al., 2003; Wang, 2004; Villa & 
Gianinetto, 2006; Gianinetto & Villa, 2007). 
This case study exploits a new method for change detection based on the normalized 
difference change detection technique (NDCD). The NDCD is a technique which, given an 
image pair, performs calculations on radiometric normalized reflectance data through the 
definition of the normalized difference reflectance (NDR) and produces a standardized 
difference of the reflectance values. 
The NDCD was used to detect the damages to the urban area of the city of New Orleans 
(Louisiana, USA) resulting from the passage of hurricane Katrina. Flood maps were both 
obtained from the image processing of SPOT-4/HRVIR and Landsat-5/TM imagery, with a 
suitable spatial resolution for supporting political institutions with a rapid response, 
effective and prompt decision maker tool. 

 

The first example deal with a change detection application for post-flood analysis, a topic 
already taken into consideration by previous works of the authors (Gianinetto & Villa, 2006). 
The inundation event is a monsoon flooding which drawn the North of Bangladesh and 
North-eastern part of India in autumn 2000. A pair of Landsat ETM+ scenes covering the 
Haor region in north-eastern Bangladesh (the pre-event image of February 28th was 
normalized using post-event image of October 25th as reference) was processed and 
radiometrically normalized with Pseudo Invariant features (PIFs) selection and linear 
regression, to produce NDR values as using equation 1.  
In order to map surface features changes the couple of images was inspected and regions of 
change were chosen as ground truth for producing a Maximum Likelihood classification 
and therefore a map of changed areas, shown in Figure 3. This way, not only the area 
covered by flooding water could be identified, but also the different vegetation phenological 
features due to seasonal variations was mapped (Rogan et al., 2002). 

 
4.2 Urban Area, an Example 
 

   

                           a)                     b)             c) 
Fig. 4. Change Detection for an urban scenario, located in Maryland, U.S., particular of an 
area of residential and commercial growth in 2000-2003 period: CIR visualization 
(RGB=3N,2,1), ASTER scene of April 9th, 2000 (a); CIR visualization (RGB=3N,2,1),  ASTER 
scene of August 24th, 2003 (b); Change map derived with ISODATA classification of NDR 
values. Gray tones represent not changed features, green hues represent increasing 
vegetation vigour, bright areas represent changed surface cover: mainly newly exposed 
areas, construction sites and new impervious surfaces. 
 
Another example focuses on a change detection analysis of an urbanized area for urban 
sprawl and its impact on environment description (Chou et al., 2005). The area covered by 
Terra ASTER satellite data (VIS, NIR and SWIR subset bands) is located in Maryland, U.S., 
in the outskirts of Washington, around 15 kilometres East of the capital’s centre: the pre-
change image dates back to April 9th, 2000 and was radiometrically normalized using post-
change image of  August 24th, 2003 as reference, using a linear regression model and PIFs. 
After pre-processing and radiometric normalization, the dataset was converted to NDR 
values, using equation 1, and an unsupervised approach was chosen to classify changes 
occurred between the two dates (Bruzzone & Prieto, 2000). ISODATA classification was then 
performed over NDR bands and post classification labelling  was utilized to assign to 
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definition of the normalized difference reflectance (NDR) and produces a standardized 
difference of the reflectance values. 
The NDCD was used to detect the damages to the urban area of the city of New Orleans 
(Louisiana, USA) resulting from the passage of hurricane Katrina. Flood maps were both 
obtained from the image processing of SPOT-4/HRVIR and Landsat-5/TM imagery, with a 
suitable spatial resolution for supporting political institutions with a rapid response, 
effective and prompt decision maker tool. 

 

The first example deal with a change detection application for post-flood analysis, a topic 
already taken into consideration by previous works of the authors (Gianinetto & Villa, 2006). 
The inundation event is a monsoon flooding which drawn the North of Bangladesh and 
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Haor region in north-eastern Bangladesh (the pre-event image of February 28th was 
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radiometrically normalized with Pseudo Invariant features (PIFs) selection and linear 
regression, to produce NDR values as using equation 1.  
In order to map surface features changes the couple of images was inspected and regions of 
change were chosen as ground truth for producing a Maximum Likelihood classification 
and therefore a map of changed areas, shown in Figure 3. This way, not only the area 
covered by flooding water could be identified, but also the different vegetation phenological 
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Fig. 4. Change Detection for an urban scenario, located in Maryland, U.S., particular of an 
area of residential and commercial growth in 2000-2003 period: CIR visualization 
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Another example focuses on a change detection analysis of an urbanized area for urban 
sprawl and its impact on environment description (Chou et al., 2005). The area covered by 
Terra ASTER satellite data (VIS, NIR and SWIR subset bands) is located in Maryland, U.S., 
in the outskirts of Washington, around 15 kilometres East of the capital’s centre: the pre-
change image dates back to April 9th, 2000 and was radiometrically normalized using post-
change image of  August 24th, 2003 as reference, using a linear regression model and PIFs. 
After pre-processing and radiometric normalization, the dataset was converted to NDR 
values, using equation 1, and an unsupervised approach was chosen to classify changes 
occurred between the two dates (Bruzzone & Prieto, 2000). ISODATA classification was then 
performed over NDR bands and post classification labelling  was utilized to assign to 
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A further step is the radiometric normalization of multispectral data, carried out using  a 
parabolic parametric model: 
 

jraw
jj

norm
j

b
RaR )(=  

(2) 

where: 
Rnorm = normalized reflectance 
Rraw = input reflectance of the slave image 
a = multiplicative coefficient of the parametric model 
b = exponential coefficient of the parametric model 
j = spectral band number 
 

(a)    (b) 

(c)    (d) 

(e)    (f) 
Fig. 6. Example of normalized difference reflectance (NDR) calculated for the Landsat-5/TM 
dataset. (a) Spectral band nr.1; (b) Spectral band nr.2; (c) Spectral band nr.3; (d) Spectral 
band nr.4; (e) Spectral band nr.5; (f) Spectral band nr.7. 

 

The maps’ accuracy were verified with respect to the inundation maps produced at the 
Dartmouth Flood Observatory, Dartmouth College (USA). A comparison was also 
performed between the results of the NDCD technique and that of other standard change 
detection methods as NIR normalized difference and spectral-temporal minimum noise 
fraction technique (ST-MNF). 

 
5.2 Dataset 
Remotely Sensed Dataset 
The flooding caused by Hurricane Katrina over the city of New Orleans (29° 57' 33" latitude 
north, 90° 03' 36" longitude west) was studied using SPOT-4/HRVIR images supplied by 
SpotImage and the Centre National d’Etudes Spatiales (CNES) under the Optimising Access 
to Spot Infrastructure for Science (OASIS) Programme and Landsat-5/TM images made 
available from the United States Geological Survey’s Earth Resources Observation and 
Science (USGS EROS) through the Hurricane Katrina disaster response project. 
 

The SPOT-4/HRVIR data set was composed of: 
• One 20-meters SPOT-4/HRVIR image collected on January 17, 2005 (scene ID 4 

601-290 05-01-17 17:03:19 2 I) with orientation angle of 11.5 degree and incidence 
angle of 19.9 degree left and geocoded in UTM-WGS84 F16N projection. This 
image was used as pre flood image; 

• One 20-meters SPOT-4/HRVIR image collected on September 19, 2005 (Scene ID 4 
601-290 05-09-19 16:50:34 1 I) with orientation angle 10.0 degree and incidence 
angle 0.3 degree right and geocoded in UTM-WGS84 F16N projection. This image 
was used as post flood image. 

 

The Landsat-5/TM data set was composed of: 
• One 30-meters Landsat-5/TM image collected on June 19, 2005 (scene ID 

5022039000517010), WRS-2 path 022 row 039, used as pre flood image; 
• One 30-meters Landsat-5/TM image collected on September 7, 2005 (scene ID 

5022039000525010), WRS-2 path 022 row 039, used as post flood image. 
 
Additional Dataset 
For the urban analysis some additional vector maps were used. The 30-meters National Land 
Cover Database Imperviousness Layer (NLCDIL) raster file representing urbanized and 
infrastructural features (impervious areas) of the city and surroundings of New Orleans (Yang 
et al., 2003), made available by USGS through its website (U.S. Geological Survey, 2006) was 
used for deriving separate mapping for the urban areas only and for the non-urban areas only.  

 
5.3 Methodological Approach 
Pre-processing 
As typical in change detection applications and as envisaged in the earlier part of this work, 
about pre-processing of data for change analysis, geocoding and atmospheric correction are 
always needed. For this purposes the satellite data were first georeferenced in the UTM-
WGS84 projection, using reference data. Original at-sensor radiance data were 
atmospherically corrected using a low resolution Radiative Transfer Code, combined with 
aerosol retrieval based on band reflectance ratios and with adjacency correction of path 
radiance (Berk et al., 1999; Vermote et al., 1997). 
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A further step is the radiometric normalization of multispectral data, carried out using  a 
parabolic parametric model: 
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where: 
Rnorm = normalized reflectance 
Rraw = input reflectance of the slave image 
a = multiplicative coefficient of the parametric model 
b = exponential coefficient of the parametric model 
j = spectral band number 
 

(a)    (b) 

(c)    (d) 

(e)    (f) 
Fig. 6. Example of normalized difference reflectance (NDR) calculated for the Landsat-5/TM 
dataset. (a) Spectral band nr.1; (b) Spectral band nr.2; (c) Spectral band nr.3; (d) Spectral 
band nr.4; (e) Spectral band nr.5; (f) Spectral band nr.7. 
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The criteria used for the threshold selection was based on the detection of the maximum 
separability interval between flooded and non-flooded areas. For the SPOT-4/HRVIR and 
Landsat-5/TM image data some samples of the selected NDCD-MNF component were 
independently extracted, belonging to the urban and non-urban land cover classes, both for 
the flooded and non-flooded areas. 
For the Landsat-5/TM data set, 900 pixels were selected for the urbanized areas (400 pixels 
in flooded area and 500 in non-flooded area), covering nearly 0.2% of the total urbanized 
areas, while 1,200 pixels were selected for the non-urbanized areas (700 pixels in flooded 
area and 500 in non-flooded area), covering nearly 0.2% of the total non-urbanized areas. 
For the SPOT-4/HRVIR data set, 1,500 pixels were selected for the urbanized areas (600 
pixels in flooded area and 900 in non-flooded area), covering nearly 0.15% of the total 
urbanized areas, while 2,000 pixels were selected for the non-urbanized areas (1,200 pixels in 
flooded area and 800 in non-flooded area), covering nearly 0.15% of the total non-urbanized 
areas. 
For all these samples, the first and second-order statistics were computed and the maximum 
separability interval between the flooded and non-flooded areas was identified by testing 
different threshold values belonging to the interval; finally the global flood maps were 
produced. 
Next, using the USGS’s NLCDIL as supplementary input data, three other products were 
generated from the SPOT-4/HRVIR and the Landsat-5/TM data sets: i) a flood map for the 
‘urban areas only’; ii) a flood map for the ‘non-urban areas only’; and iii) a ‘fused’ flood 
map: 
 

i) The flood map for the urban areas only was built using the non-impervious surface 
layer of the NLCDIL as mask for excluding from the processing all the image pixels 
collected on non-urban areas; 

ii) The flood map for the non-urban areas only was built using the impervious surface 
layer of the NLCDIL as mask for excluding from the processing all the image pixels 
collected on urban areas; 

iii) The fused flood map was built fusing together the results previously obtained for the 
urban areas only and the non-urban areas only. This processing returned a product 
comparable to the global flood map above described, but it has proven more accurate. 

 
To boost the spatial coherency and homogeneity of the final mapping, all the flood maps 
were refined with classical segmentation and clumping techniques. 

 
5.4 Performance Evaluation and Comparison to other techniques 
The accuracies of all the maps produced with the NDCD-MNF technique were verified 
using as ground truth the flood extension map of the city of New Orleans (Figure 8) 
produced at the Dartmouth Flood Observatory (Dartmouth College, USA) and provided by 
courtesy of Prof. G.R. Brakenridge and Dr. E. Anderson (Dartmouth College, USA). 
The potentialities and performances of the NDCD technique for flood mapping were also 
compared to following standard change detection methods characterized by different 
complexity: 
 

 

The radiometric normalization of reflectance data was performed using a parametric 
parabolic model based on equation 2 through standard linearized least square matching 
based on a parametric model and an iteration approach to solution of the linearized basic 
observation equation. The transformation coefficients were computed using standard 
linearized least squares matching, through an iteration approach to solution of the 
linearized basic observation equation. 
Radiometrically normalized data were used for calculating NDR values for both Landsat-
5/TM and SPOT-4/HRVIR data, using the approach described in the previous sections and 
calculated with equation (4.1). The NDR values were finally used as inputs for Minimum 
Noise Fraction (MNF) transform, thus structuring the implementation of the NDCD-MNF 
technique for change mapping and flooded area delineation. 
 
Mapping Hurricane Katrina’s aftermaths in New Orleans 
The widespread destruction in New Orleans was mapped using the NDCD-MNF technique. 
The SPOT-4/HRVIR and Landsat-5/TM images were first radiometrically normalized using 
the parametric model of equation (2.2) and the NDR were computed using equation (4.1). 
Following, to the multi-spectral NDR values it was applied the MNF transform, generating 
the normalized difference reflectance-Minimum Noise Fraction (NDR-MNF) components.  
From all the NDR-MNF components generated, only the first and the second were retained, 
being the most representative of a good identification of water related land cover. By visual 
interpretation of the post flood images, the final selection of the best representative NDR-
MNF component (component nr.1 or component nr.2) was carried out and the final 
mapping was realized by using an adaptive threshold. Figure 7 shows the NDR-MNF 
component nr.2 for SPOT-4/HRVIR (Figure 7a) and Landsat-5/TM (Figure 7b), 
subsequently used for the mapping. 
 

      
a)                                 b) 

Fig. 7. Normalized Difference Reflectance-Minimum Noise Fraction (NDR-MNF) 
component nr.2 used for the mapping. (left) SPOT-4/HRVIR; (right) Landsat-5/TM. 
 



Multivariate Differencing Techniques  
for Land Cover Change Detection: the Normalized Difference Reflectance Approach 287

 

The criteria used for the threshold selection was based on the detection of the maximum 
separability interval between flooded and non-flooded areas. For the SPOT-4/HRVIR and 
Landsat-5/TM image data some samples of the selected NDCD-MNF component were 
independently extracted, belonging to the urban and non-urban land cover classes, both for 
the flooded and non-flooded areas. 
For the Landsat-5/TM data set, 900 pixels were selected for the urbanized areas (400 pixels 
in flooded area and 500 in non-flooded area), covering nearly 0.2% of the total urbanized 
areas, while 1,200 pixels were selected for the non-urbanized areas (700 pixels in flooded 
area and 500 in non-flooded area), covering nearly 0.2% of the total non-urbanized areas. 
For the SPOT-4/HRVIR data set, 1,500 pixels were selected for the urbanized areas (600 
pixels in flooded area and 900 in non-flooded area), covering nearly 0.15% of the total 
urbanized areas, while 2,000 pixels were selected for the non-urbanized areas (1,200 pixels in 
flooded area and 800 in non-flooded area), covering nearly 0.15% of the total non-urbanized 
areas. 
For all these samples, the first and second-order statistics were computed and the maximum 
separability interval between the flooded and non-flooded areas was identified by testing 
different threshold values belonging to the interval; finally the global flood maps were 
produced. 
Next, using the USGS’s NLCDIL as supplementary input data, three other products were 
generated from the SPOT-4/HRVIR and the Landsat-5/TM data sets: i) a flood map for the 
‘urban areas only’; ii) a flood map for the ‘non-urban areas only’; and iii) a ‘fused’ flood 
map: 
 

i) The flood map for the urban areas only was built using the non-impervious surface 
layer of the NLCDIL as mask for excluding from the processing all the image pixels 
collected on non-urban areas; 

ii) The flood map for the non-urban areas only was built using the impervious surface 
layer of the NLCDIL as mask for excluding from the processing all the image pixels 
collected on urban areas; 

iii) The fused flood map was built fusing together the results previously obtained for the 
urban areas only and the non-urban areas only. This processing returned a product 
comparable to the global flood map above described, but it has proven more accurate. 

 
To boost the spatial coherency and homogeneity of the final mapping, all the flood maps 
were refined with classical segmentation and clumping techniques. 

 
5.4 Performance Evaluation and Comparison to other techniques 
The accuracies of all the maps produced with the NDCD-MNF technique were verified 
using as ground truth the flood extension map of the city of New Orleans (Figure 8) 
produced at the Dartmouth Flood Observatory (Dartmouth College, USA) and provided by 
courtesy of Prof. G.R. Brakenridge and Dr. E. Anderson (Dartmouth College, USA). 
The potentialities and performances of the NDCD technique for flood mapping were also 
compared to following standard change detection methods characterized by different 
complexity: 
 

 

The radiometric normalization of reflectance data was performed using a parametric 
parabolic model based on equation 2 through standard linearized least square matching 
based on a parametric model and an iteration approach to solution of the linearized basic 
observation equation. The transformation coefficients were computed using standard 
linearized least squares matching, through an iteration approach to solution of the 
linearized basic observation equation. 
Radiometrically normalized data were used for calculating NDR values for both Landsat-
5/TM and SPOT-4/HRVIR data, using the approach described in the previous sections and 
calculated with equation (4.1). The NDR values were finally used as inputs for Minimum 
Noise Fraction (MNF) transform, thus structuring the implementation of the NDCD-MNF 
technique for change mapping and flooded area delineation. 
 
Mapping Hurricane Katrina’s aftermaths in New Orleans 
The widespread destruction in New Orleans was mapped using the NDCD-MNF technique. 
The SPOT-4/HRVIR and Landsat-5/TM images were first radiometrically normalized using 
the parametric model of equation (2.2) and the NDR were computed using equation (4.1). 
Following, to the multi-spectral NDR values it was applied the MNF transform, generating 
the normalized difference reflectance-Minimum Noise Fraction (NDR-MNF) components.  
From all the NDR-MNF components generated, only the first and the second were retained, 
being the most representative of a good identification of water related land cover. By visual 
interpretation of the post flood images, the final selection of the best representative NDR-
MNF component (component nr.1 or component nr.2) was carried out and the final 
mapping was realized by using an adaptive threshold. Figure 7 shows the NDR-MNF 
component nr.2 for SPOT-4/HRVIR (Figure 7a) and Landsat-5/TM (Figure 7b), 
subsequently used for the mapping. 
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5.5 Results and Discussion 
 
Sampling for accuracy assessment 
The testing samples used for the accuracy assessment of the flood maps were selected 
following a stratified random sampling approach over the datasets. In detail, accuracy test 
samples were collected as: 
 
a) For the SPOT-4/HRVIR data set: 

i) 9,921 samples on reference ground truth data (1.0% of the total) for the urbanized 
areas: 4,017 samples in flooded areas (40.5%) and 5,904 samples in non-flooded areas 
(59.5%). 

ii) 13,568 samples on reference ground truth data (1.0% of the total) for the non-
urbanized areas: 8,158 samples in flooded areas (60.1%) and 5,410 samples in non-
flooded (39.9%). 

iii) 11,812 samples on reference ground truth data (0.5% of the total) for the whole area, 
6,449 samples in flooded areas (54.6%) and 5,363 samples in non-flooded areas 
(45.4%). 

b) For the Landsat-5/TM data set: 
i) 8,726 samples on reference ground truth data (2.0% of the total) for the urbanized 

areas: 3,401 samples in flooded (39.0%) and 5,325 samples in non-flooded areas 
(61.0%). 

ii) 11,608 samples on reference ground truth data (2.0% of the total) for the non-
urbanized areas: 6,580 samples in flooded areas (56.7%) and 5,028 samples in non-
flooded areas (43.3%). 

iii) 15,596 samples on reference ground truth data (1.5% of the total) for the whole area: 
7,878 samples in flooded areas (50.5%) and 7,718 samples in non-flooded areas 
(49.5%). 

 
Mapping accuracy using the NDCD-MNF technique 
Flood maps for the ‘urban areas only’ and for the ‘non-urban areas only’, along with a 
‘fused’ flood map were obtained by thresholding the NDR-MNF component nr.1. 
Regarding the flood mapping in the urban areas only, the data processing performed on the 
Landsat-5/TM imagery led to higher accuracy than those performed on the SPOT-4/HRVIR 
imagery (Table 2, Figure 9). For the former it was obtained a best Overall Accuracy (OA) of 
92.05% and a kappa coefficient (K) of 0.83, while for the latter the results gave an OA of 
86.37% and a K of 0.72. 
 
The threshold selection was not a critical issue for the Landsat-5/TM data, while for the 
SPOT-4/HRVIR data, approaching to the upper (positive) limit of the separability interval 
the accuracy became worse (OA=72.30, K=0.48). In any case, regardless the threshold value 
selection, the mapping based on the Landsat-5/TM images was always superior to those 
based on the SPOT-4/HRVIR images. 
On the contrary, with respect to the flood mapping in the ‘non-urban areas only’, the data 
processing performed on the Landsat-5/TM imagery led to lower accuracy than those 
performed on the SPOT-4/HRVIR imagery (Table 3, Figure 10). For the former it was 
obtained a best OA of 75.70% and a K of 0.49, while for the latter the results gave an OA of 
86.31% and a K of 0.71. 

 

• Change detection based on the near-infrared normalized difference (Hayes and 
Sader, 2001); 

• Spectral-Temporal Minimum Noise Fraction (ST-MNF) technique previously 
developed by authors for flood mapping (Gianinetto & Villa, 2007). 

 

 
Fig. 8. 20-meters resolution raster image derived from the vector flood extension map 
produced at the Dartmouth Flood Observatory (Dartmouth College, USA). 
 
NIR normalized difference change detection 
The simplest change detection technique used to compare the results obtained using the 
NDCD-MNF was based on the NIR normalized difference (Hayes and Sader, 2001). Using 
only the infrared band (TM4 for Landsat-5/TM and XS3 for SPOT-4/HRVIR) it was 
produced a flood map by thresholding the normalized difference between the post-flood 
and pre-flood images. 
Similarly to the processing carried on with the NDCD-MNF, also using the NIR normalized 
difference it were separately calculated: i) a flood map for the urban areas only, ii) a the 
flood map for the non-urban areas only, and iii) a global flood map, both for the SPOT-
4/HRVIR and the Landsat-5/TM data set. 
 
Spectral-Temporal Minimum Noise Fraction technique 
Another term of comparison for the NDCD-MNF method was the ST-MNF technique 
previously developed by the authors (Gianinetto & Villa, 2006; Gianinetto & Villa, 2007). 
In this case only the global flood maps were generated for both the Landsat-5/TM and 
SPOT-4/HRVIR data set by processing together both the impervious and non-impervious 
land cover features. Starting from the pre-processed normalized images, a synthetic n-band 
file (with n=8 for SPOT-4/HRVIR and n=12 for Landsat-5/TM) was created including first 
the reflective bands of the pre flood scene followed by the homologous bands of the post 
flood scene, stacked together. To this Spectral-Temporal merging it was applied the MNF 
transform and a thresholding to derive the flood extension map, whereas a complete 
description of the ST-MNF technique can be found in (Gianinetto & Villa, 2007). 
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 Threshold 
value 

Overall Accuracy * 
(%) 

K coefficient 

SPOT-4 /HRVIR data set -2.0 85.72 0.70 
-1.5 86.37 0.72 
-1.0 84.96 0.69 
0.0 72.30 0.48 

Landsat-5/TM data set -1.0 89.69 0.79 
0.0 90.52 0.80 
1.0 92.05 0.83 
2.0 91.16 0.81 

* Values in bold indicate the best accuracy. 
Table 2. Flood mapping in the ‘urban areas only’ using the NDCD-MNF technique. 
Threshold selection and mapping accuracy. 
 
 Threshold 

value 
Overall Accuracy * 
(%) 

K coefficient 

SPOT-4 /HRVIR data set 0.0 85.56 0.69 
0.5 86.31 0.71 
1.0 86.17 0.70 
2.0 84.0 0.65 

Landsat-5/TM data set -1.5 75.59 0.49 
-1.0 75.70 0.49 
-0.5 75.11 0.48 
0.0 74.34 0.47 

* Values in bold indicate the best accuracy. 
Table 3. Flood mapping in the ‘non-urban areas only’ using the NDCD-MNF technique. 
Threshold selection and mapping accuracy. 
 
The reason of the poor mapping in non-urban areas using the Landsat-5/TM dataset may be 
found in the closeness of the post-flood image (September 7, 2005) to Katrina landfall 
(August 29, 2005). In the Landsat-5/TM post-flood image many wet areas (rain-washed), 
mainly located in non urbanized areas (impervious surfaces), were incorrectly detected as 
flooded. This phenomena was not observed in the SPOT-4/HRVIR post-flood image 
because of the longer time elapsed from the passage of Katrina (September 19, 2005). 
 
A global ‘fused’ flood map was obtained by fusing together of the urbanized and non-
urbanized flood maps separately computed with the NDCD-MNF technique (Figure 11). In 
this case, the comparison of global results from the Landsat-5/TM (OA=84.03% and K=0.68) 
and SPOT-4/HRVIR (OA=86.36% and K=0.73) data processing are similar, with a little 
advantage for the SPOT-based mapping. This result is justified by the non homogeneous 
accuracy of the Landsat-based mapping in urban and non urban areas, as previous 
described (Table 2 and Table 3). 
A simpler and less computational expensive global flood map was derived by processing 
together both the urban and non-urban areas in a single step (Figure 12). Differently to the 
previous cases, the NDR-MNF component nr.2 was used this time for the thresholding of 
both the dataset. 
 

 

  
Fig. 9. New Orleans (Louisiana). Flood mapping in the urban areas only using the NDCD-
MNF technique. (left) Derived from SPOT-4/HRVIR data; (right) Derived from Landsat-
5/TM data. 
 

  
Fig. 10. New Orleans (Louisiana). Flood mapping in the non-urban areas only using the 
NDCD -MNF technique. (left) Derived from SPOT-4/HRVIR data; (right) Derived from 
Landsat-5/TM data. 
 
The threshold selection was not a critical issue both for the Landsat-5/TM and for the SPOT-
4/HRVIR data. In any case, regardless of the threshold value selection, this time the 
mapping based on the SPOT-4/HRVIR images was always superior to those based on the 
Landsat-5/TM images. 
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 Threshold 
value 

Overall Accuracy * 
(%) 

K coefficient 

SPOT-4 /HRVIR data set -2.0 85.72 0.70 
-1.5 86.37 0.72 
-1.0 84.96 0.69 
0.0 72.30 0.48 

Landsat-5/TM data set -1.0 89.69 0.79 
0.0 90.52 0.80 
1.0 92.05 0.83 
2.0 91.16 0.81 

* Values in bold indicate the best accuracy. 
Table 2. Flood mapping in the ‘urban areas only’ using the NDCD-MNF technique. 
Threshold selection and mapping accuracy. 
 
 Threshold 

value 
Overall Accuracy * 
(%) 

K coefficient 

SPOT-4 /HRVIR data set 0.0 85.56 0.69 
0.5 86.31 0.71 
1.0 86.17 0.70 
2.0 84.0 0.65 

Landsat-5/TM data set -1.5 75.59 0.49 
-1.0 75.70 0.49 
-0.5 75.11 0.48 
0.0 74.34 0.47 

* Values in bold indicate the best accuracy. 
Table 3. Flood mapping in the ‘non-urban areas only’ using the NDCD-MNF technique. 
Threshold selection and mapping accuracy. 
 
The reason of the poor mapping in non-urban areas using the Landsat-5/TM dataset may be 
found in the closeness of the post-flood image (September 7, 2005) to Katrina landfall 
(August 29, 2005). In the Landsat-5/TM post-flood image many wet areas (rain-washed), 
mainly located in non urbanized areas (impervious surfaces), were incorrectly detected as 
flooded. This phenomena was not observed in the SPOT-4/HRVIR post-flood image 
because of the longer time elapsed from the passage of Katrina (September 19, 2005). 
 
A global ‘fused’ flood map was obtained by fusing together of the urbanized and non-
urbanized flood maps separately computed with the NDCD-MNF technique (Figure 11). In 
this case, the comparison of global results from the Landsat-5/TM (OA=84.03% and K=0.68) 
and SPOT-4/HRVIR (OA=86.36% and K=0.73) data processing are similar, with a little 
advantage for the SPOT-based mapping. This result is justified by the non homogeneous 
accuracy of the Landsat-based mapping in urban and non urban areas, as previous 
described (Table 2 and Table 3). 
A simpler and less computational expensive global flood map was derived by processing 
together both the urban and non-urban areas in a single step (Figure 12). Differently to the 
previous cases, the NDR-MNF component nr.2 was used this time for the thresholding of 
both the dataset. 
 

 

  
Fig. 9. New Orleans (Louisiana). Flood mapping in the urban areas only using the NDCD-
MNF technique. (left) Derived from SPOT-4/HRVIR data; (right) Derived from Landsat-
5/TM data. 
 

  
Fig. 10. New Orleans (Louisiana). Flood mapping in the non-urban areas only using the 
NDCD -MNF technique. (left) Derived from SPOT-4/HRVIR data; (right) Derived from 
Landsat-5/TM data. 
 
The threshold selection was not a critical issue both for the Landsat-5/TM and for the SPOT-
4/HRVIR data. In any case, regardless of the threshold value selection, this time the 
mapping based on the SPOT-4/HRVIR images was always superior to those based on the 
Landsat-5/TM images. 
 
 



Geoscience and Remote Sensing292

 

 Threshold 
value 

Overall Accuracy * 
(%) 

K coefficient 

SPOT-4 /HRVIR data set -2.0 66.11 0.28 
-1.0 82.02 0.63 
-0.5 83.20 0.67 
0.0 82.24 0.65 
1.0 75.92 0.53 

Landsat-5/TM data set 0.0 76.60 0.53 
1.0 77.32 0.54 
2.0 75.81 0.51 
3.0 72.50 0.45 

* Values in bold indicate the best accuracy. 
Table 4. Global flood mapping using the NDCD-MNF technique when processing together 
both the impervious and non-impervious surfaces. Threshold selection and mapping 
accuracy. 
 
This time, for the SPOT-4/HRVIR dataset both the NDR-MNF component selection and the 
threshold selection are critical and the accuracy largely depends upon their correct 
identification. Regarding the NDR-MNF component selection, when using component 1 
instead of component 2, as in previous cases, for the Landsat-5/TM data processing we had 
a little decrease in the mapping accuracy (from 77.32% to 75.50% for the OA), while for the 
SPOT-4/HRVIR data processing a greater decrease in the mapping accuracy was observed 
(from 83.20% to 67.74% for the OA). 
The foremost advantage of this single step global mapping is that no urban mask is 
required, so no a priori information is needed to separate impervious from non impervious 
surfaces. On the other hand, the mapping accuracy is always worse when compared to the 
global ‘fused’ map obtained by fusing together of the urbanized and non-urbanized flood 
maps separately computed (Figure 11). For the SPOT-4/HRVIR data it was observed a 
decrease in the OA from 86.36% to 83.20% and a decrease in the K from 0.73 to 0.67, while 
for the Landsat-5/TM data it was observed a larger decrease both in the OA from 84.36% to 
77.32% and in the K from 0.68 to 0.54 (Table 4). 
 
Comparing the mapping accuracy of the NDCD-MNF to the NIR-normalized difference 
change detection 
Using the NIR-normalized difference change detection it was generated a global flood map 
by processing together both the urban and the non-urban areas (Figure 13) and a global 
‘fused’ flood map by processing separately the urban and the non-urban areas (Figure 14). 
This technique seems to be insensitive to both the data set used (SPOT-4/HRVIR or 
Landsat-5/TM) and to the data processing adopted (global or ‘fused’ map), leading to an 
OA between 81.66% and 82.75% and a K between 0.63 and 0.66. Table 5 shows a summary of 
results. 
When comparing the NDCD-MNF to the NIR-normalized difference change detection it 
emerged the superiority of the former in all the ‘fused’ products (OA=86.36 and K=0.73 for 
the SPOT-4/HRVIR data set and OA=84.36 and K=0.68 for the Landsat-5/TM data set) and 
a better accuracy for the latter with respect to only the Landsat-5/TM global flood map 
(OA=82.03% and K=0.64). 
 
 

 

  
Fig. 11. New Orleans (Louisiana). Global ‘fused’ mapping using the NDCD-MNF technique. 
(left) Derived from SPOT-4/HRVIR data; (right) Derived from Landsat-5/TM data. 
 

  
Fig. 12. New Orleans (Louisiana). Global flood map using the NDCD-MNF technique. (left) 
Derived from SPOT-4/HRVIR data; (right) Derived from Landsat-5/TM data. 
 
Again the Landsat-5/TM data processing led to lower accuracy (OA=77.32% and K=0.54) 
than the SPOT-4/HRVIR data processing (OA=83.20% and K=0.67), when compared to 
ground truth data, mainly due to its lower accuracy in the non-urban areas (Table 4). 
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 Threshold 
value 

Overall Accuracy * 
(%) 

K coefficient 

SPOT-4 /HRVIR data set -2.0 66.11 0.28 
-1.0 82.02 0.63 
-0.5 83.20 0.67 
0.0 82.24 0.65 
1.0 75.92 0.53 

Landsat-5/TM data set 0.0 76.60 0.53 
1.0 77.32 0.54 
2.0 75.81 0.51 
3.0 72.50 0.45 

* Values in bold indicate the best accuracy. 
Table 4. Global flood mapping using the NDCD-MNF technique when processing together 
both the impervious and non-impervious surfaces. Threshold selection and mapping 
accuracy. 
 
This time, for the SPOT-4/HRVIR dataset both the NDR-MNF component selection and the 
threshold selection are critical and the accuracy largely depends upon their correct 
identification. Regarding the NDR-MNF component selection, when using component 1 
instead of component 2, as in previous cases, for the Landsat-5/TM data processing we had 
a little decrease in the mapping accuracy (from 77.32% to 75.50% for the OA), while for the 
SPOT-4/HRVIR data processing a greater decrease in the mapping accuracy was observed 
(from 83.20% to 67.74% for the OA). 
The foremost advantage of this single step global mapping is that no urban mask is 
required, so no a priori information is needed to separate impervious from non impervious 
surfaces. On the other hand, the mapping accuracy is always worse when compared to the 
global ‘fused’ map obtained by fusing together of the urbanized and non-urbanized flood 
maps separately computed (Figure 11). For the SPOT-4/HRVIR data it was observed a 
decrease in the OA from 86.36% to 83.20% and a decrease in the K from 0.73 to 0.67, while 
for the Landsat-5/TM data it was observed a larger decrease both in the OA from 84.36% to 
77.32% and in the K from 0.68 to 0.54 (Table 4). 
 
Comparing the mapping accuracy of the NDCD-MNF to the NIR-normalized difference 
change detection 
Using the NIR-normalized difference change detection it was generated a global flood map 
by processing together both the urban and the non-urban areas (Figure 13) and a global 
‘fused’ flood map by processing separately the urban and the non-urban areas (Figure 14). 
This technique seems to be insensitive to both the data set used (SPOT-4/HRVIR or 
Landsat-5/TM) and to the data processing adopted (global or ‘fused’ map), leading to an 
OA between 81.66% and 82.75% and a K between 0.63 and 0.66. Table 5 shows a summary of 
results. 
When comparing the NDCD-MNF to the NIR-normalized difference change detection it 
emerged the superiority of the former in all the ‘fused’ products (OA=86.36 and K=0.73 for 
the SPOT-4/HRVIR data set and OA=84.36 and K=0.68 for the Landsat-5/TM data set) and 
a better accuracy for the latter with respect to only the Landsat-5/TM global flood map 
(OA=82.03% and K=0.64). 
 
 

 

  
Fig. 11. New Orleans (Louisiana). Global ‘fused’ mapping using the NDCD-MNF technique. 
(left) Derived from SPOT-4/HRVIR data; (right) Derived from Landsat-5/TM data. 
 

  
Fig. 12. New Orleans (Louisiana). Global flood map using the NDCD-MNF technique. (left) 
Derived from SPOT-4/HRVIR data; (right) Derived from Landsat-5/TM data. 
 
Again the Landsat-5/TM data processing led to lower accuracy (OA=77.32% and K=0.54) 
than the SPOT-4/HRVIR data processing (OA=83.20% and K=0.67), when compared to 
ground truth data, mainly due to its lower accuracy in the non-urban areas (Table 4). 
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 Threshold 
Value 

Overall Accuracy * 
(%) 

K coefficient 

SPOT-4 /HRVIR data set -0.100 79.13 0.59 
-0.075 81.07 0.62 
-0.050 81.73 0.63 
-0.025 80.83 0.61 

Landsat-5/TM data set -0.35 79.92 0.60 
-0.30 82.03 0.64 
-0.25 81.95 0.64 
-0.20 80.16 0.60 

* Values in bold indicate the best accuracy. 
Table 5. Global flood mapping using the NIR-normalized difference change detection 
technique. Threshold selection and mapping accuracy. 
 
Comparing the mapping accuracy of the NDCD-MNF to the Spectral-Temporal Minimum 
Noise Fraction technique 
Using the ST-MNF technique it was generated a global flood map by processing together 
both the urban and the non-urban areas on the basis of the MNF component nr. 1 for both 
the data set (Figure 15). 
The threshold selection here revealed to be not a critical issue for the mapping accuracy. By 
using the ST-MNF technique, the Landsat-5/TM data processing led to higher accuracy 
(OA=90.17% and K=0.80) than the SPOT-4/HRVIR data processing (OA=81.87% and 
K=0.63) when compared to ground truth data. Table 6 shows a summary of results. 
 

  
Fig. 15. New Orleans (Louisiana). Global damages mapping using the ST-MNF technique. 
(left) Derived from SPOT-4/HRVIR data; (right) Derived from Landsat-5/TM data. 
 
A comparison between the NDCD-MNF and the ST-MNF shows that the former always 
performed better on the SPOT-4/HRVIR data set, regardless the data processing used for 
the global mapping used (with or without urban areas masking). While with respect to the 
Landsat-5/TM data set, results are more difficult to analyse. Looking at the OA only it 
seems that the ST-MNF led to higher accuracy (OA=90.17 for ST-MNF and OA=84.36 for 
NDCD-MNF), but the K score of the NDCD-MNF is higher for the ‘fused’ map (K=0.68 for 

 

  
Fig. 13. New Orleans (Louisiana). Global flood mapping using the NIR-normalized 
difference technique. (left) Derived from SPOT-4/HRVIR; (right) Derived from Landsat-
5/TM. 
 

  
Fig. 14. New Orleans (Louisiana). Global ‘fused’ map using the NIR-normalized difference 
technique. (left) Derived from SPOT-4/HRVIR; (right) Derived from Landsat-5/TM. 
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 Threshold 
Value 

Overall Accuracy * 
(%) 

K coefficient 

SPOT-4 /HRVIR data set -0.100 79.13 0.59 
-0.075 81.07 0.62 
-0.050 81.73 0.63 
-0.025 80.83 0.61 

Landsat-5/TM data set -0.35 79.92 0.60 
-0.30 82.03 0.64 
-0.25 81.95 0.64 
-0.20 80.16 0.60 

* Values in bold indicate the best accuracy. 
Table 5. Global flood mapping using the NIR-normalized difference change detection 
technique. Threshold selection and mapping accuracy. 
 
Comparing the mapping accuracy of the NDCD-MNF to the Spectral-Temporal Minimum 
Noise Fraction technique 
Using the ST-MNF technique it was generated a global flood map by processing together 
both the urban and the non-urban areas on the basis of the MNF component nr. 1 for both 
the data set (Figure 15). 
The threshold selection here revealed to be not a critical issue for the mapping accuracy. By 
using the ST-MNF technique, the Landsat-5/TM data processing led to higher accuracy 
(OA=90.17% and K=0.80) than the SPOT-4/HRVIR data processing (OA=81.87% and 
K=0.63) when compared to ground truth data. Table 6 shows a summary of results. 
 

  
Fig. 15. New Orleans (Louisiana). Global damages mapping using the ST-MNF technique. 
(left) Derived from SPOT-4/HRVIR data; (right) Derived from Landsat-5/TM data. 
 
A comparison between the NDCD-MNF and the ST-MNF shows that the former always 
performed better on the SPOT-4/HRVIR data set, regardless the data processing used for 
the global mapping used (with or without urban areas masking). While with respect to the 
Landsat-5/TM data set, results are more difficult to analyse. Looking at the OA only it 
seems that the ST-MNF led to higher accuracy (OA=90.17 for ST-MNF and OA=84.36 for 
NDCD-MNF), but the K score of the NDCD-MNF is higher for the ‘fused’ map (K=0.68 for 

 

  
Fig. 13. New Orleans (Louisiana). Global flood mapping using the NIR-normalized 
difference technique. (left) Derived from SPOT-4/HRVIR; (right) Derived from Landsat-
5/TM. 
 

  
Fig. 14. New Orleans (Louisiana). Global ‘fused’ map using the NIR-normalized difference 
technique. (left) Derived from SPOT-4/HRVIR; (right) Derived from Landsat-5/TM. 
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2005]. For example, a threshold value of two standard deviations above the mean is 
sometimes selected (Sohl, 1999). To address this problem, some studies used a noise model 
to select the threshold (Dwyer et al., 1996). As an alternative, other studies have developed a 
systematic method using training data (Chen et al., 2003). In their approach, areas of change 
are digitized, as well as a surrounding window of no change. These training areas are then 
classified into ‘change’ and ‘no change’ classes, using a small number of arbitrarily chosen 
thresholds spread over a wide range of possible values. Based on the accuracies of these 
classifications, the range of thresholds is narrowed successively to focus on the region where 
the accuracy is highest. In this iterative fashion, an optimal threshold is selected. 
The accuracy gained through NDR approach derived changes mapping have been proven 
very satisfying most of the times, with Overall Accuracies percentage figures ranging from 
80% to over 90% of correctness, that is to say error percentage in change mapping around 
10% which is to be considered as a really good result for analysis performed and based only 
on remote sensing satellite data. 
Nevertheless, more testing and a more fine tuning of the processing chain  can be 
implemented and done in the future, including not yet explored land cover change 
application fields, and the good results achieved until now are a great encouragement to 
continue on the path already traced with the works described in this chapter. 
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NDCD-MNF and K=0.63 for ST-MNF). So it is difficult to say which performed better with 
respect to the overall situation. 
 
 Threshold 

value 
Overall Accuracy * 
(%) 

K coefficient 

SPOT-4 /HRVIR data set -1.0 81.76 0.63 
-0.5 81.87 0.63 
0.0 81.43 0.62 
1.0 79.33 0.58 

Landsat-5/TM data set 
 
 
 

-1.0 89.37 0.78 
0.0 89.79 0.79 
0.5 90.12 0.80 
1.0 90.17 0.80 
2.0 89.71 0.79 

* Values in bold indicate the best accuracy. 
Table 6. Global flood mapping using the ST-MNF technique. Threshold selection and 
mapping accuracy. 

 
5.6 Summary and Coclusions 
This case study tested the normalized difference change detection technique effectiveness 
for change mapping, also in comparison with other literature methodologies, starting from 
the processing of the normalized difference reflectance data. 
The radiometric normalization of data influenced the accuracy of the mapping. A 
parametric normalization with coefficients calculated with standard linearized least squares 
adjustment and iterative solution was found a better solution than a standard linear 
normalization, and thus adopted. However, the general definition of the NDCD leaves the 
possibility to develop processing techniques based on different radiometric normalization 
schemes. 
Using its MNF implementation, the NDCD technique was used for mapping and evaluating 
the havoc on the city of New Orleans (Louisiana, USA) wreaked by Hurricane Katrina 
landfall in August 2005, using both a SPOT-4/HRVIR and a Landsat-5/TM data set. 
As a term of comparison for evaluating the potentialities and performances of the NDCD-
MNF technique, several other standard change detection methods have been tested: from 
the simple NIR normalized difference to the more complex Spectral-Temporal Minimum 
Noise Fraction technique. 
Comparing the global mapping accuracy when using the SPOT-4/HRVIR data, the NDCD-
MNF technique always leaded to better results than all the others methods here taken into 
consideration. Moreover, results were better when processing separately the urban and the 
non-urban areas in the so called ‘fused’ product. 
With regards to the Landsat-5/TM data, the NDCD-MNF technique poorly performed in 
the non-urban areas (probably due to the closeness of the post-flood image to Katrina 
landfall), thus affecting the final global mapping. However, with respect to the only urban 
areas, which may be of major interest in most cases, the NDCD-MNF always performed 
better. 
Finally, regarding the threshold selection, a number of studies [Yuan et al., 1998; Chen et al., 
2003] have pointed out that a major weakness of all spectral change detection approaches is 
that the selection of a minimum threshold to signify change is often arbitrary [Warner, 
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Abstract

Most pattern recognition applications within the Geoscience field involve the clustering and
classification of remote sensed multispectral data, which basically aims to allocate the right
class of ground category to a reflectance or radiance signal. Generally, the complexity of this
problem is related to the incorporation of spatial characteristics that are complementary to the
nonlinearities of land surface heterogeneity, remote sensing effects and multispectral features.
The present chapter describes recent developments in the performance of a kernel method
applied to the representation and classification of agricultural land use systems described
by multispectral responses. In particular, we focus on the practical applicability of learning
machine methods to the task of inducting a relationship between the spectral response of
farms land cover to their informational typology from a representative set of instances. Such
methodologies are not traditionally used in agricultural studies. Nevertheless, the list of ref-
erences reviewed here show that its applications have emerged very fast and are leading to
simple and theoretically robust classification models. This chapter will cover the following
phases: a)learning from instances in agriculture; b)feature extraction of both multispectral
and attributive data and; c) kernel supervised classification. The first provides the conceptual
foundations and a historical perspective of the field. The second belongs to the unsupervised
learning field, which mainly involves the appropriate description of input data in a lower di-
mensional space. The last is a method based on statistical learning theory, which has been
successfully applied to supervised classification problems and to generate models described
by implicit functions.

1. Introduction

A farming type or modality is a representation of a population of farms that share the same n
dimensional traits. Typically, farming system studies seek to define separate groups of farms
by looking for a natural structure among the observations. The objective is to maximize homo-
geneity within clusters and heterogeneity between them (Dixon et al., 2001; Hair et al., 1998).
Information about properties of farming systems such as censuses and surveys have long
been the most widely used instruments to gather data on agrarian activities; indeed, histori-
cally they have proved to be a useful means of gaining knowledge of such diverse agrarian
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to deal with complex task of using multispectral data for pattern recognition in crop-livestock
systems.

2. Historical elements of statistical learning from instances in agriculture

2.1 General problem
The process of estimating an unknown input-output dependence and generalising it beyond
a limited training set of observations is acknowledged as learning from instances, which had
its origin in the pioneering work of Rosenblatt (1958). During the 1960’s the application of
this paradigm was seriously hampered as a result of the work of Minsky & Papert (1969).
By this time it was thought that complex applications in the real world would require rep-
resentational hypotheses much more expressive than linear functions, given that the target
concept could not normally be represented as a simple linear combination of data attributes.
As a result, some fields of study such as learning machine and pattern recognition were neg-
atively affected, preventing their use on applied research including farming systems. It was
subsequently demonstrated that the theories of Minsky & Papert were wrong.
Creating typologies of farming systems has been one of the major approaches within the field
of agricultural systems in which research has been conducted. This paradigm mainly refers to
those methods characterised by inductive non-supervised clustering of farms within a taxon-
omy; where farm likeness is represented according to a finite set of m-dimensional variables
(Berdegue & Escobar, 1990; Köbrich et al., 2003; Kostrowicki, 1977). During the 70’s most of
the learning techniques used in the agricultural system field were influenced by the wave of
learning linear decision surfaces (Capillon, 1985; Hart, 1990; Kostrowicki, 1977). That kind of
representation was preferred given that its theoretical properties were well understood. After
the 80s, researchers trying to move away from the limitations of linear models started using
non-linear models in decision trees decision trees and artificial neural networks. These tech-
niques were rapidly employed within the agriculture domain. However, the main problems
of these approaches were their theoretical weakness and that their solution space had many
local minima.
The consolidation and application of statistical learning theory during the mid-90’s allowed
the development of efficient algorithms to learn non-linear functions. These ideas completely
recast the pioneering work of Rosenblatt (1958); and were theoretically supported in statistical
learning theory (Vapnik, 1995, 1998; Vapnik & Chernovenkis, 1974). Vapnik and Chervonenkis
formalised the learning problem as a function estimation; where given an empirical data set
generated by a regular stochastic distribution, the algorithm pursues the extraction of regu-
larities in the data by a general model of learning that might be summarised in a sequence of
components: a) an input vector generator; b) a system that produces an output value and c) a
linear machine.
Contrasting with the statistical learning theory, which appeared on the scene quite recently,
another current solution implementation is based on kernel functions (Aronszajn, 1950; Mer-
cer, 1909), which were first studied about a century ago, and which have been playing an
important role in increasing the representational capacity of the solutions especially in agricul-
tural applications involving remote sensing. Their use within the learning task relates closely
to data pre-processing; and along with the learning machine, constitutes a compact body.

2.2 Particular cases
Supervised and unsupervised learning are among the most investigated applications in agri-
culture. The former approach pursues building relations between input vectors and target

features as: dominant patterns of farm activities and household livelihoods, including field
crops, livestock, trees, aquaculture, grazing and forest areas, crop-livestock integration, tech-
nology, farm size and land tenure, to mention but a few. Nevertheless, the high requirements
in terms of human and monetary resources of censuses and surveys prevent their application
with the frequency and extent required to tackle the complexity of many agricultural issues.
The rapid development shown by land observation satellites over the last three decades has
made a great deal of information about land surfaces available. This has widely been used to
study land cover changes by the general model of pattern recognition process; which can be
divided into a sequence of three main elements: a) generation of input random vectors with
the information to be classified (sensor); b) translation of data into a statistically independent
representation code that preservs their most relevant characteristics (feature extraction); and
c) a system that, based on extracted features, can develop a function space where an operator
might be built to serve as an answer predictor to any input generated by the sensor (classifica-
tion). In this sense, within the field of pattern recognition, one of the most studied subjects is
the idea of approximating relationships from the within-farm land surface processes and their
emerging spectral response; using methods that can fit the complexity of these processes.
This is vitally important for the study of crop-livestock production systems, given that these
are critical to the livelihood of an important portion of the rural population at a worldwide
level (Bouwman et al., 2005; Seré & Steinfeld, 1996). In addition, projections indicate that the
demand for livestock food products is increasing globally (Delgado et al., 1999; Wint et al.,
2000), and concern about the potential response of these systems is generally justified.
On this issue, a problem that remains open is the spatial monitoring of crop-livestock sys-
tems especially for those involving open range feeding, from which sometimes only time-
and site-specific data can be approximated through field methods. These are usually not cost
effective and suffer from poor spatial resolution. It is also true, in a broader context, that pub-
lic availability of space-based remote sensing has helped with the monitoring of land surface
biophysical properties. Some approaches have been concerned with the correction of obser-
vational data to create valued-added time series (Gleason et al., 2002; Green & Hay, 2002).
Others in turn stress the use of optical, thermal and microwave data to model atmospheric
and soil moisture (Dubayah, 1992; McVicar & Jupp, 2002); exploiting radiative transfer theory
to estimate biophysical properties of vegetation (Goel, 1987; Myneni et al., 1992; Wylie et al.,
2002); and macroscale modelling (Asrar & Dozier, 1994; Kimes et al., 2002). In summary, most
methodologies monitor and map land surface processes by classification or detecting change
(Song et al., 2001). Nevertheless, there is no evidence of using the gathered spectral data
in recognising patterns associated with agricultural land management where an optimal dis-
crimination of pixel mixture might be inferred beyond a training set. It has been in this context
that the general aim of this chapter was defined to provide a unified framework and examples
of using learning machines to accomplish the task of pattern recognition for complex mosaics
of within-farm land use in crop-livestock systems from multi-spectral data.
These methodologies are based on feature induction from a training set by establishing a sep-
arating hyperplane between any two classes whose margin is maximum. Additionally, they
include the inherent advantage of kernel functions, through which solutions are not built in
the input space but into one with a higher dimensionality. In this feature space, it is possi-
ble that linear functions are enough to separate classes; given that input data are taken to this
space by a nonlinear transformation whose diversity adds richness to the process of finding - if
it exists - a solution. This flexibility is considered critical within the field of learning machines,
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c) a system that, based on extracted features, can develop a function space where an operator
might be built to serve as an answer predictor to any input generated by the sensor (classifica-
tion). In this sense, within the field of pattern recognition, one of the most studied subjects is
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emerging spectral response; using methods that can fit the complexity of these processes.
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level (Bouwman et al., 2005; Seré & Steinfeld, 1996). In addition, projections indicate that the
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tems especially for those involving open range feeding, from which sometimes only time-
and site-specific data can be approximated through field methods. These are usually not cost
effective and suffer from poor spatial resolution. It is also true, in a broader context, that pub-
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vational data to create valued-added time series (Gleason et al., 2002; Green & Hay, 2002).
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2002); and macroscale modelling (Asrar & Dozier, 1994; Kimes et al., 2002). In summary, most
methodologies monitor and map land surface processes by classification or detecting change
(Song et al., 2001). Nevertheless, there is no evidence of using the gathered spectral data
in recognising patterns associated with agricultural land management where an optimal dis-
crimination of pixel mixture might be inferred beyond a training set. It has been in this context
that the general aim of this chapter was defined to provide a unified framework and examples
of using learning machines to accomplish the task of pattern recognition for complex mosaics
of within-farm land use in crop-livestock systems from multi-spectral data.
These methodologies are based on feature induction from a training set by establishing a sep-
arating hyperplane between any two classes whose margin is maximum. Additionally, they
include the inherent advantage of kernel functions, through which solutions are not built in
the input space but into one with a higher dimensionality. In this feature space, it is possi-
ble that linear functions are enough to separate classes; given that input data are taken to this
space by a nonlinear transformation whose diversity adds richness to the process of finding - if
it exists - a solution. This flexibility is considered critical within the field of learning machines,
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minimise information losses. PCA basically performs a linear decomposition of input vectors,
into a space whose coordinate system is hierarchically organised by data variability (Bishop,
2006).
Feature extraction through principal component analysis (also referred to as the Karhunen-
Loève transform) can be traced back to the pioneering work of Pearson (1901) and Hotelling
(1933a,b). Today PCA is one of the feature extraction methods most used in farming systems
(Berdegue & Escobar, 1990; Köbrich et al., 2003), and there has been considerable research sur-
rounding the application of this technique in different topics of pattern recognition (Bishop,
2006; Duda et al., 2001; Jolliffe, 2002). Basically, the method involves the finding of a lower
dimensional space by the orthogonal transformation of the coordinate system where a given
data set is described, with the aim of identifying directions of maximum variability. Let us
consider a set of observations such that:

X =




x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

xm1 xm2 . . . xmn


 (1)

where X is the original data set m × n matrix, n is the number of samples, which conform
m-dimensional vectors (α = x1 . . . xm ∈ RN) of random variables in an arbitrary space. These
vectors are linearly decomposed into another coordinate system whose first axis is a projection
of each observation and respond to the linear function αT

1 x. This new m = 1-dimensional
subspace is oriented to the direction where the elements of X show their highest variability.
The subsequent axes are orthogonally aligned in X to the next highest direction through re-
cursive linear decompositions until m vectors have been aligned αT

mx. The axes of this new
coordinate system are organized hierarchically according to data variability, and are normally
referred to as principal components. It might happen that those components in directions of
very low variability are practically constant for all vectors (Jolliffe, 2002), and can be elimi-
nated since they do not contribute new information. Therefore, a substantial dimensional-
ity reduction (<< m) of the problem is usually achieved, given that typically a few axes are
enough to retain most of the data structure, if this exists.
Generally the feature extraction and dimensionality reduction proceeds as described above.
However, it is worth pointing out the following observations: to obtain the new coordinate
system data must be projected to the direction aligned with the maximum variance; this best
fit axis passes through the mean of the data cloud which is given by:

x̄ =
1
n

n

∑
i=1

x (2)

In order to establish this direction, data is projected onto the d = 1-dimensional vector whose
scalar value projection is defined by αT

1 x with a projected data variability such that:

1
n

n

∑
i=1

{αT
1 x − αT

1 x̄}2 = αT
1 Sα1 (3)

outputs. The outputs may be expressed at different scales: categorically or numerically, corre-
sponding to classification and regression problems respectively. The unsupervised approach,
rather than approximating input data to a target label, seeks to approximate data by similarity
expressions, generally distance functions, from which groups of data that resemble each other
can be built. This paradigm is usually referred to as clustering (Bishop, 2006).
The remote sensing works of Hermes et al. (1999) and Huang et al. (2002) are precursors of
the classification approach in agriculture, where, given a spatially dispersed set of pixels,
different forms of land cover (closed forest, open forest and woodland) are classified according
to their spectral response. Other research of this kind includes the work of Keuchel et al. (2003)
which progressively compares land cover classification using three methods (support vector
machines, maximum likelihood and iterated conditional models); and the work of Su et al.
(2007) which uses the multi-angle approach and its corresponding spectro-radiometer image
to accurately map grassland types by support vector machines. A good application of learning
machines on the regression problem is the work of Yang et al. (2007) within the forestry field.
In that research, the target vector used was eddy covariance-based gross primary production
(GPP) and three remotely sensed variables (land surface temperature, enhanced vegetation
index and land cover) in order to predict flux-based GPP at a continental scale.
Regarding the clustering problem in the unsupervised ground, Diez et al. (2006) combined a
kernel-based similarity function and a support vector machine to permit the identification of
public beef product preferences stratified by market segment. In addition, within the unsu-
pervised family can be found density estimators, which mainly project data from a high onto a
lower dimensional space to determine its distribution in the input space in order to add visual
richness to the solutions represented (Bishop, 2006).
In summary, these methodologies are based on feature induction from a representative set of
instances, where it may be possible to produce a model able to generalise beyond the training
instances. In this way a description of relationships present in the original data is possible,
and their representation is simplified at the same time that their main features are preserved.
Today, there is still a wide usage of linear paradigms in farming systems studies (Dobremez
& Bousset, 1995; Köbrich et al., 2003; Milá et al., 2006)while extensive applications of linear
machine techniques in agriculture are still scarce. The forerunners have shown that models
generated are flexible, theoretically robust and provide expressive solutions. Some of the pre-
liminary results of the present topic may be found in González et al. (2007). For those seeking
a deep understanding in the machine learning field the following publications are suggested:
Bishop (2006); Cristianini & Shawe-Taylor (2000); Shawe-Taylor & Cristianini (2006) and Vap-
nik (1995, 1998).

3. Feature extraction of both multispectral and attributive data

Feature extraction constitutes an important task within multidimensional crop-livestock pat-
tern classification. The idea behind it is, among others, to isolate those statistical characteris-
tics of the data that portray essential elements of them, and to provide a better understanding
about the underlying processes that generate the data (Guyon & Elisseeff, 2003). Feature ex-
traction is also very effective for avoiding the redundancy that characterises crop-livestock
systems (crop production, land use, livestock production, management, etc) by finding mean-
ingful projections, of even low dimensional input data, into a feature space. Principal com-
ponents analysis (PCA) is one of the standard techniques to obtain features from input data
(Jolliffe, 2002). This is achieved by maximising the projected variance onto mutually orthog-
onal eigenvectors along the directions of higher eigenvalues through iterative algorithms that
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minimise information losses. PCA basically performs a linear decomposition of input vectors,
into a space whose coordinate system is hierarchically organised by data variability (Bishop,
2006).
Feature extraction through principal component analysis (also referred to as the Karhunen-
Loève transform) can be traced back to the pioneering work of Pearson (1901) and Hotelling
(1933a,b). Today PCA is one of the feature extraction methods most used in farming systems
(Berdegue & Escobar, 1990; Köbrich et al., 2003), and there has been considerable research sur-
rounding the application of this technique in different topics of pattern recognition (Bishop,
2006; Duda et al., 2001; Jolliffe, 2002). Basically, the method involves the finding of a lower
dimensional space by the orthogonal transformation of the coordinate system where a given
data set is described, with the aim of identifying directions of maximum variability. Let us
consider a set of observations such that:

X =




x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

xm1 xm2 . . . xmn


 (1)

where X is the original data set m × n matrix, n is the number of samples, which conform
m-dimensional vectors (α = x1 . . . xm ∈ RN) of random variables in an arbitrary space. These
vectors are linearly decomposed into another coordinate system whose first axis is a projection
of each observation and respond to the linear function αT

1 x. This new m = 1-dimensional
subspace is oriented to the direction where the elements of X show their highest variability.
The subsequent axes are orthogonally aligned in X to the next highest direction through re-
cursive linear decompositions until m vectors have been aligned αT

mx. The axes of this new
coordinate system are organized hierarchically according to data variability, and are normally
referred to as principal components. It might happen that those components in directions of
very low variability are practically constant for all vectors (Jolliffe, 2002), and can be elimi-
nated since they do not contribute new information. Therefore, a substantial dimensional-
ity reduction (<< m) of the problem is usually achieved, given that typically a few axes are
enough to retain most of the data structure, if this exists.
Generally the feature extraction and dimensionality reduction proceeds as described above.
However, it is worth pointing out the following observations: to obtain the new coordinate
system data must be projected to the direction aligned with the maximum variance; this best
fit axis passes through the mean of the data cloud which is given by:

x̄ =
1
n

n

∑
i=1

x (2)

In order to establish this direction, data is projected onto the d = 1-dimensional vector whose
scalar value projection is defined by αT

1 x with a projected data variability such that:

1
n

n

∑
i=1

{αT
1 x − αT

1 x̄}2 = αT
1 Sα1 (3)

outputs. The outputs may be expressed at different scales: categorically or numerically, corre-
sponding to classification and regression problems respectively. The unsupervised approach,
rather than approximating input data to a target label, seeks to approximate data by similarity
expressions, generally distance functions, from which groups of data that resemble each other
can be built. This paradigm is usually referred to as clustering (Bishop, 2006).
The remote sensing works of Hermes et al. (1999) and Huang et al. (2002) are precursors of
the classification approach in agriculture, where, given a spatially dispersed set of pixels,
different forms of land cover (closed forest, open forest and woodland) are classified according
to their spectral response. Other research of this kind includes the work of Keuchel et al. (2003)
which progressively compares land cover classification using three methods (support vector
machines, maximum likelihood and iterated conditional models); and the work of Su et al.
(2007) which uses the multi-angle approach and its corresponding spectro-radiometer image
to accurately map grassland types by support vector machines. A good application of learning
machines on the regression problem is the work of Yang et al. (2007) within the forestry field.
In that research, the target vector used was eddy covariance-based gross primary production
(GPP) and three remotely sensed variables (land surface temperature, enhanced vegetation
index and land cover) in order to predict flux-based GPP at a continental scale.
Regarding the clustering problem in the unsupervised ground, Diez et al. (2006) combined a
kernel-based similarity function and a support vector machine to permit the identification of
public beef product preferences stratified by market segment. In addition, within the unsu-
pervised family can be found density estimators, which mainly project data from a high onto a
lower dimensional space to determine its distribution in the input space in order to add visual
richness to the solutions represented (Bishop, 2006).
In summary, these methodologies are based on feature induction from a representative set of
instances, where it may be possible to produce a model able to generalise beyond the training
instances. In this way a description of relationships present in the original data is possible,
and their representation is simplified at the same time that their main features are preserved.
Today, there is still a wide usage of linear paradigms in farming systems studies (Dobremez
& Bousset, 1995; Köbrich et al., 2003; Milá et al., 2006)while extensive applications of linear
machine techniques in agriculture are still scarce. The forerunners have shown that models
generated are flexible, theoretically robust and provide expressive solutions. Some of the pre-
liminary results of the present topic may be found in González et al. (2007). For those seeking
a deep understanding in the machine learning field the following publications are suggested:
Bishop (2006); Cristianini & Shawe-Taylor (2000); Shawe-Taylor & Cristianini (2006) and Vap-
nik (1995, 1998).

3. Feature extraction of both multispectral and attributive data

Feature extraction constitutes an important task within multidimensional crop-livestock pat-
tern classification. The idea behind it is, among others, to isolate those statistical characteris-
tics of the data that portray essential elements of them, and to provide a better understanding
about the underlying processes that generate the data (Guyon & Elisseeff, 2003). Feature ex-
traction is also very effective for avoiding the redundancy that characterises crop-livestock
systems (crop production, land use, livestock production, management, etc) by finding mean-
ingful projections, of even low dimensional input data, into a feature space. Principal com-
ponents analysis (PCA) is one of the standard techniques to obtain features from input data
(Jolliffe, 2002). This is achieved by maximising the projected variance onto mutually orthog-
onal eigenvectors along the directions of higher eigenvalues through iterative algorithms that
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solution to this problem is the generalisation of linear PCA setting to an application of kernel
principal component analysis (KPCA) (Schölkopf et al., 1998). This algorithm combines the
simplicity of linear PCA with the capability of integral operators, known as kernel functions;
to express data from input space as dot products in the feature space. This method enables
the construction of nonlinear versions of the original variables in a high dimensional context
(Shawe-Taylor & Cristianini, 2006).

3.1 Coping with non linearities
The kernel “trick” permits the generalising of any algorithm that uniquely depends on inner
products (Aizerman et al., 1964). This approach has proven to be particularly helpful for those
statistical problems that involve feature extraction (Schölkopf et al., 1998); classification (Boser
et al., 1992); regression (Williams, 1998) and clustering (Crammer & Singer, 2002; Graepel &
Obermayer, 1998). Generally it can be said that kernel methods serve to induct non-linear
functions in feature spaces usually of high dimensionality, and also may be incorporated into
the dual form of most algorithms in such a way that it is not necessary to calculate explicitly
the transformation to the feature space (Shawe-Taylor & Cristianini, 2006).
A result of the inclusion of the kernel idea within the dual representation, is that the com-
putation task is not affected by the feature space dimensionality (Cristianini & Shawe-Taylor,
2000), and given that the gram-matrix is the unique information used in the feature space, the
amount of work required to calculate the inner product is not necessarily proportional to the
feature number. Thus the use of kernels can be seen as a means to establish an implicit corre-
spondence between the original data and the feature space, without the limitations associated
with the computation of such correspondence.
Within a broad context, the study of statistical aspects of pattern analysis has been approached
from two main paradigms: the Bayesian approach (Duda et al., 2001) and empirical processes
(Vapnik, 1995). Boser et al. (1992) pioneered the merging of kernel methods and statistical
learning theory (empirical processes approach) through large margin classifiers. However,
most of the theoretical development on kernel methods has its origin in the research of Mercer
(1909) and Aronszajn (1950) where fundamental issues of Mercer’s theory and Hilbert’s spaces
were treated respectively. After the crisis of the main linear approaches commonly used in the
learning machine field (Fisher, 1936; Rosenblatt, 1958) as a result of the publication of Minsky
& Papert (1969), one of the alternatives proposed was the threshold multilayer structures,
which led to the development of neural networks (generalised perceptron) with associated
algorithm as back propagation (Hertz et al., 1991) .
The other approach was data pre-processing: in other words, the projection of data into a
higher dimensional space to increase the computational power by including redundancies in
their representation and assuring an effective feature extraction process from very complex
data. An interesting alternative method to accomplish the above task, was the use of ker-
nel methods, whose functions and corresponding feature spaces theory derive from integral
operators studies (Aronszajn, 1950; Berg et al., 1984; Sahitoh, 1988). The inclusion of these con-
structs into a nonlinear generalisation of principal components analysis was led by Schölkopf
et al. (1998). One of the main achievements of the study was to express the feature extraction
based on eigen-decomposition, as a process that pursues the finding of orthonormalized di-
rections in a kernel-defined feature space by dual representation, along which data variability
is maximised.

Variability maximisation is pursued in such a way that the sum of squares of element on α1
equals 1 (αT

1 Sα1 = 1), where S is defined by:

S =
1
n

n

∑
i=1

(xn − x̄)(xn − x̄)T (4)

At this stage, the main task is the minimisation of redundancy present in the covariance and
maximisation of useful information provided by the variance. Diagonal elements of the co-
variance matrix summarise the data dynamic of interest as long as they are high. Otherwise,
they are associated with noise. Maximisation of αT

1 Sα1 is performed incorporating a Lagrange
multiplier λ:

αT
1 Sα1 + λ1(1 − αT

1 α1) (5)

whose derivative with respect to α1 yields:

Sα1 = λ1α1 (6)

Considering that the eigenvalues are ordered in a decreasing sequence (λ1 ≥ λ2 ≥ · · · ≥ λm)
being λ′ = λmax and proceeding by mathematical induction, it is assumed that principal com-
ponents from 1 to m − 1 can be found along the first m − 1 directions of eigenvectors. The
principal component mth is constrained to be orthogonal to such directions. In in the vari-
ance expression in this direction α1 · · ·αm−1 = 0. So maximising S subject to this condition and
being a unitary vector |α| = 1, or Sα = 1

αT
1 Sα1 = λ1 (7)

Hence, the principal component mth can be found along with the eigenvalue mth and it can be
established that the variance equals the eigenvalue mth when α1 is aligned to the direction of
the mth principal component (Bishop, 2006; Jolliffe, 2002).
In the literature correlation and covariance matrices can be presented as alternatives. To be
completely accurate, the covariance matrix is the mean scalar product of patterns minus the
mean, while the correlation matrix is a standardized version of the covariance matrix, given
that the correlation originates from the mean scalar products of the patterns divided by the
product of the standard deviation of patterns (Field, 2005). When this kind of analysis is
performed from centred data (∑m

i=1 xi = 0) both matrices are equivalent.
Principal component analysis has been shown to be a very powerful technique for finding
orthogonal derived variables that in succession maximise the variance of a given data set
(Jolliffe, 2002; Mardia et al., 1979). However, sources of nonlinearities and complexities in
real-world problems might require to be hypothetised in sub-spaces much richer than a linear
combination of features (Cristianini & Shawe-Taylor, 2000). Therefore, nonlinear generalisa-
tions of principal components analysis play an important role in pattern analysis through the
inclusion of kernel functions.
PCA has performed well in previous studies related to farming systems, especially for di-
mensionality reduction and for interpreting multiple crop-livestock signals (Köbrich et al.,
2003). However, crop-livestock system variables interact in a non-linear dynamic, which in
turn usually produces complex outcomes of landscape heterogeneity, livestock activity, and
vegetation interactions. In consequence, most of these crop-livestock systems traits are sub-
ject to limited description within the second order correlation approach of linear PCA. One
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solution to this problem is the generalisation of linear PCA setting to an application of kernel
principal component analysis (KPCA) (Schölkopf et al., 1998). This algorithm combines the
simplicity of linear PCA with the capability of integral operators, known as kernel functions;
to express data from input space as dot products in the feature space. This method enables
the construction of nonlinear versions of the original variables in a high dimensional context
(Shawe-Taylor & Cristianini, 2006).

3.1 Coping with non linearities
The kernel “trick” permits the generalising of any algorithm that uniquely depends on inner
products (Aizerman et al., 1964). This approach has proven to be particularly helpful for those
statistical problems that involve feature extraction (Schölkopf et al., 1998); classification (Boser
et al., 1992); regression (Williams, 1998) and clustering (Crammer & Singer, 2002; Graepel &
Obermayer, 1998). Generally it can be said that kernel methods serve to induct non-linear
functions in feature spaces usually of high dimensionality, and also may be incorporated into
the dual form of most algorithms in such a way that it is not necessary to calculate explicitly
the transformation to the feature space (Shawe-Taylor & Cristianini, 2006).
A result of the inclusion of the kernel idea within the dual representation, is that the com-
putation task is not affected by the feature space dimensionality (Cristianini & Shawe-Taylor,
2000), and given that the gram-matrix is the unique information used in the feature space, the
amount of work required to calculate the inner product is not necessarily proportional to the
feature number. Thus the use of kernels can be seen as a means to establish an implicit corre-
spondence between the original data and the feature space, without the limitations associated
with the computation of such correspondence.
Within a broad context, the study of statistical aspects of pattern analysis has been approached
from two main paradigms: the Bayesian approach (Duda et al., 2001) and empirical processes
(Vapnik, 1995). Boser et al. (1992) pioneered the merging of kernel methods and statistical
learning theory (empirical processes approach) through large margin classifiers. However,
most of the theoretical development on kernel methods has its origin in the research of Mercer
(1909) and Aronszajn (1950) where fundamental issues of Mercer’s theory and Hilbert’s spaces
were treated respectively. After the crisis of the main linear approaches commonly used in the
learning machine field (Fisher, 1936; Rosenblatt, 1958) as a result of the publication of Minsky
& Papert (1969), one of the alternatives proposed was the threshold multilayer structures,
which led to the development of neural networks (generalised perceptron) with associated
algorithm as back propagation (Hertz et al., 1991) .
The other approach was data pre-processing: in other words, the projection of data into a
higher dimensional space to increase the computational power by including redundancies in
their representation and assuring an effective feature extraction process from very complex
data. An interesting alternative method to accomplish the above task, was the use of ker-
nel methods, whose functions and corresponding feature spaces theory derive from integral
operators studies (Aronszajn, 1950; Berg et al., 1984; Sahitoh, 1988). The inclusion of these con-
structs into a nonlinear generalisation of principal components analysis was led by Schölkopf
et al. (1998). One of the main achievements of the study was to express the feature extraction
based on eigen-decomposition, as a process that pursues the finding of orthonormalized di-
rections in a kernel-defined feature space by dual representation, along which data variability
is maximised.

Variability maximisation is pursued in such a way that the sum of squares of element on α1
equals 1 (αT

1 Sα1 = 1), where S is defined by:

S =
1
n

n

∑
i=1

(xn − x̄)(xn − x̄)T (4)

At this stage, the main task is the minimisation of redundancy present in the covariance and
maximisation of useful information provided by the variance. Diagonal elements of the co-
variance matrix summarise the data dynamic of interest as long as they are high. Otherwise,
they are associated with noise. Maximisation of αT

1 Sα1 is performed incorporating a Lagrange
multiplier λ:

αT
1 Sα1 + λ1(1 − αT

1 α1) (5)

whose derivative with respect to α1 yields:

Sα1 = λ1α1 (6)

Considering that the eigenvalues are ordered in a decreasing sequence (λ1 ≥ λ2 ≥ · · · ≥ λm)
being λ′ = λmax and proceeding by mathematical induction, it is assumed that principal com-
ponents from 1 to m − 1 can be found along the first m − 1 directions of eigenvectors. The
principal component mth is constrained to be orthogonal to such directions. In in the vari-
ance expression in this direction α1 · · ·αm−1 = 0. So maximising S subject to this condition and
being a unitary vector |α| = 1, or Sα = 1

αT
1 Sα1 = λ1 (7)

Hence, the principal component mth can be found along with the eigenvalue mth and it can be
established that the variance equals the eigenvalue mth when α1 is aligned to the direction of
the mth principal component (Bishop, 2006; Jolliffe, 2002).
In the literature correlation and covariance matrices can be presented as alternatives. To be
completely accurate, the covariance matrix is the mean scalar product of patterns minus the
mean, while the correlation matrix is a standardized version of the covariance matrix, given
that the correlation originates from the mean scalar products of the patterns divided by the
product of the standard deviation of patterns (Field, 2005). When this kind of analysis is
performed from centred data (∑m

i=1 xi = 0) both matrices are equivalent.
Principal component analysis has been shown to be a very powerful technique for finding
orthogonal derived variables that in succession maximise the variance of a given data set
(Jolliffe, 2002; Mardia et al., 1979). However, sources of nonlinearities and complexities in
real-world problems might require to be hypothetised in sub-spaces much richer than a linear
combination of features (Cristianini & Shawe-Taylor, 2000). Therefore, nonlinear generalisa-
tions of principal components analysis play an important role in pattern analysis through the
inclusion of kernel functions.
PCA has performed well in previous studies related to farming systems, especially for di-
mensionality reduction and for interpreting multiple crop-livestock signals (Köbrich et al.,
2003). However, crop-livestock system variables interact in a non-linear dynamic, which in
turn usually produces complex outcomes of landscape heterogeneity, livestock activity, and
vegetation interactions. In consequence, most of these crop-livestock systems traits are sub-
ject to limited description within the second order correlation approach of linear PCA. One
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It can be demonstrated that this simplification (removing K from both sides) leads to (14)
without those K that showed zero eigenvalues, not affecting the projection of principal com-
ponents and bringing all useful solutions from (13). So if λ1 ≥ λ2 ≥ · · · ≥ λp are the eigenval-
ues of K (pλ solutions) and α1, · · · ,αp the whole corresponding eigenvectors set, being λq the
last non-zero eigenvalue (assuming that Φ is not identically 0). The condition of unitary norm
(〈υn · υn〉 = 1) for corresponding vectors in the feature space leads to the following solution of
normalisation over α1, · · · ,αq when (11) and (14) are used:

1 =
p

∑
i,j=1

αn
i αn

j

〈
Φ(xi) · Φ(xj)

〉
=

p

∑
i,j=1

αn
i αn

j Kij

1 = 〈αn · Kαn〉 = λn 〈αn · αn〉 (15)

The principal components projections can be calculated by projecting an x test point with an
image Φ(x) onto eigenvectors υ in the feature space with n = 1, · · · ,q; and expressing them in
kernel notation using (11); that way principal components can be extracted:

〈υn · Φ(x)〉 =
p

∑
i=1

αn
i

〈
Φ(xi) · Φ(x)

〉
(16)

These are the non-linear principal components or features corresponding to Φ (Bishop, 2006;
Schölkopf et al., 1998).
To illustrate the above descriptions, differences in performance between linear (LPCA)
(Hotelling, 1933a,b; Pearson, 1901) and kernel principal component analysis (KPCA)
(Schölkopf et al., 1998) will be depicted in the following lines, based on the effectiveness of
extracted features to yield meaningful and compact farm groups (dependent variable) within
unsupervised classification by hierarchical clustering procedures (Johnson, 1967; Ward, 1963),
using as few principal components as possible. For the purpose of this illustration, mean-
ingful groups were defined as those clusters whose means were significantly different from
each other, showing strong similarities within groups and possessing high variability between
groups. Such estimations were based on a discriminant analysis approach (Fisher, 1936) us-
ing the statistics of Wilks’ lambda (Wλ), Hotelling’s test (T2 ), Pillai’s trace test (P); Roy’s
maximum root (RM); and average squared canonical correlation (r2) using data from farming
systems located in the central plains of Venezuela.
An example of a comparison between the best performing configuration of kernel methods
and the linear approach whose feature extraction required six principal directions is presented
in Table 1. The profiles of clustering performance after discriminant analysis for the Gaussian
kernel show that means of farm classes of the selected variables were different in the popula-
tion given the closeness of Wilks’ lambda statistic to zero and comparatively higher values of
the Pillai, Hotelling and Roy tests with respect to the linear and polynomic approaches. Also,
classification based on Gaussian feature extraction, showed higher average squared canonical
correlations (r2) supporting the idea of well separated groups accounting for a high percent-
age (69%) of the total variance explained.
The percentage of farms classified correctly was slightly higher when feature extraction was
performed using polynomic kernels compared to inserting linear and Gaussian kernels. How-
ever, this feature extraction method did not provide enough information to find directions in
the feature space along which farm groups were as well separated as with the Gaussian ker-
nel. Even so, its performance was much better than classification based on linearly extracted
feature vectors.

Nonlinear PCA might be expressed as an eigenvalue problem. Consider a feature space H
associated to the input space Rm by a non-linear transformation:

Φ : X ⇒H, x ⇒ Φ(x) (8)

The feature space H can show an arbitrarily large dimensionality (m × m), that is potentially
infinite. Assuming that in this space data are centred according to ∑m

i=1 xi = 0, the covariance
matrix can be written in H as following:

Cov =
1
p

p

∑
i=1

Φ(xj)Φ(xj)T (9)

Having a feature space that possesses infinite dimensions, Φ(xj)Φ(xj)T can be considered

the linear operator in H that performs the transformation x ⇒
〈

Φ(xj)Φ(xj)T · x
〉

. The main
objective then consists of finding the solution to an eigenvalue problem that satisfies λυ =
Cov υ, without working explicitly in the feature space. By analogy to the input space analysis,
all solutions υ with λ �= 0 are encountered in the sub-space generated by Φ(x1), . . . ,Φ(xp).
This includes two helpful implications:

1. The following equation can be used:

λ 〈Φ(xn) · υ〉 = 〈Φ(xn) · Cov υ〉 ∀n = 1, . . . , p (10)

2. Provided that λ ≥ 0 are found subject to the existence of non null eigenvectors υ ∈ H \
{0}; and given that coefficients belonging to αi(i = 1, · · · , p) are determined by linear
combinations of Φ(xn), υ can be written as:

υ =
p

∑
i=1

αiΦ(xi) (11)

These expressions can be merged by substituting both into λυ = Cov υ and multiplying both
sides by Φ(x)T in order to express them as kernel terms K(xi, xj) = Φ(xi)TΦ(xj):

λ
p

∑
i=1

αi

〈
Φ(xn) · Φ(xi)

〉
=

1
p

p

∑
i=1

αi

〈
Φ(xn) ·

p

∑
i=1

Φ(xj)
〈

Φ(xj) · Φ(xi)
〉〉

(12)

∀ n = 1, . . . , p

which in terms of the matrix (Gram p × p) notation, integrated by the elements Kij =〈
Φ(xi) · Φ(xj)

〉
, the equation for all n are consolidated in:

pλKα = K2α (13)

where α represents the column vector integrated by elements α1, · · · ,αp. Finding solutions to
the previous equation requires an eigenvalue problem to be solved:

pλα = Kα ∀λ �= 0 (14)
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It can be demonstrated that this simplification (removing K from both sides) leads to (14)
without those K that showed zero eigenvalues, not affecting the projection of principal com-
ponents and bringing all useful solutions from (13). So if λ1 ≥ λ2 ≥ · · · ≥ λp are the eigenval-
ues of K (pλ solutions) and α1, · · · ,αp the whole corresponding eigenvectors set, being λq the
last non-zero eigenvalue (assuming that Φ is not identically 0). The condition of unitary norm
(〈υn · υn〉 = 1) for corresponding vectors in the feature space leads to the following solution of
normalisation over α1, · · · ,αq when (11) and (14) are used:

1 =
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j

〈
Φ(xi) · Φ(xj)

〉
=

p

∑
i,j=1

αn
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j Kij

1 = 〈αn · Kαn〉 = λn 〈αn · αn〉 (15)

The principal components projections can be calculated by projecting an x test point with an
image Φ(x) onto eigenvectors υ in the feature space with n = 1, · · · ,q; and expressing them in
kernel notation using (11); that way principal components can be extracted:

〈υn · Φ(x)〉 =
p

∑
i=1

αn
i

〈
Φ(xi) · Φ(x)

〉
(16)

These are the non-linear principal components or features corresponding to Φ (Bishop, 2006;
Schölkopf et al., 1998).
To illustrate the above descriptions, differences in performance between linear (LPCA)
(Hotelling, 1933a,b; Pearson, 1901) and kernel principal component analysis (KPCA)
(Schölkopf et al., 1998) will be depicted in the following lines, based on the effectiveness of
extracted features to yield meaningful and compact farm groups (dependent variable) within
unsupervised classification by hierarchical clustering procedures (Johnson, 1967; Ward, 1963),
using as few principal components as possible. For the purpose of this illustration, mean-
ingful groups were defined as those clusters whose means were significantly different from
each other, showing strong similarities within groups and possessing high variability between
groups. Such estimations were based on a discriminant analysis approach (Fisher, 1936) us-
ing the statistics of Wilks’ lambda (Wλ), Hotelling’s test (T2 ), Pillai’s trace test (P); Roy’s
maximum root (RM); and average squared canonical correlation (r2) using data from farming
systems located in the central plains of Venezuela.
An example of a comparison between the best performing configuration of kernel methods
and the linear approach whose feature extraction required six principal directions is presented
in Table 1. The profiles of clustering performance after discriminant analysis for the Gaussian
kernel show that means of farm classes of the selected variables were different in the popula-
tion given the closeness of Wilks’ lambda statistic to zero and comparatively higher values of
the Pillai, Hotelling and Roy tests with respect to the linear and polynomic approaches. Also,
classification based on Gaussian feature extraction, showed higher average squared canonical
correlations (r2) supporting the idea of well separated groups accounting for a high percent-
age (69%) of the total variance explained.
The percentage of farms classified correctly was slightly higher when feature extraction was
performed using polynomic kernels compared to inserting linear and Gaussian kernels. How-
ever, this feature extraction method did not provide enough information to find directions in
the feature space along which farm groups were as well separated as with the Gaussian ker-
nel. Even so, its performance was much better than classification based on linearly extracted
feature vectors.

Nonlinear PCA might be expressed as an eigenvalue problem. Consider a feature space H
associated to the input space Rm by a non-linear transformation:

Φ : X ⇒H, x ⇒ Φ(x) (8)

The feature space H can show an arbitrarily large dimensionality (m × m), that is potentially
infinite. Assuming that in this space data are centred according to ∑m
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∑
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〉
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pλKα = K2α (13)

where α represents the column vector integrated by elements α1, · · · ,αp. Finding solutions to
the previous equation requires an eigenvalue problem to be solved:

pλα = Kα ∀λ �= 0 (14)
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This effect is illustrated in Fig. 2, where farm objects are projected onto their first three prin-
cipal directions with different levels of class overlap for the three feature extraction meth-
ods used. Only one of the three algorithms (Gaussian kernel) leads to a classification model
that describes in a suitable way (without overlapping) the groups suggested by the instances
cloud. The linear and polynomic-kernel methods were completely ineffective for cluster sep-
aration. This is mainly due to the topology of the sample covariance matrix as a result of the
effect that the feature extraction method had on class-object component coordinates.

(a) (b)

(c)

Fig. 2. Projection onto the three first principal components by farm class for linear (a), Gaus-
sian (b), and polynomic kernel (c).),feature extraction approaches.

4. Kernel supervised classification of multispectral data

Once farm labels (informational classes) have been generated as illustrated in previous sec-
tion, multispectral data can be used to perform supervised classification of farms’ spectral
responses. Traditionally, multispectral data, such as those from the Landsat series of satellites,
have been used for mapping geology, geobotany, forestry, agriculture, soil and land cover.
They have rarely been used to identify continuous pixel groups integrated in a class such as a
farm, which is a mosaic of land covers. However, kernel methods coupled to a maxim-margin
classifier can achieve the difficult task of discriminating farm types using their land cover
spectral response as recorded in a satellite image as indicators. The resultant representation is
flexible, uniform over the pattern presented, and preserves the topology of the input space.

Kernel %C Wλ PT T2 RM r2

Linear 88.3 0.15 1.21 3.36 2.30 0.60
Gaussian 90.3 0.09 1.38 3.50 2.43 0.69
Polynomic 91.5 0.11 1.31 3.83 1.94 0.65

%C: percentage classified correct; Wλ: Wilks’ lambda; PT: Pillai’s trace; T2: Hotelling’s test;
RM: Roy’s minimum root; r2: squared average canonical correlation
Table 1. Impact of kernel function on clustering performance using linear, Gaussian and poly-
nomic approaches of feature extraction, after stepwise discriminant analysis for a group of
farms in Venezuela.

Fig. 1. Adjusted means and confidence intervals (95%) of squared Mahalanobis distance by
selected feature extraction methods (linear, gaussian and polynomic) for a group of farms in
Venezuela, after stepwise discriminant analysis.

Within canonical discriminant analysis, if a farm belongs to a particular class, it must ful-
fill some distance constraints with respect to the centroid of its class and projections of these
groups onto some discriminant direction are expected to be compact and to show minimum
overlaps. Hence, an easy way to assess the compactness of a given class is to look at the prox-
imity of an observation set to its class-centroid. A visual approximation of these differences
can be seen in Fig.1, where squared adjusted means of the Mahalanobis distance and their
respective confidence intervals (95%) are shown for each feature extraction method. As can be
observed, clusters segmented from feature vectors extracted by the linear approach and the
Gaussian kernel were shown to be comparatively more scattered with respect to the clusters
achieved from the polynomic feature extraction method, which showed a higher proximity
(minimium distance) between a within-class object and its cluster centroid.
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Fig. 4. Landsat image segmentation procedure.

4.1 Classification
Spatial land cover classification has been mainly approached through the following
paradigms: maximum likelihood classifier (MLC) (Strahler, 1980); fuzzy clustering (Kosko &
Isaka, 1993); and artificial neural networks (ANN) (Miller et al., 1995). However, farm classes
are abstractions which are sometimes difficult to observe directly, and this leads to a number
of limitations of these methods. For instance, MLC methods are not free from distribution
assumptions, given their parametric premises. Fuzzy clustering represents the solutions in
terms of probabilities, where both fuzzy rules and membership functions are subjected to the
bias of the interpreter. The ANN method has theoretical weaknesses because of its black box
character, preventing the proper repeatability of the results. The presence of local minima and
of the time-consuming training process (referred to as lack of convergence) are also significant
limitations.
There are two main practical approaches to induce linear classifier parameters; on the one
hand are those methods based on modelling conditional density functions (generative mod-
els) such as: linear discriminant analysis (Fisher, 1936; Lachenbruch, 1975) and Naive Bayes
Classifier (Domingos & Pazzani, 1997); on the other hand, there are those that pursue the max-
imization of the outputs quality over a training set (discriminative models). These devices
include: logistic regression (Hosmer & Lemeshow, 2000), the perceptron (Rosenblatt, 1958)
and support vector machine (Vapnik, 1995; Vapnik & Chernovenkis, 1974). The main char-
acteristic of support vector machines is that they seek to find a maximal margin hyperplane
(Fig. 3). This is achieved using optimization procedures that can place severe computational
demands. These problems were central to developing the kernel-adatron method which takes
advantage of the adatron simplicity (Anlauf & Biehl, 1989), generalizing it to operate in a high
dimensional feature space by the introduction of kernel functions. It solves the optimization
problem of the Lagrangian formalism performing the margin-maximization through the ap-
plication of a gradient ascent algorithm, resulting in an enhanced capability to learn nonlinear
boundaries with a rate of convergence that is exponentially fast.

(a) (b)

Fig. 3. Toy example of decision boundaries between classes; modified from Cristianini &
Shawe-Taylor (2000).

Practical applications of these approaches can be addressed through the “hybrid” algorithm
known as the kernel-adatron, first proposed by Friest et al. (1998). This uses a classifier that
is based on a linear decision function whose estimated output is given by y = f (�x · �w) =
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Fig. 5. Toy example illustration of the effect of mapping a simple binary problem to a higher
dimensional feature space on the ability to separate complex relations.

The basic KA algorithm is a binary classifier that makes use of an optimization procedure
based on the descent gradient to find the maxim-margin hyperplane that separates two
groups. For the classification of farms from a multi-class problem (existence of three or more
informational categories), a one against the rest strategy might be adopted. Basically, three
machines (one per each class) can be trained organized in such an assembly that the class of
interest is compared against the other two (Fig. 6).
Table 2 presents the performance accuracy of the three KA machines trained for an experimen-
tal group. As can be seen the KA appears to be more sensitive for class 1, given the highest
accuracy reached, and its degree of overlap seems to be with class 3. This may be explained
by the levels of farming intensification observed in farm class 1, with an important degree
of fragmentation of the land cover mosaic, which probably facilitated its differentiation from
those instances that resemble the more natural scenes typical of the less intensive farm classes
2 and 3 (Drury, 2001). The tendency to wrongly allocate farm type 3 as class 1 might be be-
cause these groups of farms share similar attributes in their proportions of pasture, forage
and forest cover. Misclassification between classes 2 and 3 can be explained by the lack of
anthropogenic changes leading to the occupation of less discrete areas of the feature space
as a function of the natural environment context (Richards and Jia, 2006; Landgrebe, 2007).
In this kind of study, farms are seen as bags of pixels representing different land covers in a
space where each dimension is associated with a spectral channel. Because this vector space
was sensibly transformed by non linear feature extraction to improve representation, and with
this to ensure equivalent land covers mapped to similar feature vectors, it is possible to reach
an acceptable level of accuracy with this approach.

f (∑i xiwi), where �x represents the input feature vector to the classifier; �w is the vector of
weights defining the separating boundary and f is a function that projects input values x
on w. In this way input patterns are linearly separated by dividing the input space with a
hyperplane (Fig. 3).
Fig. 4 depicts a Landsat image segmentation procedure used in a learning machine classi-
fication context. As can be seen, the nine multi-band raster dataset is sampled producing a
collection of pixel values over each band, following an amplified von Neumann vicinity in a
pre-selected area of interest within the farm’s perimeter. This training data set was used as
input to a dimension reduction procedure, using principal component analysis with kernel
(KPCA).
Using kernels to learn potential nonlinear representation hypotheses based on the function
of the form f (x) = ∑n

i αiyiK(xi, x) + b, essentially involves the simulation of the nonlinear
projection of the input data in a higher dimensional space (Schaback & Wendland, 2006):

Φ : S ∈ Rd →F ∈H
x �→ Φ(x)

(17)

where F denotes a feature space; and, H represents a dot product space, within which, a learn-
ing relationship could be induced between a pattern Φ(x) and a label y. In this way, having
as theoretical context Mercer’s theorem (Aizerman et al., 1964; Mercer, 1909); (18) represents
the kernel matrix, where each entry is a measure of similarity between two objects. Thus, a
symmetric function K(xi, x) was a kernel if it fulfilled Mercer’s condition, i.e. the function K is
(semi) positive definite. When this is the case there exists a mapping φ such that it is possible
to write K(xxx,yyy) = 〈φ(xi) · φ(x)〉.

K(xi, x) � 〈φ(xi) · φ(x)〉 ⇒




K(x1, x1) K(x1, x2) . . .

K(x2, x1)
. . .

...


 (18)

The kernel represents a dot product on a feature space F into which the original vectors were
mapped (Fig. 5). In this way a kernel function defines an embedding of memory patterns into
(high or infinite dimensional) feature vectors and allows the algorithm to be carried out in this
space without the need to represent it explicitly (Cristianini & Shawe-Taylor, 2000; Schölkopf
& Smola, 2002). Further details on the way this procedure was implemented are outside the
scope of this paper. Nevertheless, for those seeking deeper understanding of the ideas behind
kernel-based learning theory there are fuller descriptions in Aizerman et al. (1964); Aronszajn
(1950); Mercer (1909) and Schölkopf & Smola (2002). Applications of kernel methods and
learning machines may also be reviewed in Garcı́a & Moreno (2004a,b,c)
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Finding these separating decision functions on the segmentation of farm classes is particularly
significant given the non-stationary spatial behaviour of the spectral response of this kind of
object; and because of the small training set size with respect to the dimensionality of the
input space. Another important consideration is that this approach only focuses on extreme
samples for its training, making possible the derivation of comparable levels of performance at
a lower cost. This fact would confirm the argued advantages of previous applications of kernel
methods in the land use domain, in which decision functions have been induced without any
other a priori knowledge about the land cover than labels (Huang et al., 2002; Zhu & Blumberg,
2002). This implies a considerable resource saving in practical application to livestock systems
monitoring.

4.2 The multispectral data
The use of multispectral data to distinguish one type of land cover from another, has been an
effective way of linking anthropomorphic intervention to a physical environment, particularly
within the agricultural sector (Campbell, 2002). For instance, Wylie et al. (2002) combined op-
tical and thermal data to estimate biophysical properties of vegetation. Other approaches use
the land cover mosaic, to induct farm typologies based on their relative spectral similarities,
as in the case of Duvernoy (2000). The popularity of using visible and near infrared (VIR)
imagery on the classification of areas covered by agricultural activities, is because plant cell
structures, morphology, chlorophyll and other pigments have a marked effect on this wave-
length range (Drury, 2001), and on the temperature brightness of thermal infrared (TIR) radi-
ation incident on living plants (Rees, 2007).
The configuration of multispectral sensors, such as Landsat 7 Enhanced Thematic Mapper
Plus (ETM+), is particularly well suited to perceive the energy field, in the form of VIR and
TIR radiation emanating from vegetation covers (Richards & Jia, 2006). This feature makes
many multispectral data sensible to spatial patterns tied to crop calendars, and vegetative
growth-lessening as a result of phenophases (Campbell, 2002; Richards & Jia, 2006). For in-
stance, the spectral bands per pixel in Landsat 7 are delineated by six VIR bands, where band 6
is split into two channels defined by filters that control the radiance that reach the sensor; and
a panchromatic band (Barsi et al., 2003; Heckenlaible et al., 2007). These radiometric features
make Landsat 7 a good choice within the context of farming system research at household res-
olution level. The precision to which this sensor registers the radiation power, for a particular
pixel in a given wavelength is 8 bits (256 levels) (Richards & Jia, 2006). This feature enhances
the ability of the sensor to distinguish the spectral responses from different materials, when
human-scale factors such as agriculture need to be addressed (Campbell, 2002; Landgrebe,
2007).
As with radiometric resolution, the spatial resolution of Landsat 7, which ranges from 15 to 60
meters per pixel across all the spectral bands, is rich (small or fine) compared to farms, which
are the usual objects of study in farming systems research and where a pixel smaller than
the agricultural field to be studied is usually preferred (Landgrebe, 2007). To these spatial
characteristics of Landsat, should be added its scanning features, whose cover swath is 185
km2, which means that each scene sample observes an area of 34.225 km2. Such an overlay
represents an advantage for farming system research given the scale of the typical study area
(10.000 km2), and because the whole can be extracted from one image. However depending
on the size of the farms under study misclassification risk might occur, from the impact that
spatial resolution has on the separability of informational classes (Landgrebe, 2007). Spatial
resolution has been shown to have a significant influence on spectral class separability because

(a) (b)

(c)

Fig. 6. Separating hyperplanes for farms class 1 (a) and 3 (c) using a Gaussian kernel (σ = 200),
and class 2 (b) using a polynomial kernel (order= 3; σ = 4).

KA Predicted

Class 1 Class 2 Class 3 Σ Accuracy (%)

Actual Class 1 35 0 4 39 89.8

Class 2 2 34 6 42 80.95

Class 3 3 2 17 22 77.27

Σ 40 36 27 103
Overall

Accuracy (%) 87.5 94.44 62.96 Accuracy(%)
83.49

KA: Kernel Adatron
Table 2. Confusion matrix for the segmentation of three farm categories trained on 14, 20, and
16 cases for class 1, 2, and 3 respectively using the KA machine.
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Fig. 6. Separating hyperplanes for farms class 1 (a) and 3 (c) using a Gaussian kernel (σ = 200),
and class 2 (b) using a polynomial kernel (order= 3; σ = 4).

KA Predicted

Class 1 Class 2 Class 3 Σ Accuracy (%)

Actual Class 1 35 0 4 39 89.8

Class 2 2 34 6 42 80.95

Class 3 3 2 17 22 77.27

Σ 40 36 27 103
Overall

Accuracy (%) 87.5 94.44 62.96 Accuracy(%)
83.49

KA: Kernel Adatron
Table 2. Confusion matrix for the segmentation of three farm categories trained on 14, 20, and
16 cases for class 1, 2, and 3 respectively using the KA machine.
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1. Introduction     
 

Satellite and airborne Remote Sensing for observing the earth surface, land monitoring and 
geographical information systems are the big issues in world’s daily life as well as country 
defense projects. The source of information was primarily acquired by imaging sensors and 
spectroradiometer in remote sensing multispectral image stack format. The traditional 
image processing either by single picture image processing or compressing pictures stack 
via Principle Component Analysis (PCA) or Independent Component Analysis (ICA) into a 
single image component for further pixel classification or region segmentation is not enough 
to describe the true information extracted from multispectral satellite sensors. In an effort to 
significantly improve the existing classification and segmentation performance in this 
research,  the contextual information between pixels or pixel vectors is characterized by a 
time series model for the remote sensing image processing. 
Time Series statistical models such as Autoregressive Moving Average (ARMA) were 
considered useful in describing the texture and contextual information of an remote sensing 
image. To simplify the computation, a two-dimensional (2-D) Autoregressive (AR) model 
was used instead. In the first phase, the 2-D univariate time series based imaging model was 
derived mathematically (Ho, 2008) to extract the features for further terrain segmentations. 
The effectiveness of the model was demonstrated in region segmentation of a multispectral 
image of the Lake Mulargias region in Italy. Due to the nature of remote sensing images 
such as SAR (Synthetic Aperture Radar) and TM (Thermal Mapper) which are mostly in 
multispectral image stack format, a 2-D Multivariate Vector AR (ARV)  time series model  
with pixel vectors of multiple elements (i.e. 15 elements in the case of TM+SAR remote 
sensing) are examined. The 2-D system parameter matrix and white noise error covariance 
matrix are estimated for further classifications in the 2nd phase of algorithm development. 
To compute the time series ARV system parameter matrix and estimate the error covariance 
matrix efficiently, a new method based on modern numerical analysis is developed by 
introducing the Schur complement matrix, the QR (orthogonal, upper triangular) matrix and 
the Cholesky factorizations in the ARV model formulation. As for pixel classification, the 
powerful Support Vector Machine (SVM) kernel based learning machine is applied in 
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Radar band K 1.1-1.7 cm Thermal Temperature 
Radar band Ku 1.7-2.4 cm Thermal Temperature 
Radar band X 2.4-3.8 cm Thermal Temperature 
Radar band C 3.8-7.5 cm Thermal Temperature 
Radar band S 7.5-15 cm Thermal Temperature 
Radar band L 15-30 cm Thermal Temperature 
Radar band P 30-100 cm Thermal Temperature 

Table 1. The spectral signature of different bands used in remote sensing 
 
Thermal Mapper (TM) Remote Sensing Images Data: 
The Landsat earth resources satellite system was the first designed to provide global 
coverage of the earth surface via remote sensing techniques. Three imaging instruments 
have been used with this satellite. These are the Return Beam Vidicon (RBV), the Multi-
spectral Scanner (MSS) and the Thermal Mapper (TM).  Landsat uses multispectral 
instruments to record the remote sensing images stack. Figure 1. shows one example of 6 
different bands of Thermal Mapper acquired by the Landsat 5 satellite in the area of the 
Mulargias lake in July 1996. 
 

     
Band 1     Band 2 

     
                                    Band 3                Band 4 

 

conjunction with the 2-D time series ARV model. The SVM is particularly suitable for the 
high dimensional vector measurement as the “curse of dimensionality” problem is avoided. 
The performance improvement over the popular Markov random field is demonstrated.  
The  2-D multivariate time series model is particularly suitable to capture the rich contextual 
information in single and multiple images at the same time.  A single composite image is 
constructed from the vector pixels through ARV based Support Vector Machine 
classifications.  

 
2. Remote Sensing Image Data Set 
 

The remote sensing image data of the earth surface is from either satellite or aircraft in 
digital multispectral or hyperspectral format.  Both multispectral and hyperspectral imaging 
techniques are the process of capturing the same scene at different wavelengths that yield a 
2-D spatial dimensions and one spectral dimension hypercube. The main properties of a 
remote sensing image are  the wavelength bands it interprets. As far as remote sensing 
physical phenomena is concerned, some are the measurements of the spatial information 
reflected by the solar radiation in terms of visible and ultraviolet frequency range of wave 
(Schowengerdt, 1997). This type of remote sensing is the passive type. Some are the spatial 
distribution of energy emitted by the earth in the thermal infrared. Others are in the 
microwave band of wavelengths, measuring the energy returns from the earth that was 
transmitted from the vehicle which is the active type of remote sensing (Richards, 1999). The 
remote sensing image data is based on the concept of the “spectral signature” of an object 
(Prieto, 2000). Therefore, different land covers have different spectral signatures. The system 
produces multi-spectral images stack that each pixel is represented by the mathematical 
pixel vector which contains a set of brightness values for the pixels arranged in column 
form: 
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Table 1. (Bruzzone, 1998) below lists examples of the spectral regions on earth remote 
sensing. 
 

Spetral Signature  Wavelength Radiation source Surface  
Visible 0.4-0.7 mm Solar Reflectance 
Infrared 0.7-1.1 mm Solar Reflectance 
Short Infrared 1.1-2.5 mm Solar Reflectance 
Mid Infrared 3-5 mm Solar and Thermal Refl. and Temp. 
Thermal Infrared 0.95 mm Thermal Temperature 
Radar band Ka 0.8-1.1 cm Thermal Temperature 
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Fig. 3. AVIRIS Hyperspectral Image Examples 
 
Either multi-spectral image stack (TM or SAR) or hyperspectral remote sensing stack are 
suitable for demonstrating the classification capability of the newly developed Multivariate 
Autoregressive image model based SVM method.  Unfortunately, the MOFFET data set of 
AVIRIS remote sensing on NASA’s website is no longer available. The remote sensing image 

 

    
Band 5     Band 7 

Fig. 1. Examples of Thermal Mapper  
 
Synthetic Aperture Radar (SAR) Remote Sensing Images Data: 
Active remote sensing techniques employ an artificial source of  radiation. The resulting 
signal scatters back to the sensor which reflect atmosphere or earth characteristics. Synthetic 
Aperture Radar  is an imaging technology that the radiation is emitted in a beam from a 
moving sensor. The backscattered components returned from the ground are measured. An 
image of the backscatter spatial  distribution is reconstructed by digital processing of the 
amplitude and phase of the returned signal. Samples of SAR polarization images are shown 
in figure 2.   

 

             
Fig. 2. Samples of Synthetic Aperture Radar Images (C-HV and L-HV band) 
 
Though SAR images are popular due to its accessibility,  the speckle noise is all over the 
places which degrades in the image quality. 
 
Hyperspectral Remote Sensing Images: 
The other type of multiple spectral images data are produced by spectrometers which is 
different from multipectral instruments.  One example is the NASA’s Airborne Visible 
InfraRed Imaging Spectrometer (AVIRIS) optical sensor that delivers calibrated images of 
the upwelling spectral radiance in 224 contiguous spectral bands. The AVIRIS detector 
operates with a wavelength  of 10 nanometers to cover the entire range. Figure 3  shows the 
AVIRIS hyperspectral  sample images through different spectral bands.  
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Fig. 5. Multivariate Time Series AR parameter matrix estimation SVM system scheme 

 
4. Univariate Time Series Region Growing     
 

We assume airborne and satellite’s remote sensing can be defined as a collection of random 
variables indexed according to the order they are obtained in time-space. For example, we 
consider a sequence of random variables  ......., , , , 321 xxx in general, }{ tx  indexed by t  is 
the stochastic process. The adjacent points in time are correlated. Therefore, the value of  
series tx at time t  depends in some fashion on the  past values ........ , , 21 −− tt xx  Suppose 
that we let the value of the time series at some point of time t  to be denoted by 

tx . A 
stationary time series is the one for which the probabilistic behavior of 

kttt xxx ....... , ,
21

is 

Image system mathematical modeling 
2-D Time Series Multivariate AR 

Feature vector extractions 

Supervised Support Vector Machine 
Classifications 

Scene Segmentation, Result Display and 
Accuracy calculations 

Multispectral TM 
image stack 

Multispectral SAR 
image stack 

 

data for testing algorithm in this chapter is limited to the multispectral (TM and SAR) 
images stack for the purpose of comparisons to other classification algorithms. 

 
3. Methodologies on Time Series Remote Sensing Image Analysis    
 

A general scheme of Time Series Remote Sensing Image Processing as described in this 
chapter is shown in figure 4 and 5. below:  
 

        
Fig. 4. Univariate Time Series Region Growing image processing system scheme
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Fig. 7. Ground Truth Information 

 
Fig. 8. Segmentation Result After Region Growing Based On univariate AR Model 

 

identical to that of the shifted set hththt k
xxx +++  ......., , ,

21
. In our remote sensing application, 

the 2-D image was scanned from left upper corner to right bottom as a sequence of time 
series pixel values. Further, to simplify the numerical calculations, we model each class of 
surface textures by 1st order and 2nd order Autoregressive stationary time series models. In 
another way of thinking, the two-dimensional Markov model is a similar mathematical 
model to describe an image area per remote sensing texture class. By using time series 
model, when the within-object interpixel correlation varies significantly from object to 
object, we can build effective classifiers. The unsupervised Region Growing is a powerful 
image segmentation method for use in shape classification and analysis. The LANDSAT 5 
database in the area of Italy’s Lake Mulargias remote sensing image data acquired in July 
1996 to be used for the computing experiments with satisfactory results. The advanced 
statistical techniques, such as Gaussian distributed white noise error confidence interval 
calculations, sampling statistics based on mean and variance properties are adopted for 
automatic threshold finding during Region Growing iterations. The linear regression 
analysis with least mean squares error estimation is implemented as a time series system 
optimization scheme (Chen, 2003). The classification and segmentation results are shown in 
Figure 6,7,8. 

 

Remote Sensing Original Image

 
Fig. 6. Original Lake Region Remote Sensing band 5 image 
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:iε     m-by-1 column vector, multivariate white noise 

pkk ,.....3,2,1: =φ       m-by-m autoregressive parameter matrix 

qkk ,.....3,2,1: =θ       m-by-m moving average parameter matrix 

:W  m-by-1 Constant Vector ( deterministic DC  term ) 

AutoRegressive Vector (ARV) is reduced to: 

ipipiii XXXWX εφφφ +++++= −−− .....2211                 (2) 

 
Example: m=2,  p=2 , W=0 of ARV model 
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Estimation of  the Multivariate AR model Parameter Matrix: 
Optimization Method: Least Squares 
Let’s assume  the system is a m-dimensional time series 
An AR(p) time series  model can be expressed as the following regression model: 

         vvv BUX ε+=                                                            (4) 

where vε  = noise vector with covariance matrix C  nv ,.....2,1=   and n is the total number 
of samples. 
Therefore,  )( T
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Let’s also define: 

 

5. Multivariate AR Model and Error Covariance Matrix Estimation 
 

The remote sensing image data widely used in military, geographic survey and scientific 
research such as SAR (Synthetic Aperture Radar), TM (Thermal Mapper ) are in multi-
spectral format. As shown in figure 9, it consists of a stack of images. There are correlations 
between pixels in a single image as well as correlations among image slices. The 
Autoregressive (AR) model described in univariate time series model was based on Box-
Jenkins system (Box, 1970) which is not enough to describe information extracted from 
multi-spectral satellite sensors. The innovative 2-D Multivariate Vector AR form (ARV) time 
series model described in this section is aimed to solve the problem. 
 

 
Fig. 9.  Multi-spectral remote sensing image stack 
 
In order to preserve most of the stacking remote sensing information for further  
2-D image processing, there are methods such as Classification using Markov Random 
Fields and PCA method (Chen, 2002),  Independent Component Analysis (Chen, 2002), …etc 
which require data compression before using 2-D single image classification technique. Both  
PCA and ICA methods are really time consuming.  Lengthy computation time plus 
undetermined components to select make them unfeasible. On the contrary, the 
computation involved with the multivariate ARV method is the simplest matrix operations 
which are faster (roughly 2 times faster in computations). Besides, the classification accuracy 
results have shown that this new Multivariate Vector AR method is feasible and superior. 
The Multivariate Time Series data analysis model is a generalized vector form of the Box-
Jenkins’ univariate time series model. It is also called the ARMAV (AutoRegressive Moving 
Average Vector) model. The fact is that each time series observation is a vector containing 
multiple factors. 
 
Let T

miiiii xxxxX ],.....,,[ 321=           ∞≤≤∞− i  

qiqiiipipiii XXXWX −−−−−− −−−−+++++= εθεθεθεφφφ .......... 22112211      (1)    

   :iX m-by-1 column vector, time series state variable 
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Let’s also define: 

 

5. Multivariate AR Model and Error Covariance Matrix Estimation 
 

The remote sensing image data widely used in military, geographic survey and scientific 
research such as SAR (Synthetic Aperture Radar), TM (Thermal Mapper ) are in multi-
spectral format. As shown in figure 9, it consists of a stack of images. There are correlations 
between pixels in a single image as well as correlations among image slices. The 
Autoregressive (AR) model described in univariate time series model was based on Box-
Jenkins system (Box, 1970) which is not enough to describe information extracted from 
multi-spectral satellite sensors. The innovative 2-D Multivariate Vector AR form (ARV) time 
series model described in this section is aimed to solve the problem. 
 

 
Fig. 9.  Multi-spectral remote sensing image stack 
 
In order to preserve most of the stacking remote sensing information for further  
2-D image processing, there are methods such as Classification using Markov Random 
Fields and PCA method (Chen, 2002),  Independent Component Analysis (Chen, 2002), …etc 
which require data compression before using 2-D single image classification technique. Both  
PCA and ICA methods are really time consuming.  Lengthy computation time plus 
undetermined components to select make them unfeasible. On the contrary, the 
computation involved with the multivariate ARV method is the simplest matrix operations 
which are faster (roughly 2 times faster in computations). Besides, the classification accuracy 
results have shown that this new Multivariate Vector AR method is feasible and superior. 
The Multivariate Time Series data analysis model is a generalized vector form of the Box-
Jenkins’ univariate time series model. It is also called the ARMAV (AutoRegressive Moving 
Average Vector) model. The fact is that each time series observation is a vector containing 
multiple factors. 
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The error covariance matrix Ĉ  is similar to a Schur complement matrix 
Let’s define the Schur complement matrix as  
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which is the moment matrix 
 

KKM T=            (24) 
 

 where  
 





















=

T
n

T

T

T
n

T

T

X

X
X

U

U
U

K
..

2

1

2

1

      (25) 

 
The least squares estimate can be computed from a QR factorization of the data matrix K . 
According to QR decomposition theorem (Anton, 2000),  (Moler, 2004), (Cheney, 1999) and 
(Chapra 2002), if K  is )*)1(1(by    mpn ++  matrix with linearly independent column 
vectors, then K  can be factored as 
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The least squares estimation of the B matrix can be found as 
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Where n  is the total number of samples and nf  is the degree of freedom (Glantz,2002). In 
normal cases, this parameter can be ignored. 
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where again n  is the sample size and nf  is the degree of freedom based on statistical 
sampling theory. 
The error covariance matrix  Ĉ   is further factorized by Cholesky decomposition. The 
diagonal terms of this factorized Cholesky matrix are used as feature vector inputs for 
Support Vector Machine (SVM). 
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Where E  is the upper triangular matrix. 
Suppose E  is an m-by-m upper triangular, lower triangular or diagonal  matrix , the 
eigenvalues of E  are the entries on the main diagonal of E . The eigenvalues of E  matrix 
are the characteristics that E  contains. Based on theorem, the E  matrix contains the major 
information on the estimated error covariance matrix  Ĉ . 
Note that the theory behind QR decomposition, Cholesky factorization and the Schur 
Complement form will be detailed in section 5.2, section 5.3 and section 5.4 respectively. 

 
5.1. Numerical Simulation 
The following 2 simulated experimental examples will explain and verify the multivariate 
ARV model algorithm described above.  
Example 1: 
From Equation (3) 
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where Q  is an nxn  matrix with orthonormal column vectors, and R is an 
)*)1(1(by   mpn ++   upper triangular matrix.  
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The submatrices 11R and 22R  are upper triangular square matrices of order 1+×mp and 

m , respectively. The submatrix 12R  has a dimension of 1+×mp by m . 
According to matrix numerical analysis, the QR factorization of the data matrix K  leads to 
the Cholesky factorization  
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where again n  is the sample size and nf  is the degree of freedom based on statistical 
sampling theory. 
The error covariance matrix  Ĉ   is further factorized by Cholesky decomposition. The 
diagonal terms of this factorized Cholesky matrix are used as feature vector inputs for 
Support Vector Machine (SVM). 
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The estimated parameter matrix is also accurate in this 2nd example. 

 
5.2 QR Algorithm 
To find the eigenvalue decomposition is to find a diagonal matrix Λ  and a nonsingular 
matrix S  such that 
 

1−Λ= SSA                                          (47) 
 

Two problems might occur. First is that the decomposition  may not exist. Secondly, even if 
the decomposition exists, it might not be robust enough. The way to solve the problems is to 
get as close to diagonal as possible. Ideally we would like to find the Jordan canonical form 
of the matrix, however, this is not practical to do in finite precision arithmetic. Instead we 
compute the Schur decomposition of the matrix HTBTA = , where B is the upper triangular 
and T is unitary. Every square matrix has a Schur decomposition which can be computed 
using an iterative algorithm. The algorithm is called the QR algorithm since it performs a 
QR factorization in each iteration. The eigenvalues of A  are on the diagonal of its Schur 
form of B . Since the unitary transformations are perfectly well conditioned, they do not 
magnify errors. The diagonal elements of B are the eigenvalues of A  if A  is symmetric and 
B  is diagonal. In this case, the column vectors of T are orthonormal eigenvectors of A . In 
general, the large off-diagonal elements of B measure the lack of symmetry in A . In the 
non-symmetric case, the eigenvectors of A  are the column vectors of TXG = , where X is a 
matrix contains the eigenvectors of the upper triangular matrix B . The QR algorithm 
computes the eigenvalues of real symmetric matrices, real nonsymmetric matrices and  
complex matrices. The singular values of general matrices are computed using the Golub-
Reinsch algorithm which is based on the QR algorithm. 

 
5.3 Cholesky Factorization 
In mathematics, the Cholesky factorization (or decomposition) (Kreyszig, 1999) is named 
after Andre-Louis Cholesky, who found that a symmetric positive-definite matrix can be 
decomposed into a lower triangular matrix and the transpose of the lower triangular matrix. 
The lower triangular matrix is the Cholesky triangle of the original, positive-definite matrix. 
Cholesky's result has since been extended to matrices with complex entries. 
Any square matrix A with non-zero pivots can be written as the product of a lower 
triangular matrix L and an upper triangular matrix U; this is called the LU decomposition. 
However, if A is symmetric and positive definite, we can choose the factors such that U is 
the transpose of L, and this is called the Cholesky decomposition. Both the LU and the 
Cholesky decomposition are used to solve systems of linear equations. When it is applicable, 
the Cholesky decomposition is twice as efficient as the LU decomposition. 

 
5.4 The Schur Complement Form 
Let’s understand what is Schur complement  form. It is a block of a matrix within the larger 
matrix which is defined as follows. Suppose A, B, C, D are respectively p×p, p×q, q×p and q×q 
matrices, and D is invertible. Let 

 

The 200 simulated 2 elements vector of Multivariate Time Series random process data set 
2200xV was generated by defining this 2nd order ARV parameter matrix: 
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After multivariate ARV time series model estimation process, we get the estimated: 
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We can see that both the estimated parameter matrix and error covariance matrix by the 
above least squares algorithm is accurate by measuring a small percentage of matrix norm 
of  matrices difference: 
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Define classification output indicator vector T
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A hyperplane  0=+ bT xw is to be found to separate all data.  

Where  is an weight vector and b is a bias from the origin.w  

A separable hyperplane is shown in figure 10. 

 

 
Fig. 10. Optimal hyperplane separator (in the case of 2 dimension feature space) 
 
To illustrate the concept of SVM kernel mapping, we show in figure 11 how to map the 
input space to a feature space such that the non-separable input space can be separable in 
the feature space. This is done by nonlinear mapping to higher dimension and constructing 
a separating hyperplane with a maximum margin. 
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so that M is a (p+q)×(p+q) matrix. 

 
6. Support Vector Machine classifier 
 

Support Vector Machine (SVM), a new class of  machine learning with superior classification 
capability over other learning algorithms . It can be analyzed theoretically using concepts 
from statistical learning theory (Vapnik, 1998) and at the same time to achieve good 
performance when applied to real problems. We have implemented software on top of 
SVM-KM matlab toolbox developed by Dr. A. Rakotomamonjy of INSA, France for remote 
sensing image classification and region segmentations. The results on both Multivariate AR  
model (ARV) and non-AR pixel-by-pixel based methods are reasonably good. Of course, the 
ARV’s additional contextual information gives a better performance. The main idea of this 
classification is to construct a hyperplane as a decision surface in a way that the margin of 
separation between positive and negative classes is maximized. The support vector machine 
can provide a good generalization performance on pattern classification problems. The SVM 
constructs models that are complex , it contains a large class of neural networks, radial basis 
function and polynomial classifiers as the special cases. Nevertheless, it is also simple 
enough to be analyzed mathematically due to the fact that it can be shown  to correspond to 
a linear method in a high dimensional feature space nonlinearly related to input space. By 
use of kernels, all needed computations are performed directly in the input space. There are 
different cases of SVM, the first case is the linear separable data to be trained on linear 
machine. The 2nd case is the nonlinear SVM trained on non-separable data, this will result in 
a quadratic programming problem. The SVM can work with high dimensional data as the 
method is less dependent on the statistical distribution of the data. The SVM avoids the 
“Curse of Dimensionality” problems typically experienced in statistical pattern 
classifications (Chen, 1999). 
SVM were specifically designed for binary classification. The multiclass applications on 
SVM is still an on-going popular research topics. A few straight forward methods have been 
proposed in such a way that multiclass classifier can be constructed  by combining several 
binary classifiers. Some other researchers  are proposing to create multi-classifiers that 
process multi-class data at once but it is most likely less accurate. The multi-class remote 
sensing SVM classifier we developed that describes in this chapter is based on One-Again-
One pairwise with majority votes.  
 
Support Vector Machine Concepts 
The SVM in most cases is competitive among the existing classification methods. It is 

relatively easy to use. We assume the data vectors T
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A separable hyperplane is shown in figure 10. 
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so that M is a (p+q)×(p+q) matrix. 
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Method 1: Structured Neural Networks (TLN) method: 
This method uses the architecture of structured multilayer feedforward networks. The 
networks are trained to solve the problem by the error backpropagation algorithm. They are 
transformed into equivalent networks to obtain a simplified representation. It is considered 
to be a hierarchical committee that accomplishes the classification task by checking on a set 
of explicit constraints on input data. 
Method 2: K-mean + PCA: 
Principal Component Analysis (PCA) is a technique to reduce multidimensional data to a 
lower dimension for analysis. By constructing the transformation matrix which consists of 
eigenvectors and ordering the eigenvalues, the  statistically uncorrelated components can be 
extracted. It is an unsupervised approach that finds the best features from data. K-means 
clustering is a form of stochastic hill climbing in the log-likelihood function. The contours in 
the feature  space represents equal log-likelihood values.  It iteratively calculates the mean 
vectors in the selected classes. As more data are inputted, it dynamically adjusts until there 
is no change on mean vectors. 
Method 3: K-mean + ICA: 
Independent Component Analysis (ICA) is a computational method to separate a 
multivariate signal into additive subcomponents which are statistically independent and at 
least one of which is  a non-Gaussian source signal.  Method 3 is the same as Method 2 
except that PCA is replaced by ICA. 
Method 4: K-mean + (PCA+MRF): 
Markov Random Field (MRF) theory provides a basis for modeling contextual constraints in 
image processing. It is a model of the joint distribution of a set of random variables.  The 
estimated pixels based on MRF model form a new image.  PCA is applied to each pixel 
vector of the new image stack.  This is followed by K-mean operation. 
Method 5: FCM + (PCA+MRF): 
Fuzzy-C-Mean (FCM) is an iterative clustering method.  In every iteration of the classical K-
Means procedure, each data point is assumed to belong to exactly one cluster. But in FCM, 
we relax this condition and assume that each sample has some graded or fuzzy membership 
in a cluster.  Method 5 is the same as Method 4 except that  K-mean is replaced by FCM 
operation. 
Method 6: Multivariate ARV Support Vector Machine 
This method was newly developed as described in the sections earlier. 
 
Figure 12,13,14,15 show the results of region segmentation by this novel multivariate Time 
Series model based SVM classification method as described in this chapter.   
Figure 12. is the original th-c-hh (one example of 15 remote sensing input data). Figure 13. is 
the Multivariate AR – SVM without smooth post-processing result. Figure 14. is the 
Multivariate AR – SVM with post-processing result and Figure 15. is the Multivariate AR – 
SVM with post-processing and tone re-scaling result. 
 

 

Table 2.  Classification performance comparison 

 Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 
Accuracy 86.49% 64.93% 65.79% 72.46% 75.27% 87.11% 

 

        
Fig. 11. Map training data nonlinearly into a higher dimensional feature space  
 
Feature space kernel mapping example: 

Figure 11 shows the basic idea of SVM which maps data into dot product space (feature 
space) F by a nonlinear mapping: 
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The dot product is 
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If F is in high dimension, the right hand side of equation will be expensive to compute. 

 
7. Experimental Results 
 

The UK village remote sensing data set were used and the Multivariate Time Series SVM 
performance is compared with other existing classification techniques. This image data set 
was kindly offered by Italian Remote Sensing Research group (Serpico 1995, Bruzzone 1999). 
It consists of a set of 250x350 pixel images acquired by two imaging sensors installed on a 
1268 Airborne Thematic Mapper (ATM) scanner and a PLC band, full polarimetric NASA 
JPL SAR sensor. For performance comparison, Table 2  shows the experimenting results of 
the classification accuracies by several remote sensing popular classifiers (Ho, 2008): 
 
Method 1: Structured Neural Networks (TLN) by University of Genoa, Italy (Serpico 1995) 
Method 2: K-mean + PCA (Ho, 2008)  
Method 3: K-mean + ICA (Ho, 2008)  
Method 4: K-mean + (PCA+MRF) (Ho, 2008)   
Method 5: FCM + (PCA+MRF) (Ho, 2008)  
Method 6: Multivariate ARV Support Vector Machine (Ho, 2008)  
 

Φ

Input 
Space 

Feature 
Space 



Multivariate Time Series Support 
Vector Machine for Multispectral Remote Sensing Image Classifications 343

 

Method 1: Structured Neural Networks (TLN) method: 
This method uses the architecture of structured multilayer feedforward networks. The 
networks are trained to solve the problem by the error backpropagation algorithm. They are 
transformed into equivalent networks to obtain a simplified representation. It is considered 
to be a hierarchical committee that accomplishes the classification task by checking on a set 
of explicit constraints on input data. 
Method 2: K-mean + PCA: 
Principal Component Analysis (PCA) is a technique to reduce multidimensional data to a 
lower dimension for analysis. By constructing the transformation matrix which consists of 
eigenvectors and ordering the eigenvalues, the  statistically uncorrelated components can be 
extracted. It is an unsupervised approach that finds the best features from data. K-means 
clustering is a form of stochastic hill climbing in the log-likelihood function. The contours in 
the feature  space represents equal log-likelihood values.  It iteratively calculates the mean 
vectors in the selected classes. As more data are inputted, it dynamically adjusts until there 
is no change on mean vectors. 
Method 3: K-mean + ICA: 
Independent Component Analysis (ICA) is a computational method to separate a 
multivariate signal into additive subcomponents which are statistically independent and at 
least one of which is  a non-Gaussian source signal.  Method 3 is the same as Method 2 
except that PCA is replaced by ICA. 
Method 4: K-mean + (PCA+MRF): 
Markov Random Field (MRF) theory provides a basis for modeling contextual constraints in 
image processing. It is a model of the joint distribution of a set of random variables.  The 
estimated pixels based on MRF model form a new image.  PCA is applied to each pixel 
vector of the new image stack.  This is followed by K-mean operation. 
Method 5: FCM + (PCA+MRF): 
Fuzzy-C-Mean (FCM) is an iterative clustering method.  In every iteration of the classical K-
Means procedure, each data point is assumed to belong to exactly one cluster. But in FCM, 
we relax this condition and assume that each sample has some graded or fuzzy membership 
in a cluster.  Method 5 is the same as Method 4 except that  K-mean is replaced by FCM 
operation. 
Method 6: Multivariate ARV Support Vector Machine 
This method was newly developed as described in the sections earlier. 
 
Figure 12,13,14,15 show the results of region segmentation by this novel multivariate Time 
Series model based SVM classification method as described in this chapter.   
Figure 12. is the original th-c-hh (one example of 15 remote sensing input data). Figure 13. is 
the Multivariate AR – SVM without smooth post-processing result. Figure 14. is the 
Multivariate AR – SVM with post-processing result and Figure 15. is the Multivariate AR – 
SVM with post-processing and tone re-scaling result. 
 

 

Table 2.  Classification performance comparison 

 Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 
Accuracy 86.49% 64.93% 65.79% 72.46% 75.27% 87.11% 

 

        
Fig. 11. Map training data nonlinearly into a higher dimensional feature space  
 
Feature space kernel mapping example: 

Figure 11 shows the basic idea of SVM which maps data into dot product space (feature 
space) F by a nonlinear mapping: 
 

FR N →Φ :           (49) 
 

The dot product is 
 

))()((:),( yxyx Φ⋅Φ=k      (50) 
 

If F is in high dimension, the right hand side of equation will be expensive to compute. 

 
7. Experimental Results 
 

The UK village remote sensing data set were used and the Multivariate Time Series SVM 
performance is compared with other existing classification techniques. This image data set 
was kindly offered by Italian Remote Sensing Research group (Serpico 1995, Bruzzone 1999). 
It consists of a set of 250x350 pixel images acquired by two imaging sensors installed on a 
1268 Airborne Thematic Mapper (ATM) scanner and a PLC band, full polarimetric NASA 
JPL SAR sensor. For performance comparison, Table 2  shows the experimenting results of 
the classification accuracies by several remote sensing popular classifiers (Ho, 2008): 
 
Method 1: Structured Neural Networks (TLN) by University of Genoa, Italy (Serpico 1995) 
Method 2: K-mean + PCA (Ho, 2008)  
Method 3: K-mean + ICA (Ho, 2008)  
Method 4: K-mean + (PCA+MRF) (Ho, 2008)   
Method 5: FCM + (PCA+MRF) (Ho, 2008)  
Method 6: Multivariate ARV Support Vector Machine (Ho, 2008)  
 

Φ

Input 
Space 

Feature 
Space 



Geoscience and Remote Sensing344

 

digital computer can solve them quickly. The role of numerical analysis in solving the 
engineering problem has increased dramatically. They are capable of handling large systems 
of equations, nonlinearities and geometries that are often impossible to solve analytically. 
The remote sensing data mining is huge. The system is initially gained by empirical means 
through observations and experiments. As new measurements are taken, the generalizations 
might be modified or newly developed. On the other hand, generalizations can have a 
strong influence on the observations. Hopefully the conclusions can be drawn eventually. 
From an electrical and computer engineering problem solving perspective, a system’s 
mathematical model has to be usefully expressed. We are hoping that system mathematical 
modeling and the powerful numerical methods that take full advantage of fast computing 
tools can resolve most of the remote sensing issues. Take one example in this chapter: the 
Multivariate Time Series model with system parameter matrix estimation and error 
covariance matrix (solved by Cholesky decomposition and the stable QR algorithm) might 
be able to capture remote sensing research attentions for their complex unsolvable image 
stacking problems. Though originality of this method exists, the algorithm stability does 
require years of testing by researchers and interested parties. The novel Estimation of 
Parameters Matrix of Multivariate Time Series techniques we developed in this chapter can 
be useful not only for image classification but also good for other research areas such as 
accurate stock market predictions, video prediction for wireless multimedia applications, 
adaptive frame prediction for scalable video coding …etc. The reasons are that multivariate 
time series can handle multiple data factors at every single time stamp. It can also expand 
the traditional Digital Signal Processing capability which is mostly in univariate time 
sequences. Advanced methods for automatic analysis of multisensor and multitemporal 
remote sensing images is still on-going in the years to come. Image processing and pattern 
recognition researches have been going on for over half century since the digital computer 
was invented. Many excellent and useful tools such as Maple, Matlab, IDS, Labview …etc 
have been created accordingly. Millions of image processing algorithms and great research 
results were also published. Remote sensing, image processing and pattern recognition 
related community have generated many journal papers and held developer conferences 
each year around the world to exchange ideas. Still, none of the “final” universal optimal 
algorithm has been done successfully yet. Take an example of the remote sensing texture 
classifications, it is difficult to obtain a good texture representation and to have the true 
adaptive function for segmentation for all kinds of remote sensing data.  

 
9. Future Work 

Though the multivariate ARV model was developed, to select the optimal order of an ARV 
model is one of complicated problem to solve. The error covariance matrix C



 has to be 
computed and the order selection criterion such as famous Akaike’s Final Prediction Error 
(FPE) (Akaike, 1971) criterion,  Schwarz’s Bayesian Criterion (SBC) (Schwarz, 1978) and 
Lutkepohl’s improved order criterion (Lutkepohl, 1985) has to be determined in order to 
decide the optimal ARV system order. As far as today’s most decent and generalized data 
classification method –Support Vector Machine, there are still many holes to be filled  and 
explored. To mention a few, improving system model formulation for extracting more 
useful feature vectors for SVM , new kernel functions developments for better SVM 

 

The followings are the color bar and crop identifications in UK village remote sensing image 
data set: 

 
      Class 1: Sugar Beets 
      Class 2: Stubble 
      Class 3: Bare Soil 
      Class 4: Potatoe  
      Class 5: Carrots 
 

Figure 12. Original th-c-hh (one example of 15 remote sensing input data) 
Figure 13. Multivariate AR – SVM without smooth post-processing result 
Figure 14. Multivariate AR – SVM with post-processing result 
Figure 15. Multivariate AR – SVM with post-processing and tone re-scaling result 
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8. Conclusion 

This chapter has focused on contexture information in order to improve remote sensing 
pixel classification accuracy. The study of time series is primarily concerned with time or 
spatial correlation structure. The time series model has its world wide applications in the 
area of finance and oceanography but not much in remote sensing image processing. We 
took the big challenge to develop this new idea for remote sensing information processing. 
As we mentioned earlier, the time series models were started from univariate system to 
move gradually toward complicated multivariate matrix structures in order to solve the 
multiple image pixel stack problems. The system optimization and image pixel estimation 
solutions were changed from simple derivative, linear system to complex matrix 
decompositions by numerical analysis. It does open up a new era away from traditional 
approaches as far as remote sensing image processing is concerned. Numerical methods are 
the arithmetic operations to solve the mathematically formulated problems. Although they 
are involved with large numbers of tedious calculations, the most recent fast and efficient 
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classification performance, convex and non-convex optimization theory, intelligent numeric 
computational methods …etc are the open research area for the near future.  
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1. Introduction    
 

We propose an approximation method for surfaces with fault and /or large variations. We use 
image segmentation tools, meshing constraints, finite element methods and spline theory.  
Curve and surface fitting using spline functions from rapidly varying data is a difficult 
problem (see Salkauskas,  1974, or Franke and Nielson, 1984, or Franke, 1982). In the 
bivariate case and without information about the location of large variations, usual 
approximation methods lead to instability phenomena or undesirable oscillations that can 
locally and even globally hinder the approximation (Gibbs phenomenon).  
So, we propose a new method which uses scale transformations (see Apprato and Gout, 
2000). The originality of the method consists of a pre-processing and a post-processing of the 
data. Instead of trying to find directly an approximant, we first apply a scale transformation 
to the z-values of the function. In the particular case of the approximation of surfaces, the 
originality of the method consists in removing the variations of the unknown function using 
a scale transformation in the pre-processing. And so the pre-processed data do not exhibit 
large variations. So we can use a usual approximant which will not create oscillations.  
In case of vertical fault, we also propose an algorithm in order to find the location of  large 
variations : the right approach to get  a good approximant consists, in effect, in applying 
first a segmentation process to precisely define the locations of large variations and faults, 
and exploiting then a discrete approximation technique. To perform the segmentation step, 
we propose a quasi-automatic algorithm that uses a level set method to obtain from the 
given (gridded or scattered) Lagrange data, several patches delimited by large gradients (or 
faults). Then, with the knowledge of the location of the discontinuities of the surface, we 
generate a triangular mesh (which takes into account the identified set of discontinuities) on 
which a Dm-spline approximant (see Manzanilla 1986, Apprato et al., 1987, or Arcangéli et., 
1997, or Arcangéli et al. 2004)  is constructed.  
We apply our method to different datasets (bathymetry, Lagrange data…): Piton de la 
Fournaise volcano in La Réunion island (see Gout and Komatitsch, 2000), Pyrenées 
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mountains in France (see Apprato et al., 2000), Marianas trench in the Pacific (see Apprato et 
al. 2002). We also give an example around the Hawaiian hot spot. The topography and 
bathymetry of the Hawaiian Islands in the Pacific ocean result from the activity of a huge 
hot spot combined with the effect of erosion. This hot spot has been more or less active since 
the Late Cretaceous, and as a result, the Big Island continues to grow, and to the East a new 
island is being formed.  

 
2. Mathematical Modelling for surface approximation from Lagrange dataset 
 

Unfortunately, when applied to the approximation of surfaces from rapidly varying data, 
usual methods like splines lead to strong oscillations near steep gradients, as illustrated in 
Figure 1. When the location of the large variations in the dataset is known, Salkauskas (1974) 
has proposed methods that use a spline under tension with a nonconstant smoothing 
parameter, and Hsieh and Chang (1994) have proposed a concept of virtual nodes inserted 
at the level of the large variations in the case of an approximant in the context of computer-
aided geometric design. In the more general context where the location of the large 
variations in the dataset is not known a priori, Franke (1982) and Bouhamidi and Le Méhauté 
(1999) have proposed splines under tension belonging to more general spaces. These 
methods give good results in the case of curve fitting, but less accurate results in the case of 
surface fitting.  
 

 
Fig. 1. When classical splines (for instance, here a C1 spline) are used to interpolate data 
points (xi ; f (xi )) with large local variations, strong spurious oscillations are generated near 
steep gradients. 
 
The new method we introduce here uses scale transformations, and is applied without any 
particular a priori knowledge on the data. The philosophy of the method is similar to 
interpolation methods based upon anamorphosed data commonly used in geostatistics (see, 
for instance, Issaks and Srivastava, 1989). In the first part of this article, a construction of the 
scale transformation families is presented. Results concerning the convergence of the 
approximation are given. We also show the efficiency of this innovative approach by 
applying it to the topography of the summit of the Piton de la Fournaise volcano, located in 
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in steep river valleys in its southwestern part, as well as in a caldera, where the behavior of 
the method is tested. 
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and dψ  for the postprocessing. The first one, dϕ , is used to transform the z values 
representing the height of the unknown surface f into values (ui ), regularly distributed in an 
interval chosen by the user, as illustrated in Figures 2A and 2B. The preprocessing function 

dϕ  is such that the transformed data do not exhibit large local variations, and therefore a 
usual spline operator Td can subsequently be applied without generating significant 
oscillations, as shown in Figure 2C. The second scale transformation dψ  is then applied to 
the approximated values to map them back and obtain the approximated values of z (Figure 
2D). It is important to underline that the proposed scale transformations do not create 
spurious oscillations. Moreover, this method is applied without any particular knowledge 
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where the preprocessing dϕ  and the postprocessing dψ  are continuous scale transformation 
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connected set Ω of R2 with Lipschitz boundary, and an unknown function [ ]( )bamHf ,,' Ω∈  
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where δ  is the Euclidean distance in R2; the index d represents the radius of the biggest 
sphere included in Ω  that does not intersect with any point of Ad , and thus, when d tends 
to 0, the number of data points tends to infinity. We also introduce the set dZ1 of N = N(d) 
real numbers such that 
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where [a, b] = Im( f ). The sequence dZ2  will be used for the construction of the scale 
transformation families in the following section. In what follows, for convenience, we also 
write d

iz instead of d
iz~ . 

 

 
(A)     (B) 

 
(C)     (D) 

Fig. 2. The preprocessing phase, (A) and (B), transforms the values f(xi) using a scale 
transformation dϕ . After preprocessing, B, the local variations in the data have been 

drastically reduced. Therefore, it is possible to obtain a regular approximant dT  with no 
significant oscillations using a usual C1 spline operator (see subsection 2.2), as shown in (C). 
A second scale transformation dψ  is subsequently applied to the values of the approximant 
in a postprocessing phase, (D), to map them back and obtain the final approximant. It is 
important to mention that the scale transformations used do not create spurious oscillations, 
as illustrated in (D). 

 

2.1 Scale transformations 
In this section, we give a construction of the scale transformation families by generalizing 
the technique seen in Torrens, 1991. These scale transformations are realistic in the sense 
that, as classical transformations, they are monotonous.  
Preprocessing of the Data: Family dϕ of Scale Transformations
The goal of the scale transformation 

  

dϕ  is to reduce the variations in the data set. We first 
construct dϕ , and, in order to study the convergence of the approximation, we then 
establish the convergence of dϕ  to a function ϕ  when the number of data points tends to 

infinity (i.e., 0→d ): Let [ ]βα ,  be an interval of R, and { } )(,...,1 dpiiu =  the following regular 
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These interval and subdivision are chosen by the user. When dealing with surface 
approximation from rapidly varying data, we choose the interval to be [0,1], and an even 
subdivision of the {ui} that is used to reduce the local variations of the (zi). After applying 

dϕ , we obtain a new data set (xi ,ui) related to the initial data by ui = ).( id zϕ  When this 
technique is applied to other problems however, for instance in some applications in 
imaging when one has an image with homogeneous regions, it can be of interest to increase 
the variations between pixel values—the (zi)—; in such a case, Apprato and Gout, 2000 
showed that it is possible to choose a nonregular distribution in the interval [ ]βα ,  to generate 
variations, and therefore to enhance some features present in the image to facilitate its 
segmentation.  
We introduce ϕ  : [ ] [ ]βα ,, →ba  the ∞C diffeomorphism that transforms [ ]ba,  into [ ]βα ,  (such 
families of transformations are usually called anamorphosis in the geostatistics literature): 
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where the i

lmq , for i = (0,1), and l = (0,1), are the basis functions of the finite element of class 
Cm on [0,1] (see Ciarlet, 1978) and where, for any i = 1, …, p(d)-1, 
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transformation dϕ . After preprocessing, B, the local variations in the data have been 

drastically reduced. Therefore, it is possible to obtain a regular approximant dT  with no 
significant oscillations using a usual C1 spline operator (see subsection 2.2), as shown in (C). 
A second scale transformation dψ  is subsequently applied to the values of the approximant 
in a postprocessing phase, (D), to map them back and obtain the final approximant. It is 
important to mention that the scale transformations used do not create spurious oscillations, 
as illustrated in (D). 
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Using relations (5)–(8), we obtain the following results: dϕ  implements the interpolation of 

the (ui) and dϕ  belongs to [ ]( )baC m , : 
(i) ,)( iid uz =ϕ for i=1,…,p(d); 

(ii) [ ]( )baC m
d ,∈ϕ . 

We now consider a sufficient convergence hypothesis, which implies that the distribution of 
the data (zi) has an asymptotic regularity in the interval [a; b] when d tends to 0, and which is 
used to establish the convergence of the approximation. This hypothesis is that there exists C 
> 0 and an integer m’’  verifying 2'' ≥≥ mm such that, for d small enough; and for any i = 
1,…, p(d)-2, we have 

''

12

1
1)(

1
m

ii

ii
dp

abC
zz
zz









−

−
≤

−
−

−
++

+ .               (9) 

 
We also suppose that the set Ad  introduced above is such that there exists C’ > 0 such that 
 

2
')(

d
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Inequation (10), introduced by Arcangéli (1989), expresses a property of asymptotic 
regularity of the distribution of the data set Ad in Ω . Using a compactness argument, Gout, 
2002 established that hypotheses (9) and (10) imply that there exists C’’ > 0, such that 

[ ]( ) '', CbaCd m ≤ϕ and 

[ ]( )baCind
d

,lim 0

0
ϕϕ =

→
,    (11) 

 
where dϕ  is defined by (7), and ϕ  is defined by (6). 
One can notice that the construction of the scale transformations dϕ  made in (7) uses a finite 
difference scheme of order 1 to construct, from the ui , the first derivatives of dϕ  at the 
points iz~ , i =1, …, p(d). Moreover, the option retained in (6), which is to cancel the l 
derivatives of dϕ  at the points iz~  for any l=2,…,m, could be substituted by the option 
consisting in using a finite difference scheme of order l to define these l derivatives. Let us 
also mention that we have chosen to construct scale transformations on a finite element 
basis in order to be able to study the convergence of the approximation. 
 
Postprocessing of the Data: Family dψ
Similarly to the way we constructed the scale transformations 

 of Scale Transformations 

dϕ , we now define a scale 
transformation family dψ  that implements the postprocessing of the calculation. We recall 
that after the preprocessing, the large local variations in the dataset have been drastically 
reduced; therefore it is possible to approximate the data using a usual spline operator Td 
without generating significant oscillations. To map these values back and obtain the 
approximated values of z, we need to use a postprocessing step, and therefore need to 

 

introduce a family dψ , which is almost the inverse of dϕ : as dϕ  converges to ϕ , we 

construct dψ  such that dψ  converges to 1−ϕ . To do so, we define the ∞C  diffeomorphism  
1−ϕ  : [ ]βα , [ ]ba,→ inverse of ϕ  defined in Equation (6): 
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where the i

lmq , for i = (0,1), and l = (0,1), are the basis functions of the finite element of class 
Cm on [0; 1] (Ciarlet, 1977) and where, for any i = 1, …, p(d)-1: 
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Under hypotheses (9) and (10),  Apprato and Gout, 2000 established the following relations: 
(i)  );(,...,1,)( dpizu iid ==ψ  

(ii)  [ ]( );,βαψ m
d C∈  

(iii)  there exists C > 0; such that [ ]( ) ;, CmCd ≤βαψ                   (15) 

(iv)  [ ]( ).,lim 01
0

βαϕψ Cind
d

−

→
=  

It is important to mention that (15-i) is one of the key points of the algorithm, that (15-ii) 
enables us to obtain approximants with high regularity, and that (15-iii) and (15-iv) are used 
to establish the convergence of the approximation. 

 
2.2 The spline operator 
Given a Lagrange dataset ( )( ) ( )( ) diididi zxfx ,, ϕϕ = we have to solve the classical problem 

of constructing an approximant Td of class Ck (with k = 1 or 2 in practice). In this work, we 
use a smoothing Dm spline, as defined in Arcangéli et al., 2004, which has many advantages: 
it is possible to implement a local refinement, the matrix of the linear system to solve is 
banded, and it is possible to study the convergence of the approximation. We have chosen to 
use a smoothing Dm spline and not an interpolation spline because we want to be able to 
work with large datasets of up to several hundreds of thousands of points, and in that case, 
a smoothing spline is far less expensive than an interpolation spline. We consider the 
functional, for any Φ belonging to Hm(Ω), 
 

( ) ( ) 2
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functional, for any Φ belonging to Hm(Ω), 
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where ( )( ))(, dpmd IRHL Ω∈ρ is defined by )())(( dp
Aa

d IRaff d ∈= ∈ρ , 
Ω• ,m is the usual 

semi-norm on Hm(Ω), )(dp•  is the Euclidean norm in Rp(d), and ε  a smoothing parameter. 

We call d
εσ   the Dm -smoothing spline on Ω relative to fd ϕ  which is the unique solution 

of the minimization problem: find ( )Ω∈ md Hεσ  such that for any Φ belonging to Hm(Ω): 
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εσ  to this problem is also the unique solution of the variational problem: find 

( )Ω∈ md Hεσ  such that for any Φ belonging to Hm(Ω):  
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Uniqueness of the solution can be proved using the Lax–Milgram lemma and results by 
Necas, 1967 to establish an equivalence of norms. 
In order to compute d

εσ  , we choose to discretize it on a finite element basis, which enables 
us to obtain a small sparse linear system. We choose the generic Bogner–Fox–Schmit (BFS) 
rectangular finite element (see Ciarlet, 1977). In what follows, we use either the BFS of class 
C0 or of class C1 in order to obtain a C0 or C1 approximant. In the following, we write d

εσ  
instead of Td. 

 
2.3 Convergence results  
We first give the convergence of the Dm spline operator d

εσ   related to the transformed data 
( )fd ϕ  to the function ( )fϕ  when d tends to 0. We obtain this result using the 
convergence of dϕ  to ϕ , using the fact that Apprato et al., 1987, showed that, for any 

function g, we have ggd
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Keeping the notation of the previous sections, and since ( )fd ϕ  is bounded in ( )ΩmC , 
Apprato and Gout, 2000, proved that 
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From this result, using a compactness argument, Apprato and Gout, 2000 established a 
theoretical result concerning the convergence of the approximation:  
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for any 0>Θ  such that 1−<Θ m  ( ( )Ω⇒ Θ−mHofembeddingcontinuous into ( )Ω0C ). Note 

that if we take n = 2 and m = 3, the convergence takes place in ( )ΩΘ−2H for any ∈Θ ]0,1[. 

 
2.4 Numerical examples 
The Piton de la Fournaise is a volcano located in the Indian Ocean, in the Réunion Island, 
France. This volcano exhibits strong topographic variations near its summit, due to the 
presence of a caldera and of two steep river valleys in its southwestern part, as can be seen 
on the picture of the volcano presented in Figure 3. The maximum height of the volcano is 
2.6 km, and the depth of the valleys reaches more than 1000 m in several places. Being able 
to describe the topography of such regions exhibiting rapid local variations with at least C0 
regularity, or even C1 regularity, is important in many fields in geophysics. For example, 
this description of the topography can be an input to numerical modeling codes that study 
the propagation of pyroclastic flows or lava flows, and related hazards; other examples are 
seismic site effects and ground motion amplification due to topographic features. In both 
cases, to avoid creating numerical artefacts, it is important not to introduce spurious 
oscillations in the description of the model itself. Otherwise, it is well known that in the 
context of curvilinear spectral element modeling of elastic wave propagation, artificial 
diffraction points appear at the edges between elements, which significantly affects the 
behavior of surface waves. To demonstrate the efficiency of our method, we create C0 and C1 
approximants from a set of 8208 data points taken from a DEM of the summit. The data 
points in the DEM have been obtained by digitizing a map of the area. In this DEM, the 
height is given on an evenly spaced grid of 76 x 108 points, with a grid spacing of 200 m. 
Therefore the considered region has a dimension of 15 km in the East–West direction, and 
21.4 km in the North–South direction. This DEM is shown in Figure 4 using a top view with 
isocontours representing the height of the topography every 0.2 km.  
 

 
Fig. 3. Image of the Piton de la Fournaise volcano in the Réunion Island, Indian Ocean, 
France. One can clearly see the summital caldera, and the two steep valleys in the South–
West. The size of the region represented is approximately 40 x 35 km. The height of the 
volcano is 2.6 km. Image taken as part of the Space Shuttle SIR-C/X-SAR radar missions, 
courtesy of Pete Mouginis-Mark, University of Hawaii. 
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In the preprocessing step, we choose a regular distribution of the ui  in [α,β] = [0,1] in order 
to reduce the large variations in the data set. The approximants are subsequently obtained 
by discretizing the Dm spline in a finite-element space. In the case of the C0 approximant, we 
use 30 x 40 rectangular C0 BFS finite elements, each having four degrees of freedom. In the 
case of the C1 approximant, we use 15 x 20 rectangular C1-BFS finite elements, each having 
sixteen degrees of freedom. In both cases, the smoothing parameter ε  is taken to be 10-6. 
In Figure 4, we show a three-dimensional representation of the C1 approximant after 
postprocessing, evaluated on an evenly spaced grid comprising 200 x 200 points. The grid 
spacing in the East–West direction is therefore 107.54 m, and the one in the North–South 
direction is 75.37 m. From the figure it is clear that the results do not exhibit strong 
oscillations, even though the use of such a dense grid for the evaluation of the approximant 
is expected to enhance the artefacts generated by the approximation method. To compare 
this approximant to the original dataset more precisely, in Figure 5 we present a top view of 
the approximated values, with isocontours representing the height every 0.2 km, in addition 
to the same plot for the original dataset. It is clear from these plots that the approximant is 
very close to the original data, with local variations smoothed as expected. One can notice 
that the approximant does not exhibit significant oscillations even in the difficult regions of 
the model, particularly the two valleys. To demonstrate this more quantitatively, we 
evaluate the quadratic error for the two approximants. In the case of the C0 approximant, we 
find that the error is 4.96x10-4; in the case of the C1 approximant it is 4.01x10-4. Such values 
are considered as very good ones in the context of surface approximation, and show the 
efficiency of the proposed approach for this case with rapidly varying data. In the entire 
dataset, the maximum error measured is 5.5%, corresponding to an absolute error of 56 m. 
This maximum error occurs in a region located on the edge of the steep valleys, where the 
local variations are the strongest, as expected. More detailed studies of the approximation 
error, and evidence that the rate of convergence is higher in this method than in usual 
approaches with no preprocessing, such as thin plate spline or splines under tension can b 
found in Schoenberg, 1960. 
We have presented a new method to fit rapidly varying geophysical data. The ability to 
suppress, or at least significantly reduce, oscillations of the surface near steep gradients has 
been demonstrated. The scale transformation families introduced provide more control on 
the behavior of the approximant, without any particular a priori knowledge of the location of 
the large variations in the dataset. The regularity obtained, which can be C0, C1, or higher, 
enables us to describe the topography of real geophysical surfaces accurately. We have 
shown the good properties of this approach by applying it to the real case of the Piton de la 
Fournaise volcano. 

 

 
Fig. 4. Three-dimensional view of the C1 approximant, after post-processing, obtained for 
the Piton de la Fournaise volcano from the Digital Elevation Model. The scale represents the 
height of the topography, from 0 to 2.6 km. The image has been generated with no vertical 
exaggeration. The approximant has been evaluated on an evenly spaced grid comprising 200 
x 200 points. No significant oscillations can be observed, even in the difficult regions of the 
model, which are mainly the two valleys, and also the caldera. In this example, we have 
discretized the spline using 15 x 20 BFS finite elements, each having sixteen degrees of 
freedom. 
 

 
Fig. 5. Comparison between the isocontours obtained from the original dataset of the DEM. 
Left : Isocontours of the DEM of the Piton de la Fournaise volcano. The DEM is given on a 
grid of 76 x 108 points, with a uniform grid spacing of 200 m. The height of the summit is 2.6 
km. One can clearly observe the slopes of the two steep valleys, and the isocontours of the C1 
approximant after postprocessing (right), as in the three-dimensional view of Figure 4.  



Surface approximation from rapidly varying data:  
Applications to geophysical surfaces and seafloor surfaces 357

 

In the preprocessing step, we choose a regular distribution of the ui  in [α,β] = [0,1] in order 
to reduce the large variations in the data set. The approximants are subsequently obtained 
by discretizing the Dm spline in a finite-element space. In the case of the C0 approximant, we 
use 30 x 40 rectangular C0 BFS finite elements, each having four degrees of freedom. In the 
case of the C1 approximant, we use 15 x 20 rectangular C1-BFS finite elements, each having 
sixteen degrees of freedom. In both cases, the smoothing parameter ε  is taken to be 10-6. 
In Figure 4, we show a three-dimensional representation of the C1 approximant after 
postprocessing, evaluated on an evenly spaced grid comprising 200 x 200 points. The grid 
spacing in the East–West direction is therefore 107.54 m, and the one in the North–South 
direction is 75.37 m. From the figure it is clear that the results do not exhibit strong 
oscillations, even though the use of such a dense grid for the evaluation of the approximant 
is expected to enhance the artefacts generated by the approximation method. To compare 
this approximant to the original dataset more precisely, in Figure 5 we present a top view of 
the approximated values, with isocontours representing the height every 0.2 km, in addition 
to the same plot for the original dataset. It is clear from these plots that the approximant is 
very close to the original data, with local variations smoothed as expected. One can notice 
that the approximant does not exhibit significant oscillations even in the difficult regions of 
the model, particularly the two valleys. To demonstrate this more quantitatively, we 
evaluate the quadratic error for the two approximants. In the case of the C0 approximant, we 
find that the error is 4.96x10-4; in the case of the C1 approximant it is 4.01x10-4. Such values 
are considered as very good ones in the context of surface approximation, and show the 
efficiency of the proposed approach for this case with rapidly varying data. In the entire 
dataset, the maximum error measured is 5.5%, corresponding to an absolute error of 56 m. 
This maximum error occurs in a region located on the edge of the steep valleys, where the 
local variations are the strongest, as expected. More detailed studies of the approximation 
error, and evidence that the rate of convergence is higher in this method than in usual 
approaches with no preprocessing, such as thin plate spline or splines under tension can b 
found in Schoenberg, 1960. 
We have presented a new method to fit rapidly varying geophysical data. The ability to 
suppress, or at least significantly reduce, oscillations of the surface near steep gradients has 
been demonstrated. The scale transformation families introduced provide more control on 
the behavior of the approximant, without any particular a priori knowledge of the location of 
the large variations in the dataset. The regularity obtained, which can be C0, C1, or higher, 
enables us to describe the topography of real geophysical surfaces accurately. We have 
shown the good properties of this approach by applying it to the real case of the Piton de la 
Fournaise volcano. 

 

 
Fig. 4. Three-dimensional view of the C1 approximant, after post-processing, obtained for 
the Piton de la Fournaise volcano from the Digital Elevation Model. The scale represents the 
height of the topography, from 0 to 2.6 km. The image has been generated with no vertical 
exaggeration. The approximant has been evaluated on an evenly spaced grid comprising 200 
x 200 points. No significant oscillations can be observed, even in the difficult regions of the 
model, which are mainly the two valleys, and also the caldera. In this example, we have 
discretized the spline using 15 x 20 BFS finite elements, each having sixteen degrees of 
freedom. 
 

 
Fig. 5. Comparison between the isocontours obtained from the original dataset of the DEM. 
Left : Isocontours of the DEM of the Piton de la Fournaise volcano. The DEM is given on a 
grid of 76 x 108 points, with a uniform grid spacing of 200 m. The height of the summit is 2.6 
km. One can clearly observe the slopes of the two steep valleys, and the isocontours of the C1 
approximant after postprocessing (right), as in the three-dimensional view of Figure 4.  



Geoscience and Remote Sensing358

 

The general agreement is excellent, and it is important to notice that no significant 
oscillations can be observed, even in the two steep valleys. Isocontours represent the height 
of the topography every 0.2 km. The gray scale also indicates the height of the topography, 
from 0 to 2.6 km. 

 
3. Seafloor surface approximation from bathymetric dataset 
 

3.1 Modelling 
The problem of surface approximation from a given set of curves can be formulated as 
follows: from a finite set of curves Fj , j = 1,…, N (the bathymetry ship track curves in our 
case) in the closure of a bounded nonempty open set ⊂Ω R2, and from a function f defined 
on



Nj jFF
,..,1=

= , construct a regular function Φ on Ω  approximating f on F, i.e.: 

 
FF f≅Φ .       (21) 

 
We can assume that Ω is a connected set, with a Lipschitz-continuous boundary (following 
the definition of Necas, 1967), that for any integer j, with j=1,…,N, Fj is a nonempty 
connected subset in F, and that, for simplicity, f is the restriction on F of a function, still 
denoted by f , that belongs to the usual Sobolev space Hm(Ω), with the integer m>1. We also 
assume that the approximant Φ belongs to Hm(Ω) ( )ΩkC  with k = 1 or 2, where •  denotes 
the closure. The main interest of such a regularity for Φ is that it allows one to obtain a final 
surface that can later be used directly as an input model in a different application, such as 
ray tracing, image synthesis, or numerical simulation.  
Let us define, for any v belonging to Hm(Ω), Fvv =ρ   where ρ is a linear operator and let us 

introduce the convex set ( ){ }fvHvK m ρρ =Ω∈= , . Then we consider the minimization 
problem of finding K∈σ  such that for any Kv∈  : 
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and under the hypothesis that for any ( ) ,00,1 ≡⇒=∈ − ppFPp Fm  we know, based upon a 

compactness argument (Necas, 1967), that the function • defined by 
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is a norm on Hm(Ω) which is equivalent to the usual norm 

Ω• ,m  on Hm(Ω). Then the 

solution σ of the interpolation problem (22) is the unique element of minimal norm •  in K 

that is convex, nonempty, and closed in Hm(Ω). Hence we could take the solution Φ = σ 
when  m > k + 1. Unfortunately, it is often impossible to compute σ using a discretization of 
problem (22), because in a finite dimensional space, it is generally not possible to satisfy an 
infinity of interpolation conditions. Therefore, to take into account the continuous aspect of 
the data on F , we instead choose to define the approximant Φ as a fitting surface on the set: 
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In this work, we propose to construct a variant of the “smoothing Dm-spline,” seen in 
previous sections, that will be discretized in a suitable piecewise-polynomial space. The use 
of such spline functions has been shown to be efficient in the context of geophysical 
applications such as Ground Penetrating Radar data analysis (Apprato et al., 2000) or the 
creation of Digital Elevation Models describing topography (Gout and Komatitsch, 2000).  
Let us present in this section the theoretical aspects of the method. We first introduce a 
functional Jε that we shall minimize, defined on Hm(F) by 
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where 2
,Fmvε is a smoothing term, ε > 0 being a classical smoothing parameter. The key idea 

here is that the fidelity criterion to the data 
2

,0 F
fv −  honors their continuous aspect. We 

now need to numerically estimate this L2-norm, which is done using a quadrature formula. 
In this respect, the approach is quite different from more classical techniques that usually 
simply make use of a large number of data points on F in order to solve the approximation 
problem. For any integer j, j= 1,…,N, and any 0>η , let { } Lii ≤≤1ς  be a set of L = L( j ) distinct 

points jii Fj ∈= )(ςς such that ,),(max 1
11

ηςςδ ≤+
−≤≤

ii
Li

 where δ  is the Euclidean distance in 

R2. This relation implies that the distance between two consecutive iς  is bounded by η, it 
also enables one to study the convergence of the approximation when η tends to 0. The { iς } 
will also be the nodes of a numerical integration formula. Let us also introduce a set 
( ) Lii ≤≤1λ  of real numbers (that will be the weights of a quadrature formula) such that 

iλ = iλ (j) > 0, and let us define, for any ( ) ,0,0 >∀∈ ηjFCv  
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When this hypothesis is satisfied, one can consider  l  as a theoretical quadrature formula for 

2
,0 fFv . Note that in some case (N=1),  l(v) is a quadrature formula for the curvilinear 

integral ∫
F

vds . Note also that in most applications the Fj are polygonal curves, and one can, 

therefore, use a classical quadrature formula (e.g., Arcangéli and Gout, 1976, or Gout and 
Guessab, 2001). 
For the discretization, we proceed like in Section 2, using a finite element space. 

 
3.2 Application to surface reconstruction from bathymetry ship track data in the 
Marianas trench 
Detailed bathymetry maps are essential in several fields in geophysics, such as 
oceanography and marine geophysics. Historically, over the past decades, research vessels 
have collected a large number of depth echo soundings, also called SONAR (for “SOnic 
Navigation And Ranging”) bathymetry ship track data. Many of these measurements have 
been compiled to produce global bathymetry maps (e.g., Canadian Hydrographic Office in 
1981). In recent years tremendous advances in satellite altimetry have enabled researchers to 
produce very detailed bathymetry maps independently of satellite gravity field 
measurements. However, long-wavelength variations of the depth of the ocean floor are 
difficult to constrain using satellite altimetry, and ship track data are still often used instead 
for that purpose. It is, therefore, of interest to address the issue of producing a bathymetry 
map from a given set of SONAR bathymetry ship tracks. Let us mention that SONAR ship 
tracks are typically acquired as a discrete set of measurement points, as opposed to 
continuous recording. However, the typical horizontal interval between measurement 
points is always small compared to expected bathymetry variations; therefore, in the context 
of this study the dataset can be considered as consisting of smooth continuous lines. 
As presented in Url, 2009, in order to understand the shape of the seafloor, oceanographers 
go out on ships and collect sonar data. Sonar data are collected using echosounders and 
side-scan sonar systems. The digital data are then converted into maps and images. 
How does this work?  

 

Echosounders :  Since World War II echosounders have been used to determine water depths 
of the oceans. Echosounders are usually attached to the hull of a ship. The echosounder 
sends an outgoing sound pulse into the water. The sound energy travels through the water 
to the ocean bottom where it is reflected back towards the source, received, and recorded. 
 

 
Fig. 6.  Sound travels from the ship to the seafloor and is reflected back. The time it takes is  
converted into distance yielding water depth. (Credit :  www.womenoceanographers.org) 
 
The time that it takes for the sound to make the round trip to the seafloor is accurately 
measured. Water depth is determined from the travel time and the speed of sound in water. 
Water depth can be estimated simply by using an average sound speed and the following 
relationship: Distance = speed × time/2, (the time is divided by 2 to take into account the 
round trip from the echosounder to the seafloor). The unique drawback of such an 
echosounder is that it will only give one depth at each time. That is why multibeam 
echosounder have been created...   
How are water depths turned into a map?: As a ship steams ahead through the water, 
multibeam echosounders provide water depths for a swath of the seafloor. The water depths 
are located in space using satellite navigation. From these data, oceanographers can make 
maps of the seafloor that resemble topographic maps of land areas. In the early times, 
bathymetry maps were drawn by hand. Contours (lines) of equal water depth were drawn 
through a grid of numbers that had been plotted on a sheet of paper. Colors, put on by 
hand, indicated regions of equivalent water depth. Eventually computers took over and 
produced paper charts of the data, contoured and automatically colored. Now computer 
softwares enable individual scientists to process the data and display them on their own 
computer monitors. Maps can be imported into graphic software applications and 
annotations and other marks can be added. 
"Side-scan"sonars: Similar to the multibeam echosounder, the sound transmitted by a side 
scan sonar instrument travels to the seafloor, bounces off the seafloor, returns to the 
instrument, and is recorded In the case of a side-scan sonar, it is the intensity or strength of 
the returning acoustic signal that is recorded. This is controlled primarily by the slope of the 
seafloor and by what the seafloor is made of. A stronger return is received if the seafloor 
slopes down to the instrument. Also, the return is stronger if the seafloor is made of bare 
rocks. The strength of the return is much lower if the seafloor is covered by mud or sand. 
Volcanoes and other features that stick up above the surrounding seafloor will cast acoustic 
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shadows. These shadows are just like the shadow behind a person when a flashlight is 
shone on him. 
 

 
Fig. 7. Cartoon from a NOAA web site showing the swath of seafloor insonified by the 
multibeam echosounder. (Credit : NOAA and GSC) 
 
Converting intensity into an image: The strength of the sound recorded by the side-scan sonar 
instrument is converted into shades of gray. A very strong return, say from bare rock, is 
white; a very weak return is black. The echo strengths that fall between these two extremes 
are converted into different shades of gray. Historically, side scan sonar data have been 
displayed on a hard copy paper recorder. The paper chart used to be the most convenient 
method for displaying and storing these data (as well as bathymetry data). Since the 1980s 
or so, software and hardware have been developed to process side scan data using 
computers and display the data on computer screens.  
 

  
Fig. 8. Left 

 

: Hull-mounted multibeam sonar (left) and towed side scan sonar (right). NOAA 
– Right : The side scan sonar instrument is towed by the ship. Sound is transmitted into the 
water and images are made based on the strength of the recorded return. (credit : NOAA) 

We select the region of the Marianas trench (Figure 9). The trench is located in the North 
Pacific ocean, east of the South Honshu ridge, parallel to the Mariana Islands. It corresponds 
to the subduction zone where the fast-moving Pacific plate converges against the slower 
moving Philippine plate. It is also the place on Earth where the oceans are the deepest, 
reaching a maximum depth of slightly more than 11 km in the so-called “Challenger Deep” 

 

area (Figure 9). This region is ideal to test our surface approximation technique because it 
has been thoroughly studied; therefore, many ship track datasets are available. We select a 
45 x 45 km area, corresponding to latitudes between 11.2± and 11.6± North, and longitudes 
between 142± and 142.4± East. We use 16 tracks from the database assembled by David T. 
Sandwell and coworkers at the University of California, San Diego (http://topex.ucsd.edu). 
Each individual track contains between 62 and 152 points giving depth for a given latitute 
and longitude. The total number of points in the whole dataset is 1576. The depth varies 
between 6779 and 10952 m. As can be seen on Figure 9, the ship track coverage of the area is 
nonuniform. Note in particular the lack of data in the north-east and south-east corners. 
Fortunately, data coverage is much better near the center in the deepest part of the trench. 
We create an approximant using 169 quadrangular Bogner–Fox–Schmit finite elements 
defined on a regular 13 x 13 grid in the horizontal plane in the area under study. As 
underlined in the previous section, these elements enable us to obtain an approximant with 
C1 regularity. Figure 9 shows a 3D view of the final surface obtained, as well as the original 
set of ship tracks. For display purposes, the approximant has been evaluated on a regular 
200 x 200 grid of points and a vertical exaggeration factor of 3 has been applied. By 
comparing with Figure 9 and with the ship tracks, one can see that the smooth surface 
obtained correctly reproduces the general characteristics of the bathymetry of the region, 
and behaves satisfactorily even in the areas where the data coverage is sparse. 
 

 
Fig. 9. LEFT : We focus on a 45 x 45 km region in the south-west of the Marianas trench. We 
use 16 bathymetry ship tracks, each containing between 62 and 152 points. The entire set of 
curves contains 1567 points. Each point gives depth for a given latitude and longitude. On 
this top view the coordinates have been mapped using the Universal Transverse Mercator 
(UTM) projection. The depth in the dataset varies between 6779 and 10952 m. One can see 
that the ship track coverage is nonuniform. For instance we have little information in the 
north-east and south-east corners of the area. RIGHT : We construct a bathymetry map from 
the set of 16 ship track data curves using a regular grid of 13 x 13 quadrangular Bogner–
Fox–Schmit finite elements of class C1. For display purposes, the approximant obtained has 
been evaluated on a regular 200 x 200 grid of points, and a vertical exaggeration factor of 3 
has been applied. The original 16 ship tracks are also shown (dashed lines) to illustrate the 
quality of the obtained surface. The isolines represent bathymetry every 500 m. By 
comparing with Figure 9 (right), one can see that we are correctly reproducing the general 
trends of the bathymetry of the area.  
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The quadratic error is equal to  3.29 x 10-5, which is a very satisfactory result (unusually low 
in the context of surface approximation, e.g., Apprato et al.  (2002); as a comparison, a usual 
Dm-spline (Arcangéli, 1989) applied to the same data set using the same finite-element grid 
gave an error of 6.4 x 10-4).  

 
3.3 Application to surface reconstruction from bathymetry ship track data and 
Lagrange data around Hawaiian hot spot 
To demonstrate the efficiency of our method, we also give a numerical example from a  set 
of 7049 data points (both bathymetry and Lagrange data) around the Big Island in Hawaii. 
 

 
Fig. 10. Hawaiian Islands. From lower right to upper left, the Big Island (Hawaii), Maui, 
Kahoolawe, Lanai, Molokai, Oahu, Kauai, and Niihau islands all make up the state of 
Hawaii, which lies on more than 2,000 miles from any other part of the United States. The 
small red dot on the Big Islands southeastern side denotes a hot spot on Kilauea Volcanos 
southern flank. Kilauea has been erupting almost continuously since January 1983, and is 
one of the world’s best studied volcanoes. 
 
The maximum height of the big island is 4.7 km, and the depth of the seafloor reaches more 
than 4 km in several places. To get seafloor data, radar scan sonar are used. From the 
dataset, with the knowledge of the large variations, we have made a triangulation on each 
region using the software Mefisto. We give the C1 approximant (see below). We also 
evaluate the approximant obtained at the 7049 data points of the dataset. To estimate the 
error quantitatively, we then evaluate the quadratic error on the dataset: we obtain a value 
of 5.65 10-5, which is a satisfactory result. 

 

 
Fig. 11. A 3D view of the C1 approximant of the Big Island, Hawaii. 
 

 
Fig. 12. A 3D view of the entire zone of the Hawaiian islands from a large dataset (one 
million data points).  
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4. Surface approximation from surface patches 
 

The problem of constructing a surface from given patches on this surface appears, for 
instance, in geophysics or geology processes like migration of time-maps or depth-maps. 
The problem of surface approximation from surface patches can be posed as follows: from a 
finite set of open subsets wj , j = 1,…, N (surface patches in our case) in the closure of a 
bounded nonempty open set ⊂Ω R2, and from a function f defined on 



Nj j,..,1=
=Ξ ω , construct 

a regular function Φ on Ω  approximating f on Ξ , i.e.: ΞΞ ≅Φ f . 

The modelling corresponds to the one of the case of bathymetry dataset. The difference only 
rests on the fidelity criterion (see (23) for the case of bathymetry dataset)  which is: 
 

( ) .

2/1

1

2
,0 
















= ∑ ∫
=

Ξ dxxvv
N

j jω

 

 

The functional (26) becomes : ( ) ,2
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+−= mvfvvJ εε  and the introduced minimization 

problem has a unique solution (using Lax-Milgram lemma, see Gout (2002), or Apprato et al. 

(2000)). The main difficulty consists in approximating 
2

,0 Ξ
− fv . It is done using 

quadrature formulae. The discretization is done using the finite element method. 
Convergence results and numerical examples are given in Apprato et al. (2000) and in Gout 
(2002). 

 
5. Non regular Surface approximation: application in Geosciences 
 

5.1 Modelling 
The right approach to get a good approximant of a non regular surface consists in applying 
first a segmentation process to precisely define the locations of large variations and faults, 
and exploiting then a discrete approximation technique. To perform the segmentation step, 
we propose a quasi-automatic algorithm that uses a level set method to obtain from the 
given (gridded or scattered) Lagrange data several patches delimited by large gradients (or 
faults). Other approaches for fault detection can be found in Gutzmer and Iske 1997, or in 
Parra et al. 1996. 
Then, with the knowledge of the location of the discontinuities of the surface, we generate a 
triangular mesh (which takes into account the identified set of discontinuities) on which a 
Dm-spline approximant is constructed. To show the efficiency of this technique, we will 
present the results obtained by its application to a dataset in Geosciences.  
The main goal of this work is thus to give a quasi-automatic algorithm to determine the 
location of the large variations and the faults of the surface in order to use specific methods 
that rely on splines under tension with a nonconstant smoothing parameter near the 
identified set of discontinuities. Likewise, if one wants to use finite element methods in the 
discretization step, it is well known that to correctly reproduce the set of surface 

 

discontinuities (both of the function—faults—and/or its derivatives—creases), there are 
some constraints regarding the triangulation of the domain of definition of the function: in 
particular, as shown by Arcangéli et al. , 1997,  the edges of the triangles of the triangulation 
should not intersect the set of discontinuities, here denoted by D (Figure 13).  
As a consequence, it is generally necessary to consider a number of different connected open 
subsets Fi, commonly called patches (Figure 13), and mesh them as done in Figure 13. Let us 
note that to improve the results, an adaptative mesh refinement can be made near the set D.  
Then, it would be possible to use a finite element approximant. Unfortunately, because of 
difficulties linked to the geometry and the number of data points, finite element methods 
turn out to be hard to use. In this work we will use therefore a Dm-spline approximant 
whose definition takes into account the particular structure of the surface domain, as 
introduced in Arcangéli et al. , 1997. The algorithm is summarized in Diagram 1. To have 
more details about the segmentation method that will be exploited to locate the set of 
discontinuities D of the surface, please see Gout et al. 2008. To do the segmentation process, 
the input surface is converted into a grayscale image composed of pixels whose brightness 
values are given by the z-coordinate of the data points on each node of a regular grid. So, it 
is easy to apply segmentation tools developed in image processing (see Le Guyader et al., 
2005, or Caselles et al., 1997, or Gout and Le Guyader, 2006 and 2008, or Gout et al. 2005, or 
Forcadel et al., 2008, ) to surface approximation applications. As mentioned in Diagram 1, it 
would be possible to also work with random datasets on a surface (see Gout et al., 2008), but 
this paper primarily aims at showing the efficiency of the proposed strategy in the case of 
regularly distributed points. We then use a finite element method to mesh the surface taking 
into account the identified set of discontinuities D. The approximation operator and the 
convergence of the method when the number of data tends to infinity is discussed in 
Arcangéli et al. 1997.  
 

 

 

 
Fig. 13. Top : Examples of prohibited and allowed triangles in the domain triangulation: the 
identified set of discontinuities D must be taken into account. Middle : Example of a set of 
discontinuities D and the three different subsets F1, F2, F3 it delineates.  Bottom :  Following 
the set of discontinuities D, a triangulation is made: no triangle intersects the set of 
discontinuities. 
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discontinuities (both of the function—faults—and/or its derivatives—creases), there are 
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Fig. 13. Top : Examples of prohibited and allowed triangles in the domain triangulation: the 
identified set of discontinuities D must be taken into account. Middle : Example of a set of 
discontinuities D and the three different subsets F1, F2, F3 it delineates.  Bottom :  Following 
the set of discontinuities D, a triangulation is made: no triangle intersects the set of 
discontinuities. 
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Diagram 1. Presentation of the modelling. 

 

input 
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DETECTION of DISCONTINUITIES 
Automatic localization of large variations/fault(s) 

 Conversion of the gridded data into an image (RAW datafile) 
 Segmentation process (image-based methods to find fault   
     lines). 

Dm-SPLINE APPROXIMATION 
 From the initial dataset (gridded data or scattered data) 
 Discretization on a finite element space (Argyris C1 or C0 triangle) 

EVALUATION of the APPROXIMANT 
output 

‘’Large Variation Algorithm’’ (Apprato et Gout, 2000) 
(surface fitting method with a good approximation of the 
large variations). 
 Aim : 
 Getting an approximant on a gridded dataset that 
reliably reproduces large variations  

Meshing  
process 

MESHING 
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account the set of discontinuities 

 
 

VISUALIZATION (GMT… VTK…) 
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5.2 Numerical examples 
In this section we give an example based on real data values which come from the Vallée 
d’Ossau, Pyrénées mountains, France. The ground penetrating radar (GPR) technique is 
based on the principle that high-frequency electromagnetic waves may be reflected at 
boundaries separating heterogeneous regions of the subsurface. This technique is a very 
high resolution geophysical tool, with a penetration depth of a few tens of meters (100 m in 
the best conditions), depending on the underground physical properties and on the radar 
wave frequency used. Usually, GPR surveys are conducted with a constant offset between 
transmitter and receiver and a single-fold coverage. The time unit is the nanosecond, the 
frequency range is between 10 MHz and 1 GHz. The propagation velocity range is between 
0.01 and 0.3 m/ns, for example 0.12 m/ns in limestone, 0.07 m/ns in silts. In this study, we 
have used a frequency of 100 MHz, an offset of 1m and we have obtained a penetration 
depth of about 10 m. 
 

 
Fig. 14. View of the Three-dimensional data block. A and B correspond to two horizons. In 
this work we will use the dataset corresponding to Horizon A. 
 
The studied area is located in the Western Pyrénées (30 km south of Pau, Béarn, France) in 
the Vallée d’Ossau which is an old glacial valley. 2D experiments were conducted and gave 
information on the sub-surface structures in the area. The interface between the limestone 
bedrock and the fluvio-glacial deposits has a depth varying between 2–3 and 12–13 m with a 
weak general dip from the north to the south (about 2). Above this interface, the fluvio-
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glacial deposits show several sedimentary figures, with meter or decameter scale, which 
could correspond to old fluvial channels. However, this 2D acquisition cannot give us 
enough information to precisely describe the structures present on the site. The solution was 
to conduct a 3D GPR experiment on a part of the area, in order to obtain 3D information. So, 
a 3D GPR data acquisition on the area described above has been conducted. The single-fold 
GPR data were acquired along north-south profiles. The acquisition area corresponds to a 
rectangle of 38m × 35m. Throughout the whole acquisition work, a constant distance of 1m 
was maintained between the transmitter and receiver antennae, and both antennae were 
oriented perpendicularly to the profile direction. Each trace was vertically stacked 256 times 
in the field. The sampling rate was 0.676ns and the trace length 300ns. Figure 14 shows the 
3D view of the cuboid. Continuity of reflectors is better in the inline direction because the 
number of traces is higher (141 for inline instead of 77 for crossline sections). A strong and 
continuous reflector (called Horizon A) appears at about 250 ns and is present on all the 
traces. According to the field observations and the first interpretation with the 2D profiles, 
this lowermost reflector can be interpreted as the interface between the limestone bedrock 
and the fluvio-glacial deposits. In order to test our algorithm, we have modified the dataset 
to create a fault. 2D and 3D views of the considered dataset are given in Figure 15 and 16 
respectively. 
 

 
Fig. 15. Left: Two-dimensional view of the geological dataset (8949 data points) containing a 
fault  in correspondence to the boundaries with the white regions. Right: Two-dimensional 
view of the locally C1 approximant of the geological surface with the fault. 
 

 

 
Fig. 16. Three-dimensional view of the dataset corresponding to the geological surface with 
the fault (8949 data points). 
 

 
Fig. 17. Three-dimensional view of the locally C1 approximant of the geological surface with 
the fault. The approximant has been evaluated on an evenly space grid made of 150×150 
points. The same scale and colormap are used for each surface. The general agreement is 
excellent. No oscillations are present. 
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Here are the parameters used when running the proposed algorithm on this second real 
world example: 
– The triangulation is made of 400 triangles; 
– The adopted generic finite element is the Argyris triangle (class C1); 
– The smoothing parameter ε  is chosen equal to 10-6; 
– The evaluation grid is 150 × 150. 
The quadratic error on the 8949 data points turns out to be equal to 2.332 10-3. The obtained 
approximant is depicted in Figures 15 (right) and 17 where a 2D and a 3D view are given 
respectively. As it appears, no oscillations are present and excellent reconstruction results 
can be achieved. 

 
6. Conclusion 
 

We have developed a novel and efficient algorithm for approximating non regular gridded 
data exhibiting large and rapid variations and/or complex fault structures. The main steps 
of the proposed strategy consist in (1) accomplishing a pre-processing phase to define the set 
of discontinuities of the surface, (2) generating a triangular mesh taking into account these 
discontinuities, (3) applying a specific (known) finite element domain decomposition 
method and using a spline operator that relies on scale transformations (which seems to be 
very useful in controlling the behavior of the surface in the presence of steep gradients not 
found by the segmentation process) to produce the final approximating surface. Compared 
with conventional data fitting methods that exist in the literature, the proposed algorithm is 
able to suppress or at least decrease the undesired oscillations that generally arise near steep 
gradients, thus ensuring a faithful and accurate representation. The presented numerical 
examples illustrate the efficacy of the method. 
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1. Introduction    
With the ability of two-dimensional (2-D) microwave imaging, synthetic aperture radar 
(SAR) has been an important imaging tool for civilian and military applications. The basic 
idea of 2-D SAR is to synthesize a linear array by moving a high-range-resolution (HRR) 
radar long a straight path, and obtain the additional azimuthal resolution. To exact the 
height information from the 2-D SAR, interferometric SAR (InSAR) technique, which 
requires multiple antennas or repeated ight paths, has been developed and is widely used 
for remote sensing applications. 
However, since the interferometric SAR technique is based on the 2-D SAR images, it will be 
invalid, when there is more than one scatterer projected in the same pixel of the 2-D SAR 
image. This disadvantage makes it difficult to be used in high-precision 3-D RCS 
measurement and topographical survey in urban region. 
To improve the ability of microwave remote sensing, some new 3-D SAR systems, such as 
circle SAR, elevation circular SAR, curve SAR, and linear array SAR have been developed 
based on the synthetic aperture technique. The basic idea of them is to produce 2-D 
resolution by moving the HRR radar in 2-D / 3-D space and obtain the third dimensional 
resolution using pulse compression technique. This chapter will discuss the principle and 
imaging processing technique of 3-D SAR.  
In section 2, an approach to calculate the oscillatory integral has been introduced, which 
could simplify the analysis of 3-D SAR ambiguity function. In section 3, the ambiguity 
function and spatial resolution of 3-D SAR are discussed. The backprojection method and 
experiment data processing are presented in section 4 and 5 respectively. The 
multiresolution approximation techniques that can reduce the computational cost of 3-D 
SAR are discussed in section 6.  

 
2. Preliminary 
 

Compared with the traditional SAR, the echo model of 3-D SAR is more complex. To 
simplify the analysis of 3-D SAR, the calculation of oscillatory integral using density 
function will be introduced in this section. 
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2.1 A Simple Example 
At first, let’s observe a simple example. Assume that there is a discrete function 

( ) (0,1/ 4,2 / 4,0,1/ 4,1/ 4)f n  , and we need to calculate the sum of exp( 2 ( ))j f n  . 
Obviously, we have: 
 
                   2 0 2 1/ 4 2 2 / 4 2 0 2 1/ 4 2 1/ 4exp( 2 ( ))                          j j j j j j

n
j f n e e e e e e         (1) 

 
According to the commutative law of addition, eq. (1) can be rewritten as: 
 

       2 0 2 1/ 4 2 2 / 4 2 3 / 4exp( 2 ( )) 2 3 1 0j j j j

n
j f n e e e e                          (2) 

 
where, coefficients 2, 3, 1 and 0 represent the frequency (in the sense of probability, which is 
defined as the number of times that value occurs in the data set) of every exponential term. 
Thus, by introducing the concept of density function ( ) {2,3,1,0}i D , we have: 
 

      
3

2 / 4

0
exp( 2 ( )) ( ) j i

n i
j f n i e   



   D .   (3) 

 
Obviously, eq. (3) matches the definition of Discrete Fourier Transform (DFT). Denoting the 
DFT of ( )iD as ( )kD , we have: 

         exp( 2 ( )) (1)
n

j f n   D      (4) 

Similarly, we have: 

          3
2 / 4

0
exp( 2 ( )) ( ) ( )j k i

n i
j k f n i e k   



     D D    (5) 

 
This example indicates that the exponential sum of a finite discrete-time function can be 
calculated using its density function. However, since the commutative law of addition holds 
only when ( )f n is finite, and the concept of frequency is meaningful for finite set, a more 
precise definition of density function using Lebesgue measure and a theorem that extends 
eq. (4) to the continuous-time function will be presented in next subsection. 

 
2.2 Calculation of the oscillatory integral using density function  
According to measure theory, functions are divided into four classes, simple function, 
Bounded Function Supported on a set of Finite Measure (BFFM), non-negative function and 
integrable function (the general case). For the analysis of array whose size is finite, the BFFM 
assumption is sufficient. 
Given a BFFM ( )f t with support F , analogous to the definition of Cumulative Density 
Function (CDF) in probability theory, define the Cumulative Density Function of ( )f t as:  
 

( ) ( )yy mfC F ,    (6-1) 

 

{ : ( ) ; }y t f t y y  F ,    (6-2) 
 
where, yF is the subset of F . ( )ym F denotes the Lebesgue measure of yF , which describe 
the volume (area) of yF . Especially, when F  is finite set, ( )ym F is the cardinality of 
subset yF . 
Then we define the Density Function (DF) of ( )f t  as the derivative of ( )yfC : 
 

( ) ( ) /y d y dyf fD C      (7) 
 
Obviously, ( )yfD  satisfies:  
 

1. ( ) 0y fD ; 

2. ( ) ( )y dy m




   fD F ; 

 
Properties 1 and 2 of ( )yfD  indicate that ( )yfD  is absolutely integrable, and its Fourier 
transform exists.  
Using the concept of density function, we can calculate an oscillatory integral using the 
following theorem. 
Theorem 1: Given a BFFM phase function ( )f t  supported on a set E , we have: 
 

 ( ) (1)jf t
fe dt  D

E
     (8) 

 
where,  ( )f D denotes the Fourier transform of ( )yfD  
Proof: 
The proof of theorem 1 includes two steps: firstly, we consider ( )f t  as a simple function, 
and then extend the conclusion to BFFM function.  
According to the definition in measure theory, a simple function is a finite sum of a group of 
characteristic functions: 

1
( ) ( )

k

K

k
k

f t a t


  E      (9-1) 

1
( )

0k

k

k

t
t

t



  

E

E
E

     (9-2) 

 
where, ka is constant, kE denotes a measurable subset of set E , ( )

k
tE denotes the 

characteristic function of kE .  
 
 Case 1: rational number 
Assume that ka  are all rational number, there exists an equal-interval infinite rational 
number set: 
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 -1 1{- ,..., ,0, ,...,+ },Q
Q Q

  B =     (10) 

 
satisfying ka B (in the example, { } {0,1/ 4,2 / 4}ka  , {0,1/ 4,2 / 4,3/ 4}B ).  
Using set B , we can construct a group of characteristic function ( )

i
tF , and ( )f t could be 

written as: 

( ) ( )
ii

i
f t b t





  F       (11) 

 
where, ib B ; i kF E , when i kb a ; otherwise, k  F . 
According to the definition of Lebesgue integral, we have: 
 

( ) ( ) ( )i ijb jbjf t
i

i i
e dt e m e i

 

 

   fDE
F     (12) 

 
Case 2: real number 
Assume that ka  are all real number, according to the real analysis, for every real number a , 
there exists a sequence { }na of rational numbers can approximate to it. Thus, there exists a 
sequence { }QB of rational number sets can approximate to all of the ka , i.e.: 
 

( ) lim ( )
Q
ijbjf t

Q i
e dt e i






  Q
fDE

,        (13) 

 
with the increase of Q , the interval 1/Q  of B trends toward zero, and eq. (13) can be 
written in integral form as: 

( ) ( )jf t jye dt e y dy




  fDE
.     (14) 

 
Since the Fourier transform of ( )yfD  exists, we have: 
 

    ( ) (1)jf te dt  fD
E

     (15) 

 
For a BFFM function ( )f t bounded byM and supported on a set E , there exists a sequence 
{ }nf of simples functions, with each nf  bounded by M  and supported on a set E , and such 
that: 
 

 ( ) ( )nf t f t  for all t .      (16) 
 

Thus, eq. (8) holds for all BFFM functions. 
□ 

 

Theorem 1 provides a method to calculate the oscillatory integral without any 
approximation. Compared with the principle of stationary phase (PSP), this method does 
not need ( )f t  be derivable, and holds for all BFFM function. 
Using theorem 1, we can obtain the following corollary directly by rewritten eq. (12) as: 
 

( ) ( ) ( )j u f t j u y
fe dt e y dy u


   



   fD D
E

    (18) 

 
Corollary 1:  
 

( ) ( )j u f t
fe dt u   D

E
     (19) 

 
As it will be seen in the next section, this corollary is crucial for the analysis on the 
ambiguity function of 3-D SAR. 

 
3. Principle of 3-D SAR 
 

3.1 Introduction on the typical 3-D SARs 
In this subsection, a brief discussion on the typical 3-D SAR systems including circle SAR 
(CSAR), elevation circular SAR (E-CSAR), curve SAR, and linear array SAR (LASAR) will be 
proposed. 
In 1999, Tsz-King Chan, Yasuo Kuga, and Akira Ishimaru proposed a novel method for 
radar topographical imaging which required the SAR platform to move in a circular orbit, 
and named it as circular SAR. In their experiment, the transmitting and receiving antennas 
were mounted on two separate wooden rings that were individually driven by stepping 
motors with an angular precision of approximately 0.02. Imaging result of a model 
helicopter of length 30 cm has been obtained and published (Tsz-King Chan; Kuga, Y.; 
Ishimaru, A., 1999). In 2001, at the Radar Division of Georgia Tech Research Institute (GTRI), 
a 3-D inverse synthetic aperture radar (SAR) system has been developed that performs 
synthetic aperture measurement via a linear motion of the radar in the elevation domain, 
and a circular (turntable) motion of the target in the range and cross-range domains, which 
was named as elevation circular SAR (E-CSAR) system. Its geometry is shown in Figure 1.  
 

 
Fig. 1. Geometry of E-CSAR 
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Fig. 1. Geometry of E-CSAR 
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The radar motion in elevation provides target coherent radar cross section (RCS) as a 
function of the elevation (or depression) angle. The target’s circular motion yields the 
azimuthal look angle information. The imaging results of T-72 tank have been obtained and 
published (Bryant, M.L., Gostin, L.L., Soumekh, M. 2003). In fact, the concept “elevation 
circular SAR” could be extended by controlling the radar moving around the target in a 
helix trajectory which is shown in Figure 2. The cylindrical surface produces the 2-D 
resolution vertical (approximately) to the range resolution. Furthermore, to simplify the 
motion control, the helix trajectory could be composed by the circle motion of the radar and 
the rectilinear motion of the target, which is shown in Figure 3.  
 

    
Fig. 2. Geometry of E-CSAR with helix trajectory Fig. 3. Geometry of E-CSAR composing 
helix trajectory by circle motion and rectilinear motion 
 
The advantage of E-CSAR is that we can obtain the RCSes of the target in different elevation 
angle and azimuthal angle in one observation session; its disadvantage is that the target’s 
size must be smaller than the diameter of the cylinder, which makes it difficult to be 
employed for large-size target. In fact, since the RCS of the target varies with the elevation 
angle and azimuthal angle, the synthetic aperture is a local region of the cylndrical surface, 
which is illustrated in Figure 4 (left).  

 
Fig. 4. Approximation of a local region of the E-CSAR using a synthetic plane aperture 

 

Thus, we could approximate the local region as a plane and control the antenna phase centre 
moving in the plane by using a 2-D motion control platform or a linear array mounted on a 
1-D motion control platform, which is shown in Figure 4 (right), and obtain the radar cross 
section (RCS) in one specific direction in one observation session. To obtain the RCSes in 
different elevation angle and azimuthal angle, one can just rotate the target or the platform. 
Compared with the E-CSAR, the size of the synthetic plane aperture is small and could be 
used in 3-D RCS measurement for large-size target. 
Besides the E-CSAR, the curve SAR has also been researched in the radar community. In 
1995, Jennifer L.H., Webb and David C. Munson, Jr. considered the problem of spotlight-
mode synthetic aperture radar (SAR) imaging for an arbitrary radar path to reconstruct a 2-
D image of 3-D surfaces.  In 2004, Sune R. J. Axelsson researched the beam characteristics of 
3-D SAR in curved or random paths in detail, and concluded that the SAR sidelobe 
suppression of a single circle path was worse than that of a circular antenna of similar size 
due to the fact that only a line boundary was used as SAR aperture. The spiral paths and 
random paths were discussed to improve the beam characteristic of 3-D SAR. The geometry 
of typical curve SAR is shown in Figure 5. The radar is mounted on a platform with curve 
path to synthesize a 2-D aperture. 
 

 
Fig. 5. Geometry of curve SAR 

 
The advantage of curve SAR is that the size of the synthetic aperture could be far larger than 
the other 3-D SAR systems, which means high-resolution in the cross-track (x) direction; its 
disadvantage is that the motion control is too difficult to be implemented for the application 
of topographical survey in practice. 
In 1996, Bassem R. Mahafza and Mitch Sajjadi proposed the concept “linear array SAR”, 
which mounted a linear array on a platform with rectilinear motion and synthesized a 2-D 
plane array. Its geometry is shown in Figure 6. In 2004, R. Giret, H. Jeul and, P. Enert 
conceived a millimeter-wave imaging radar onboard an UAV, and designed a 3-D 
millimeter-wave imaging plan. In their plan, a linear array was mounted above the ground 
(perpendicular to the ground plane) and vehicles passed under the system to obtain the 3-D 
image of the vehicles.  
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The advantage of curve SAR is that the size of the synthetic aperture could be far larger than 
the other 3-D SAR systems, which means high-resolution in the cross-track (x) direction; its 
disadvantage is that the motion control is too difficult to be implemented for the application 
of topographical survey in practice. 
In 1996, Bassem R. Mahafza and Mitch Sajjadi proposed the concept “linear array SAR”, 
which mounted a linear array on a platform with rectilinear motion and synthesized a 2-D 
plane array. Its geometry is shown in Figure 6. In 2004, R. Giret, H. Jeul and, P. Enert 
conceived a millimeter-wave imaging radar onboard an UAV, and designed a 3-D 
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image of the vehicles.  
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Fig. 6. Geometry of linear array SAR 
 
Compared with the curve SAR, the motion control of linear array SAR is simpler. While, to 
achieve high cross-track resolution, the linear array must be rather long and the number of 
element is large, which is difficult and expensive to be implemented. To reduce the system 
complexity and cost, M. Weiß and J.H.G. Ender introduced the concept “MIMO radar” into 
the linear array SAR. With this concept, one can synthesize a sparse linear array SAR with 
relatively low cost, whose equivalent geometry is shown in Figure 7. 
 

 
Fig. 7. Geometry of sparse LASAR, only the colored elements active at one pulse repetition 
period  
 
The disadvantage of LASAR and sparse LASAR is that the cross-track resolution is 
determined by the length of the linear array. Since the length of the linear array is limited by 
the size of the platform, its cross-track resolution will be the bottleneck. Theoretically, the 
curve SAR could be considered as a kind of sparse LASAR (shown in Figure 7 in the blue 
dash-line). 
In a word, the key problem of 3-D SAR is to vary the position of antenna phase centre (APC) 
in the 2-D / 3-D space. This work could be implemented mechanically (such as 2-D motion 
control platform and aircraft), or electrically (such as linear array). By moving HRR radar in 
2-D plane using high precision motion control platform, we can build a low-cost 3-D RCS 
measurement device. The linear array SAR with MIMO technique might be the most feasible 
3-D SAR system for the topographical survey application, thought there are still some 
problems, such as, the balance between the length of linear array and the cross-track 
resolution and the compensation of motion measurement error.  

 

3.2 General echo model of 3-D SAR 
For the traditional SAR, the echo is always considered as a function of fast-time   and slow-
time t . While, for 3-D SAR, there might be more than one channel echo received at one pulse 
repetition period, such as LASAR and sparse LASAR, and it is not convenient to describe 
the  3-D SAR echo using slow-time t . In fact, the synthetic aperture technique produces 
additional resolution by moving the antenna phase centre in the spatial domain, and we 
should pay more attention on the change of the antenna phase centre in spatial domain 
rather than that in the time domain. Thus, a general echo model is built in this subsection, 
which can describe different  3-D SAR systems. 
Given a scatterer with position P , its slant range to the antenna phase centre with position 
apcP  is: 

 

2
( , )apc apcR  P P P P                (20) 

 
where, 

2
 denotes the 2-norm of vector. 

Given the transmitted baseband signal ( )f t , ignoring the radiation pattern, the scatterer’s 
echo ( ; ; )apc P PD can be written as: 
 

( ; ; ) exp( 2 2 ( , ) / ) ( 2 ( , ) / )         D apc apc apcj R f R cP P P P P P     (21) 
 
where,  denotes the fast time domain,   denotes the wave length of the carrier. The first 
term in eq.(21) is the Doppler term arising from the relative position changes of the antenna 
phase centre with respect to the target. The second term is the fast-time term which causes 
the range resolution. Note that, in some cases, the transmitter and receiver might be 

operated independently, and term 2 ( , )apcR P P in eq. (21) should be rewritten as ( , )
T
apcR P P  

+ ( , )
R
apcR P P , and the analysis should be modified correspondingly.  

To describe the relative position changes, we introduce the concept “antenna phase centre 
set” P  denoting the collection of the positions of the antenna phase centre (note that the 
elements in the antenna phase centre set might be repetitive.).  
For traditional 2-D SAR, its antenna phase centre set could be expressed as: 
 

0 0{ , , , , ; }x y z x x y v t z z t       P T    (22) 
 
where, v denotes the speed of the platform, T denotes the slow-time domain, 0z denotes the 
height of the platform. 
For E-CSAR, we have: 
 

{ , , cos( ), sin( ), ; }hx y z x t y t z v t t       P T    (23) 
 

where,  denotes the radius of the cylinder, hv denotes the speed in the vertical direction. 
For curve SAR, we have: 
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problems, such as, the balance between the length of linear array and the cross-track 
resolution and the compensation of motion measurement error.  

 

3.2 General echo model of 3-D SAR 
For the traditional SAR, the echo is always considered as a function of fast-time   and slow-
time t . While, for 3-D SAR, there might be more than one channel echo received at one pulse 
repetition period, such as LASAR and sparse LASAR, and it is not convenient to describe 
the  3-D SAR echo using slow-time t . In fact, the synthetic aperture technique produces 
additional resolution by moving the antenna phase centre in the spatial domain, and we 
should pay more attention on the change of the antenna phase centre in spatial domain 
rather than that in the time domain. Thus, a general echo model is built in this subsection, 
which can describe different  3-D SAR systems. 
Given a scatterer with position P , its slant range to the antenna phase centre with position 
apcP  is: 

 

2
( , )apc apcR  P P P P                (20) 

 
where, 

2
 denotes the 2-norm of vector. 

Given the transmitted baseband signal ( )f t , ignoring the radiation pattern, the scatterer’s 
echo ( ; ; )apc P PD can be written as: 
 

( ; ; ) exp( 2 2 ( , ) / ) ( 2 ( , ) / )         D apc apc apcj R f R cP P P P P P     (21) 
 
where,  denotes the fast time domain,   denotes the wave length of the carrier. The first 
term in eq.(21) is the Doppler term arising from the relative position changes of the antenna 
phase centre with respect to the target. The second term is the fast-time term which causes 
the range resolution. Note that, in some cases, the transmitter and receiver might be 

operated independently, and term 2 ( , )apcR P P in eq. (21) should be rewritten as ( , )
T
apcR P P  

+ ( , )
R
apcR P P , and the analysis should be modified correspondingly.  

To describe the relative position changes, we introduce the concept “antenna phase centre 
set” P  denoting the collection of the positions of the antenna phase centre (note that the 
elements in the antenna phase centre set might be repetitive.).  
For traditional 2-D SAR, its antenna phase centre set could be expressed as: 
 

0 0{ , , , , ; }x y z x x y v t z z t       P T    (22) 
 
where, v denotes the speed of the platform, T denotes the slow-time domain, 0z denotes the 
height of the platform. 
For E-CSAR, we have: 
 

{ , , cos( ), sin( ), ; }hx y z x t y t z v t t       P T    (23) 
 

where,  denotes the radius of the cylinder, hv denotes the speed in the vertical direction. 
For curve SAR, we have: 
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  0{ , , ( ), , ; }x y z x x t y v t z z t       P T    (24) 
 
where, ( )x t and v t compose the curve trajectory.  
For linear array SAR, we have: 
 

0{ , , , , ; }x y z x y v t z z t       P X T    (25) 
 
where, X denotes the set of the x positions of the linear array, e.g., { ; 0,1,..., 1}x i d i N   X , 
N denotes the element number of the linear array, d denotes the element interval. 

For sparse LASAR, P is a group of random positions, and we just simplify denote it asP . 
Using the antenna phase centre set, we can easily express the echo of 3-D SAR as: 
 

( ; ) { ( ; ; ) ; }apc apcr r  P P P PD DD P    (26) 

 
Note that, given r, D is a set defined under the antenna phase centre set P rather than a 
number.  
Thought this echo model is more abstract than the classical one, as it will be seen in the next 
subsection, it will simplify the analysis of 3-D SAR ambiguity function. We could build the 
direct relationship between the antenna phase centre set P (describes the shape of the 
synthetic aperture) and its ambiguity function, which make it easy for the 3-D SAR analysis 
and design. 

 
3.3 Ambiguity function 
Ambiguity function (AF) is one of the crucial concepts in the radar theory. For the pulse-
Doppler (PD) radar, ambiguity function is a 2-D function of time delay and Doppler 
frequency. For imaging radar, it describes the interaction of different scatterers in the image 
space, which is also called point spread function. A well-designed imaging radar should 
have narrow mainlobe, low peak sidelobe ratio (PSLR) and low integrated sidelobe ratio 
(ISLR). In this section, we will discuss the ambiguity function of 3-D SAR. 
Based on the echo model built in last subsection, the ambiguity function ( ) P of 3-D SAR 
can be defined as: 
 

*

2

( ; ) ( ; )
( )

[ ; ]

d

d





  


 





P 0
P

0
 p

p

D D

D
       (27) 

 
where, superscript * denotes complex conjugate, 0 denotes the position of the reference 
point. 
Since the integration with respect to the fast time   in eq. (27) is the range-compression 
operation, eq. (27) can be rewritten as: 
 

 

1( ) exp( 2 [ ( , ) ( , )]/ ) ( 2 ( , ))R
apc apc apcj R R r R

M
         P P P 0 P 0 P

p
 (28) 

 
where, r denotes the range domain, ( )R r denotes the ambiguity function in the range 
direction, which is a sinc function. 
Approximating ( )R r as the impulse function, the range AF in eq.(28) could be moved out 
of the summation by range migration adjustment during imaging processing, and eq. (28) 
could be rewritten as: 
 

0
1( ) exp( 2 [ ( , ) ( , )]/ ) ( 2 ( , ))R

apc apcj R R r R
M

    
        
  
P P P 0 P 0 P
p

 (29) 

 
where, 0P denotes the centre of the synthetic aperture. 
From eq.(29), the ambiguity function of 3-D SAR is the product of two terms: the first term 
in the curly brace is the Doppler term, which is caused by the synthetic aperture and 
produces resolution in the aperture direction(s); the second term is the fast-time term which 
produces range resolution. We define the synthetic aperture ambiguity function as: 
 

1( ) exp( 2 ( , ) / ) apcj R
M

   
     
  
P P Pp

p
   (30) 

( ) ( , ) ( ; )apc apc apcR R R
 P P P 0 P  
 

where, ( )apcR P denotes the difference between ( , )apcR P P and ( , )apcR 0 P . 
And the AF of 3-D SAR could be written as the product of ( )R r  and ( ) Pp : 
 

0( ) ( ) ( 2 ( , ))     R r RP P 0 Pp    (31) 
 
Eq (31) indicates that the AF of 3-D SAR could be divided as a range AF and a synthetic 
aperture AF and analyzed independently. Since the range AF is a sinc function and 
independent to the antenna phase centre set, ( ) Pp should be paid more attention to.  
For further analysis, we approximate ( )apcR P  using the multivariable Taylor’s theorem, 
and have: 

0/ ( , )
T

apcapcR R
  P P 0 P     (32) 

 
where, superscript T denotes the transpose operator. 
Rewrite P in the spherical coordinates as    P ς , we have: 
 

    
 T

apcapcR ς P ς      (33) 

0/ ( , )  R 0 P  
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where, 0P denotes the centre of the synthetic aperture. 
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in the curly brace is the Doppler term, which is caused by the synthetic aperture and 
produces resolution in the aperture direction(s); the second term is the fast-time term which 
produces range resolution. We define the synthetic aperture ambiguity function as: 
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where, ( )apcR P denotes the difference between ( , )apcR P P and ( , )apcR 0 P . 
And the AF of 3-D SAR could be written as the product of ( )R r  and ( ) Pp : 
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Eq (31) indicates that the AF of 3-D SAR could be divided as a range AF and a synthetic 
aperture AF and analyzed independently. Since the range AF is a sinc function and 
independent to the antenna phase centre set, ( ) Pp should be paid more attention to.  
For further analysis, we approximate ( )apcR P  using the multivariable Taylor’s theorem, 
and have: 
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where, superscript T denotes the transpose operator. 
Rewrite P in the spherical coordinates as    P ς , we have: 
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where,  denotes the radius of P , ς denotes the direction of P ,  is the ratio of   to 
0( , )R 0 P . 

Substituting eq. (33) into eq. (30), we have: 
 

1( ) exp 2 ( ) /            
T

apcj
Μς

P ςp

p
    (34) 

 

Regarding ( ) / 
T

apcP ς  as a phase function, it is the projection of antenna phase centre set 

P onto the ς  direction. Using corollary 1, we have the AF in the ς  direction: 
 

21 1( ) ( ) ( )j ye y dy
Μ M

   


  



    ςς ς
 

p D D     (35) 

 
The physical meaning of eq. (35) is shown in Figure 8. We can obtain the density function 

( ) iς
D  by counting the number of elements whose projection on the ς direction is in the 

neighbourhood of i , and the AF in the ς direction is the Fourier transform of ( ) iς
D  

approximately. 
 

ς
D
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ς
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Fig. 8. Explanation on eq. (35), the AF in the ς direction is the Fourier transform of ( ) iς

D  

approximately. 
 
Eq. (35) builds the direct relationship between the antenna phase centre set P and the 
synthetic aperture ambiguity function ( ) ς

p . Then, the synthetic aperture ambiguity 

function of typical antenna phase centre sets will be discussed. 
 

 Z-shaped trajectory 
As a kind of simple continuous trajectory, Z-shaped trajectory is easy to be implemented 
using 2-D motion control platform and has been used in our experiments, which is shown in 
Figure 9-a. Figure 9-b and Figure 9-c are its ambiguity functions obtained by simulation and 
experiment respectively, and its grating lobe is high and dense.  

 

-2-1012
-4

-3

-2

-1

0

1

2

3

4

Cross Track (m)

A
lo

ng
 T

ra
ck

 (m
)

 
(a)     (b)    (c) 

-40 -20 0 20 40
0

10

20

30

40

50

60

70

r / �

D
en

si
ty

 F
un

ct
io

n

      -0.4 -0.2 0 0.2 0.4 0.6
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

�

A
F

 

 

AF
FT[DF]

 
(d)      (e) 

Fig. 9. (a) Z-shaped trajectory; (b) 2-D AF by simulation;  (c) 2-D AF by experiment; (d) DF 
vertical to the edge, that two impulses are added on a rectangle function; (e)  AF 
corresponding to Figure (d), whose grating lobes are quite high and dense. 
 
This phenomenon could be explained using eq. (35). Observing Figure 9-a, we find that 
when the direction is vertical to the edge of the triangle function, all of the elements on one 
edge are projected on the same point, and there are two impulses are added on the density 
function (Figure 9-d). Consequently, the sidelobe of the directional AF (which is the Fourier 
transform of Figure 9-d and shown in Figure 6.e) is high, whose PSLR and ISLR are 7.60dB 
and -3.28 dB respectively.  
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Fig. 10. (a) DF vertical to the edge with short period; (b) 2-D AF by simulation; (c) AF 
corresponding to Figure (a), whose grating lobes are sparse 
 
High ISLR and PSLR mean that the sidelobe of strong scatterer will submerge the weak 
scatterer, and cause measurement error in the 3-D RCS measurement application. This 
problem could be solved by increasing the periodicity of the Z-shaped trajectory. With the 
increase of periodicity, the impulses in the density function increase correspondingly 
(Figure 10 a), and the grating lobe becomes sparse (Figure 10. b and c). Just as the grating 
lobe problem in the theory of antenna array, when the period of the Z-shaped trajectory is 
less than 1/2, the grating lobe will be eliminated completely. 
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 Z-shaped trajectory 
As a kind of simple continuous trajectory, Z-shaped trajectory is easy to be implemented 
using 2-D motion control platform and has been used in our experiments, which is shown in 
Figure 9-a. Figure 9-b and Figure 9-c are its ambiguity functions obtained by simulation and 
experiment respectively, and its grating lobe is high and dense.  
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Fig. 9. (a) Z-shaped trajectory; (b) 2-D AF by simulation;  (c) 2-D AF by experiment; (d) DF 
vertical to the edge, that two impulses are added on a rectangle function; (e)  AF 
corresponding to Figure (d), whose grating lobes are quite high and dense. 
 
This phenomenon could be explained using eq. (35). Observing Figure 9-a, we find that 
when the direction is vertical to the edge of the triangle function, all of the elements on one 
edge are projected on the same point, and there are two impulses are added on the density 
function (Figure 9-d). Consequently, the sidelobe of the directional AF (which is the Fourier 
transform of Figure 9-d and shown in Figure 6.e) is high, whose PSLR and ISLR are 7.60dB 
and -3.28 dB respectively.  
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Fig. 10. (a) DF vertical to the edge with short period; (b) 2-D AF by simulation; (c) AF 
corresponding to Figure (a), whose grating lobes are sparse 
 
High ISLR and PSLR mean that the sidelobe of strong scatterer will submerge the weak 
scatterer, and cause measurement error in the 3-D RCS measurement application. This 
problem could be solved by increasing the periodicity of the Z-shaped trajectory. With the 
increase of periodicity, the impulses in the density function increase correspondingly 
(Figure 10 a), and the grating lobe becomes sparse (Figure 10. b and c). Just as the grating 
lobe problem in the theory of antenna array, when the period of the Z-shaped trajectory is 
less than 1/2, the grating lobe will be eliminated completely. 
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 Dense square array 
For LASAR, its synthetic aperture is a full-element square array, which is shown in Figure 
11.a. Since the number of elements is equal for different x, its density function in the x 
direction is rectangle function, which is shown in Figure 11.b. The directional AF in the x 
direction is the Fourier transform of the rectangle function, which is a sinc function and 
shown in Figure 11.e. the black solid line is obtained by numerical simulation, the red dot 
line is the Fourier transform of Figure 11.b. The peak sidelobe ratio (PSLR) and integrated 
sidelobe ratio (ISLR) are -11.80 dB and -8.41dB respectively, which is near to the sinc 
function (-13.30 dB and -10.16 dB respectively).  
Then, let’s observe the density function in the diagonal direction. From Figure 11.a, it is 
obvious that the number of elements increases linearly from one endpoint of the diagonal to 
the centre, and decreases linearly from the centre to the other endpoint. In consequence, the 
density function in the diagonal direction is a triangle function, which is shown in Figure 
11c. Figure 11 f is the AF in the diagonal direction. The black solid line is obtained by 
numerical simulation, the red dot line is the Fourier transform of Figure 11.c. The PSLR and 
ISLR are -22.86 dB and -20.71dB respectively, which is near to the Fourier transform of 
triangular window (-26.82dB and -22.02 dB respectively) 
Figure 11.d is the 2-D AF of dense square array. We find that it has star-shaped AF. 
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(d)     (e)                   (f) 

Fig. 11. (a) Dense square array; (b) DF in the x direction, which is a rectangle function; (c) DF 
in the diagonal direction, which is a triangle function; (d) 2-D AF of dense square array, 
whose sidelobes are distributed in the x and y directions mainly; (e) AF in the x direction, 
which is a sinc function; (f) AF in the diagonal direction, which is the Fourier transform of 
triangle function. 
 
 Random sampling 
For sparse LASAR, its synthetic aperture is a random sampling in the full-element square 
array, which is shown in Figure 12.a 
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Fig. 12. (a) Random sampling square array; (b) DF in the x direction, which is a rectangle 
function with noise; (c) DF in the diagonal direction, which is a triangle function with noise; 
(d) 2-D AF; (e) AF in the x direction, which is similar to the Fourier transform of Figure b; (f) 
AF in the diagonal direction, which is similar to the Fourier transform of Figure c. 
 
Figure 12. b and c are the density functions in the x and diagonal directions. Comparing 
with their counterparts of dense square array, we find that its density functions could be 
considered as the density functions of dense square array modulated by a noise. As a result, 
its PSLR in the x and diagonal directions (Figure 12.e and 12.f) are similar to those of dense 
square array. However, since the noise modulated on the density functions increases the 
high-frequency components, which are corresponded to the far-area sidelobes, its ISLR is 
higher than that of dense square array.  
Figure 12.d is the 2-D AF of uniform distribution sparse array. Comparing with Figure 12.d, 
we find that its far-area sidelobe is higher than that of dense square array (Note the color 
bar). Energy leak is the main disadvantage of sparse array. One can improve the PSLR and 
ISLR by increasing the random sampling number, since its mainlobe energy is proportional 
to the square of the sampling number, and the sidelobe energy is proportional to the 
sampling number(Gauss distribution). 

 
3.4 Spatial Resolution 
The range resolution of 3-D SAR is produced by the pulse compression technique, and we 
can obtain the resolution formula directly as: 
 

/(2 ) R c B      (36) 
 

where, c denotes the speed of light, B denotes the signal bandwidth. 
The other two dimensional resolutions are produced using the array theory, and we can 
write the resolution formula as: 



Three-Dimensional Microwave Imaging using Synthetic Aperture Technique 389
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density function in the diagonal direction is a triangle function, which is shown in Figure 
11c. Figure 11 f is the AF in the diagonal direction. The black solid line is obtained by 
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Figure 11.d is the 2-D AF of dense square array. We find that it has star-shaped AF. 
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Fig. 11. (a) Dense square array; (b) DF in the x direction, which is a rectangle function; (c) DF 
in the diagonal direction, which is a triangle function; (d) 2-D AF of dense square array, 
whose sidelobes are distributed in the x and y directions mainly; (e) AF in the x direction, 
which is a sinc function; (f) AF in the diagonal direction, which is the Fourier transform of 
triangle function. 
 
 Random sampling 
For sparse LASAR, its synthetic aperture is a random sampling in the full-element square 
array, which is shown in Figure 12.a 
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Fig. 12. (a) Random sampling square array; (b) DF in the x direction, which is a rectangle 
function with noise; (c) DF in the diagonal direction, which is a triangle function with noise; 
(d) 2-D AF; (e) AF in the x direction, which is similar to the Fourier transform of Figure b; (f) 
AF in the diagonal direction, which is similar to the Fourier transform of Figure c. 
 
Figure 12. b and c are the density functions in the x and diagonal directions. Comparing 
with their counterparts of dense square array, we find that its density functions could be 
considered as the density functions of dense square array modulated by a noise. As a result, 
its PSLR in the x and diagonal directions (Figure 12.e and 12.f) are similar to those of dense 
square array. However, since the noise modulated on the density functions increases the 
high-frequency components, which are corresponded to the far-area sidelobes, its ISLR is 
higher than that of dense square array.  
Figure 12.d is the 2-D AF of uniform distribution sparse array. Comparing with Figure 12.d, 
we find that its far-area sidelobe is higher than that of dense square array (Note the color 
bar). Energy leak is the main disadvantage of sparse array. One can improve the PSLR and 
ISLR by increasing the random sampling number, since its mainlobe energy is proportional 
to the square of the sampling number, and the sidelobe energy is proportional to the 
sampling number(Gauss distribution). 

 
3.4 Spatial Resolution 
The range resolution of 3-D SAR is produced by the pulse compression technique, and we 
can obtain the resolution formula directly as: 
 

/(2 ) R c B      (36) 
 

where, c denotes the speed of light, B denotes the signal bandwidth. 
The other two dimensional resolutions are produced using the array theory, and we can 
write the resolution formula as: 
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/(2 )        (37) 
 

where,  denotes the wave length,  denotes the aperture angle. Remark that the “2” in eq. 
(37) indicates that the transmitter and receiver moving cooperatively. If the transmitter or 
receiver is fixed, the resolution formula should approximately be /   . 
Note that, the aperture angle  is influenced by the size of the array, the beam angle of the 
T/R antenna and the scatterer angle (the angle in which the RCS could be considered as 
constant.), which are shown in Figure 13.  
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Fig. 13. Influenced of the array size, aperture angle and scatterer angle on the resolution 
The resolution is restricted by the worst factor, i.e.: 
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The first two factors could be optimized in the design of 3-D SAR system; the last factor 
arises from the scattering mechanism and is difficult to be reduced. It also means that we 
can not improve the resolution of 3-D SAR unlimitedly. 

 
4. Backprojection Method 
 

Backprojection (BP) algorithm is a 3-D SAR imaging algorithm based on the time domain 
correlation (TDC) technique, which coherently adds the data at the fast-time bin that 
corresponds to the location of a point for all synthetic aperture locations. The BP algorithm 
can be considered as the implementation of the definition of ambiguity function, and has 
been used in E-CSAR data processing.  
The input of the BP operator is the raw data, antenna phase centre set and the scatterer’s 
position; the output is the RCS of the scatterer. 
Let IID ,P  and P be the raw data after range compression, antenna phase centre set and the 
scatterer’s position, the BP operator can be expressed as: 
 

II[ , , , ] PD PC      (39) 
 
The implementation of the BP operator [ ]C is presented in eq. (40): 
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where, uvwP denotes the pixel in the image space.  
From eq. (40), we know that just like the 2-D BP algorithm, the 3-D BP algorithm can 
roughly be divided into four steps: range-compression, interpolation, resampling and 
coherent summation, whose block diagram is shown in Figure 14. Processing the 3-D image 
region one pixel by one pixel, we can obtain the 3-D RCS distribution finally. 
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Fig. 14. Block diagram of 3D BP algorithm 
 
From eq. (40), the computational cost C  of the single-scatterer compression operator 

[ ]C can easily be calculated as: 
 

( )int cohM     C     (41) 
 

where, M denotes the total element number of antenna phase centre set, int and 

coh denote the computational costs of the interpolation operation and the coherent 
summation operation respectively. 
Ignoring the computational cost of the range-compression operation, for a 3-D image region 
with size L×W×H(pixel3), the total computational cost of 3-D BP algorithm is: 
 

 L W HBP    C     (42) 
 
Compared with 2-D BP, there are two factors that cause the computational cost of 3-D BP 
algorithm is far larger than that of 2-D BP: the increase of the acquired data and the 
extension of image region. The former factor can partially be solved using the sparse array 
technique. The latter factor can be solved using the multiresolution approximation 
technique, which will be introduced in the following section. 

 
5. Imaging Processing of 3-D SAR 
 

To verify the feasibility of “one-active” LASAR, a series of experiments have been carried 
out. The typical experiment plan is shown in Figure 15, and includes three parts: “one-
active” LASAR, reference points and scene area. 
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Compared with 2-D BP, there are two factors that cause the computational cost of 3-D BP 
algorithm is far larger than that of 2-D BP: the increase of the acquired data and the 
extension of image region. The former factor can partially be solved using the sparse array 
technique. The latter factor can be solved using the multiresolution approximation 
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5. Imaging Processing of 3-D SAR 
 

To verify the feasibility of “one-active” LASAR, a series of experiments have been carried 
out. The typical experiment plan is shown in Figure 15, and includes three parts: “one-
active” LASAR, reference points and scene area. 
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Fig. 15. Experiment plan of 3-D SAR 
 
The “one-active” LASAR consists of two parts: radar module and motion control module. 
The radar module is used to transmit the LFM signal and receive the echo from the 
observation scene. The whole system works on the X-band with signal bandwidth about 
120MHz and pulse repetition frequency 20Hz. The motion control module is used to control 
the transmitter and the receiver moving in a 2-D plane, and synthesize a virtual 2-D antenna 
array. The motion control module consists of a set of high-precision transfer device with 
effective length 2mⅹ 2m and two high-precision motors, which can compose any 
continuous 2-D curve. The Z-shaped trajectory with period 1/5, 1/20 and 1/30 are used in 
the experiment. 
Figure 16 is the experiment data of “one-active” LASAR after range-compression. The top 
black line is the echo of reference point after range compression; the bottom stripped area is 
the echo of scene area. 
 

PRI

R
an

ge
 (p

ix
el

)

2000 4000 6000 8000 10000 12000 14000

20

40

60

80

100

120

140

160

180

200

    
Fig. 16. Experiment data after range-compression Fig. 17. Time-frequency spectrum of single 
scatterer 
 
To analyze the signal characteristic of “one-active” LASAR, we select one row data in one 
range-bin, and obtain its time-frequency spectrum by Short-Time Fourier transformation 
(STFT). Figure 17 is the typical time-frequency spectrum of single scatterer. We find that the 
time-frequency characteristic of 3-D SAR is more complex than that of traditional SAR (chirp 
signal), and contains more information on the target.   
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Fig. 18-a photo of the whole scene  Fig. 19-a photo of fence and lamp  Fig. 19-b imaging 
result of the fence and lamp 
 

 
Fig. 18-b, c and d, imaging results of the whole scene in the top view, side view and 3-D 
view respectively. 
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Fig. 20-a photo of metal spheres Fig. 20-b imaging result of spheres (side view) Fig. 20-c 
imaging result of spheres (top view) 
 
Figure 18-a is the photo of observation scene, Figure 18-b, c and d show its imaging result in 
the top view, side view and 3-D view. And we find that the imaging result can depict the 
main features of the observation scene. 
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Figure 18-a is the photo of observation scene, Figure 18-b, c and d show its imaging result in 
the top view, side view and 3-D view. And we find that the imaging result can depict the 
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Figure 19-a is the photo of a local region of the observation scene, which contains a metal 
fence and a street lamp with metal lampstandard. Figure 19-b is its imaging result. 
Obviously, the imaging result can be divided into three parts, which correspond to the metal 
fence, corner of the metal fence (far area in the photo) and the metal lampstandard soundly. 
Especially, according to Figure 18-c, we can read the height of the lamp is about 14m, which 
matches the real height (14.5m) correctly. 
Figure 20-a is the photo of another local region of the observation scene, which contains two 
copper spheres (a, c) and a stainless steel sphere (b). since its RCS is too low, the copper 
sphere c is not shown in Figure 20-b and c (could be found in Figure 18-b). Figure 20-b is the 
imaging result (side view) of spheres a and b. From it, we can read the relative height of 
spheres a and b is 1.2m, which matches the measurement value (1.09m) soundly. Figure 20-c 
is the imaging result (top view) of spheres a and b. From it, we can read the relative distance 
of spheres a and b is 15.8 m, which matches the measurement value (14.96m) soundly. 
The above experiment results demonstrate the ability of 3-D SAR in the application of 3-D 
RCS measurement. 

 
6. Multiresolution Approximation Techniques 
 

Unlike the 2-D SAR, a great deal of 3-D image region contains no scatterer (such as 
atmosphere) or is shadowed by the other scatterers, and it is not necessary to compress all 
the pixels in the image region. Based on this idea, multiresolution approximation techniques 
could be employed to reduce the computational cost of 3-D SAR. 

 
6.1 Scattering Model 
Much excellent work has been done on the modeling radar backscatter for both naturally 
occurring terrain and man-made objects. One of the most popular models is the three-
component scattering model developed by Anthony Freeman and Stephen L. Durden. In 
this model, the scattering mechanism of target is divided into three components, including 
the rough surface scattering, double-bounce scattering and canopy scattering.  
The rough surface scattering component assumes that the backscatter is reciprocal, such as 
road and bare soil, whose mechanism is illustrated in Figure 21 (left). 
The double-bounce scattering component is modeled by scattering from a dihedral corner 
reflector, where the reflector surface can be made of different dielectric materials, such as a 
ground-trunk interaction, whose mechanism is illustrated in Figure 21 (middle). 
The canopy (volume) scattering component assumes that the radar echo is from a cloud of 
randomly oriented, very thin, cylinder-like scatterers, such as the forest canopy.  
 

 
Fig. 21. Scattering mechanisms of three-component model: rough surface scattering (left), 
double-bounce scattering (middle) and tree scattering model (right) containing both canopy 
scattering and double-bounce scattering. 

 

In the application of 3-D RCS measurement, the scatterers always concentrate in the local 
region of the 3-D image space which are shown in Figure 18. In the application of 
topographical survey, since the thickness of the scattering layer is far smaller than the height 
of the imaging region, it is convenient to consider the scattering layer as a surface in a low 
height-resolution level. And one can obtain the scattering layer by searching the 
neighborhood of the scattering surface. 

 
6.2 Multiresolution approximation 
In this subsection, we will introduce the basic concept on the multiresolution wavelet 
approximation, which is necessary for the design of 3-D LASAR imaging method via 
multiresolution approximation. 
 
 Multiresolution approximation 
The multiresolution approximation of ( )f t  is defined as the orthogonal projection 

iV [ ]P f  on 

a multiresolution approximation subspace of 2 ( )L  . The multiresolution approximation of 
2 ( )L   is a sequence { }j jV   of closed subspaces of 2 ( )L  that obeys the following 5 

properties: 
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where, j denotes the approximation level, and the resolution at level j  is 2 j . 
Property (43-1) means that jV  is invariant by any translation proportional to the scale 2 j . 
The inclusion (43-2) is a causality property which proves that an approximation at a 
resolution 12 j contains all the information to compute an approximation at a coarser 
resolution 2 j . Recursive eq. (43-3) specifies the relationship between approximation 
subspaces. The property (43-4) implies that we lost all the details of f when the level goes 
to  ; on the other hand, when the level goes  , property (43-5) imposes that the signal 
approximation converges to the original signal. 
According to the approximation theory, the basis of jV can be generated by dilating and 
translating a scaling function ( )t : 
 

,
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t nt
j

  
     (44) 

 
Thus, the multiresolution approximation  ( )jf t  of ( )f t  at level j can be calculated as: 
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where,   denotes the inner product. 
 
 Conjugate mirror filter 
To ensure that the multiresolution approximation can be conducted recursively, it is 
necessary to analyze the relationship between the approximations of ( )f t  at level i and i+1.  
The multiresolution causality property (42-2) imposes that 1j jV V . Since 1, ( )j n t  is an 
orthonormal basis of 1jV , we can decompose ,0 ( )j t as: 
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With: 
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where, eq. (47) is called two-scale relation, ( )h n  denotes the conjugate mirror filter 
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According to the fast orthogonal wavelet transform developed by Stephane. G. Mallat, the 
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Fig. 22. Diagrams on wavelet interpolation, the left top, right and left bottom are the 
diagrams of 1-D fast wavelet transform, 2-D fast wavelet transform and 2-D wavelet 
interpolation respectively 
 
The diagram of 1-D wavelet reconstruction is shown in Figure 22 (left top), where, upsample 
operator “↑2” inserts zeros at odd-indexed elements. 
 
 2-D multiresolution surface approximation 
The properties of two-dimensional wavelet are essentially the same as in one dimension. A 
separable two-dimensional wavelet transform can be factored into one-dimensional wavelet 
transforms along the rows and columns.  
Assume that the conjugate mirror filters corresponding to the one-dimensional wavelet 
transform are denoted as ( )h n and ( )g n . According to the fast two-dimensional wavelet 
transform, the reconstruction of a two-dimensional function  1 21( , )jf n n  can be implemented 
by the following equation: 
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where, 1
1 2( , )jd n n



, 2
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 and 3
1 2( , )jd n n



denotes 
the detail coefficients matrices. And the corresponding diagram is shown in Figure 22 (right). 
In the application of surface prediction, since there is no information on the detail 
coefficients matrices, we just consider that all of them are zero matrices, and the 
reconstruction formula can be simplified as: 
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And the corresponding diagram is shown in Figure 22 (left bottom). 

 
 Typical conjugate mirror filters 
According to the discussion in above section, we conclude that the 2-D surface 
multiresolution prediction is specified by the conjugate mirror filter ( )h n . In this subsection, 
we present some typical conjugate mirror filter as follows: 
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where, polynomial ( )P y satisfies: 
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Spline biorthogonal conjugate mirror filter 
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where, 0  if p is even and 1  for p  is odd. 
For the different applications, the conjugate mirror filter might affect the estimation error of 
the prediction operator, it is sensible to select the conjugate mirror filter according to the 
application.  

 
6.3 Surface Tracing Technique 
In the application of topographical survey, the scatterers combine a surface in the 3-D image 
space, we can trace the surface and focus those scatterers near it via specific searching 
method. Thus, the 3-D SAR imaging processing can be reduced to a 2-D imaging problem, 
and the computational cost will be reduced greatly. Those methods based on the above idea 
are named as surface-tracing-based 3-D imaging method (STB 3-D imaging method). 
 
 
 
 
 
 
 
 

 

  Principle and steps 
 




 

Fig. 23. Principle of STB 3-D SAR imaging technique 
 
The principle of STB 3-D imaging method is illustrated in Figure 23. Assume that the line of 
radar sight (i.e. LOS) is parallel to the elevation (z) direction, and the 3-D scattering 
surface   in the observation scene can be expressed as following: 
 

2{( , , ) / ( , ) ( , ) }x y z z h x y x y           (56) 
 
where, ( , )x y is called note,  is the note set, h denotes the elevation function.  
For a given note 0 0( , )x y , the RCS distribution in z direction is a quasi-impulse function 
which is shown in Figure 23 (right). The index of the maximum is the elevation of note 

0 0( , )x y . Searching the maximum of every note ( , )x y  in , one can reconstruct the DEM of 
the scene eventually. Generally, the steps of STB 3-D imaging method are stated as follows: 
Step-1 Initiation:  
Compress in a subset 0 of the note set   by 3-D BP imaging method, find the maximum 
and the associated index of every note, and obtain the initial subsurface 0 ; 
 

0 0{( , , ) / ( , ) ( , ) }x y z z h x y x y          (57) 
 

Step-2 Prediction:  
Expand the note set 0 to 1 ( 0 1     ), predicate the surface on 1  using the known 
surface 0  by a surface prediction operator [ ]P , and obtain the estimation of the surface 

on 1 , denoted as 1 ; 
 


10[ ]  P      (58) 

 
Step-3 Searching:  
Search in the neighborhood of 1 , and obtain the actual surface 1 ; 
 


1 1[ ]  S      (59) 
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Step-4 : Recursion: 
Replace 0 and 0  in step 2 by 1 and 1 , and repeat the step 2-4 until obtaining the 3-D 
surface  . 
 where, the most important steps are predication and searching, which will be discussed the 
in the rest of this section. 
 
 Surface prediction operator 
The aim of prediction operator [ ]P is to estimate the likely elevation of the surface using the 
known subsurface, which is necessary for the searching operator.  
The input of the prediction operator is the known subsurface on a note set i ; the output is 
the estimation of the subsurface on the note set 1i ( 1i i   ). 
Let i and 1i be the subsurfaces on the note sets i and 1i respectively, the prediction 
operator [ ]P can be expressed as: 
 


1[ ] ii   P      (60) 

 
And the prediction error can be defined as: 
 

e  z z       (61) 
 
where, z and z denote the predicated elevation and the actual elevation at given note 
respectively.  
Mathematically, the prediction operator can be implemented using multivariate 
interpolation technique. According to the interpolation method, the prediction operator 
includes the polynomial prediction operator, ridge prediction operator, spline prediction 
operator and multiresolution (wavelet) prediction operator, etc. 
In the viewpoint of predication strategy, the prediction operator can roughly be classified as 
two classes: local prediction operator and multiresolution prediction operator. The former 
operator starts from the local region of the note set and expands the known region from the 
edge, which is shown in Figure 24-a. The latter one starts from a coarse resolution scene and 
improves the resolution of the scene recursively, which is shown in Figure 24-b.  
 

  
Fig. 24. Local prediction (left) and multiresolution prediction (right) 
 
In the case of high-resolution 3D SAR imaging, since the elevations of the neighbor notes are 
affected by the fluctuation of ground greatly, the prediction error of the local prediction 
operator is larger than that of the multiresolution prediction operator. On the other hand, 
for an N×N scene, the recursion times of the local prediction operator are N, and the 

 

recursion times of the multiresolution prediction operator are 2log (N) . Less recursion times 
always mean less interpolation operation and less computational cost.  
 
 Searching operator 
The searching operator [ ]S is to find out the maximum and the associated index at every 
note.  
The input of the searching operator includes the raw data, note, estimated elevation, 
threshold; the output includes the actual elevation and the associated RCS. 
LetD , 0 0( , )x y , Z , , Z and   be the raw data, note, estimated elevation, threshold, actual 
elevation and the associated RCS respectively, the searching operator can be expressed as: 
 


0 0[ ,( , ), , ] [ , ]x y Z Z  S D     (62) 

 
The prediction operator can be implemented using the following equation:  
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It indicates that the maximum is larger than the adjacent pixels and the detection threshold.  
The detection threshold  can be selected based on the constant false alarm rate (CFAR) 
criteria. Assume that the RCS and the noise both obey the normal distribution,  can be 
calculated as: 
 

1
0 0( )falseerfc P             (64) 

 
where, 0 and 0 denote the mean and variance of the signal respectively, and can be 
obtained in the step of initiation, 1( )erfc  denotes the inverse complementary error function. 
 
 Numerical results 
In this subsection, some numerical experiments are conducted to demonstrate the 
procedures of the STB 3-D BP algorithm. 
 

 
Fig. 25-a Terrain used in simulation,   Fig. 25-b 1st iteration imaging result Fig. 25-c 2nd 
iteration imaging result  
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Fig. 25-d 3rd iteration imaging result                    Fig. 25-e 4th iteration imaging result 
 
Figure 25-a is the terrain used in the numerical experiments. Figure 25-b, c, d and e are the 
imaging results of the STB 3-D BP algorithm with 1st, 2nd, 3rd, and 4th iterations respectively. 
From them, we find that the STB 3-D BP algorithm can reconstruct the DEM of the scene 
correctly. By further analysis (Shi Jun, Zhang Xiaoling, Jianyu Yang;, Wang Yinbo, 2008), we 
find that, in general case, the total times to call the compress operator of the STB 3-D 
imaging algorithm is a dozen of times larger than that of 2-D BP algorithm generally, and is 
far smaller than that of the 3-D BP algorithm that is about several hundreds times larger 
than 2-D BP (determined by the height of the 3-D imaging scene). 

 
6.4 Subaperture Approximation Technique  
The STB based multiresolution approximation technique can only be used for the 
topographical survey application, which can reduce the size of image space. In fact, the 
multiresolution approximation technique can also reduce the number of antenna elements 
that need to be processed, since only a subaperture is necessary to obtain a low-resolution 
image. Based on this idea, we can obtain a low-resolution image using a subaperture, detect 
the interested regions with scatterers, and process the interested regions with a larger 
subaperture iteratively until obtain the fine-resolution image. This kind of multiresolution 
approximation technique is named as subaperture approximation technique, which can be 
used in both 3-D RCS measurement and topographical survey applications. Limited by the 
length of this chapter, this topic will be discussed hereafter. 

 
7. Summary 
 

Using synthetic aperture technique, we can obtain the 3-D RCS distribution of target. The 
precondition of synthetic aperture technique is that the target’s RCS does not vary with time 
in one aperture. The synthetic aperture can be implemented mechanically (such as CSAR, E-
CSAR and curve SAR), or electrically (such as linear array SAR). By moving HRR radar in 2-
D plane using high precision motion control platform, we can build a low-cost 3-D RCS 
measurement device. The linear array SAR with MIMO technique might be the most feasible 
3-D SAR system for the topographical survey application, though there are still some 
problems, such as, the balance between the length of linear array and the cross-track 
resolution and the compensation of motion measurement error.  
Ambiguous function (AF) of 3-D SAR is the product of the range AF and the synthetic 
aperture AF, which can be analyzed independently. The range AF is a sinc function without 
any window function; the synthetic aperture AF could be analyzed using the theory of array 
antenna. The resolution in the synthetic aperture direction(s) is restricted by the size of the 

 

array, the beam angle of the T/R antenna and the scatterer angle. Since the RCS varies in 
different elevation angle and azimuthal angle, we can not improve the resolution of 3-D 
SAR unlimitedly. 
Backprojection method can be employed in 3-D SAR imaging processing. Its disadvantage is 
the high computional cost. Unlike the 2-D microwave image, the scatterers always 
concentrate in the local regions of 3-D image space. Based on this feature, the 
multiresolution approximation technique could be employed in imaging processing, which 
can reduce the computational cost greatly.  
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subaperture iteratively until obtain the fine-resolution image. This kind of multiresolution 
approximation technique is named as subaperture approximation technique, which can be 
used in both 3-D RCS measurement and topographical survey applications. Limited by the 
length of this chapter, this topic will be discussed hereafter. 

 
7. Summary 
 

Using synthetic aperture technique, we can obtain the 3-D RCS distribution of target. The 
precondition of synthetic aperture technique is that the target’s RCS does not vary with time 
in one aperture. The synthetic aperture can be implemented mechanically (such as CSAR, E-
CSAR and curve SAR), or electrically (such as linear array SAR). By moving HRR radar in 2-
D plane using high precision motion control platform, we can build a low-cost 3-D RCS 
measurement device. The linear array SAR with MIMO technique might be the most feasible 
3-D SAR system for the topographical survey application, though there are still some 
problems, such as, the balance between the length of linear array and the cross-track 
resolution and the compensation of motion measurement error.  
Ambiguous function (AF) of 3-D SAR is the product of the range AF and the synthetic 
aperture AF, which can be analyzed independently. The range AF is a sinc function without 
any window function; the synthetic aperture AF could be analyzed using the theory of array 
antenna. The resolution in the synthetic aperture direction(s) is restricted by the size of the 

 

array, the beam angle of the T/R antenna and the scatterer angle. Since the RCS varies in 
different elevation angle and azimuthal angle, we can not improve the resolution of 3-D 
SAR unlimitedly. 
Backprojection method can be employed in 3-D SAR imaging processing. Its disadvantage is 
the high computional cost. Unlike the 2-D microwave image, the scatterers always 
concentrate in the local regions of 3-D image space. Based on this feature, the 
multiresolution approximation technique could be employed in imaging processing, which 
can reduce the computational cost greatly.  
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1. Introduction     
 

Remote sensing (RS) is the practice of deriving information about the Earth’s land and water 
surfaces using images acquired from an overhead perspective, using electromagnetic 
radiation in one or more regions of the electromagnetic spectrum, reflected or emitted from 
the Earth surfaces (Campbell, 2006). Using various sensors, we remotely collect data that 
may be analyzed to obtain information about the object, areas or phenomena being 
investigated. There are many forms in which the data are acquired, including variations in 
force distributions, acoustic wave distributions, or electromagnetic energy distributions. 
Optical RS makes use of visible, near infrared and short-wave infrared sensors to form 
images of the Earth's surface by detecting the solar radiation reflected in these wavelengths 
from targets on the ground. Different materials reflect and absorb energy differently at these 
visible and infrared wavelengths. Thus, targets can be differentiated by their spectral 
reflectance signatures captured in the remotely sensed images. Optical RS systems are 
classified into the following types, depending on the number of spectral bands used in the 
imaging process: panchromatic imaging systems (i.e. Ikonos pan, Spot HRV-Pan), 
multispectral imaging systems (i.e. Landsat MSS, Landsat ETM, Spot HRV-XS, Ikonos MS ), 
super spectral imaging systems (i.e. Modis & Meris), hyperspectral imaging systems (i.e.  
Hyperion on EO1 satellite). 
In contrast, radar (Radio Detection and Ranging) sensors operate in the microwave portion 
of the electromagnetic spectrum beyond the visible and thermal infrared regions 
(Henderson & Lewis, 1998). Radars have long been exploited for communication and 
navigation purposes. More recently, Synthetic Aperture Radar (SAR) sensors have become 
an increasingly important source of information to support agriculture and natural 
resources monitoring and management. Operating in the microwave region of the 
electromagnetic spectrum improves signal penetration within vegetation and soil targets. 
Unlike optical sensors, the longer wavelengths of a radar imaging system are not affected by 
cloud cover or haze, permitting data acquisition independent of atmospheric conditions. 
Radar systems transmit microwave signals at specific wavelengths or frequencies according 
to their design specifications.  
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comments on present and future research for agricultural applications using optical and 
microwave remote sensing.  

 
2. Microwave Interaction with Agricultural Targets 
 

Remote sensing observations have been used for identification and monitoring of 
agricultural targets since the late 19th century when balloons first started carrying 
photographic cameras and other instruments over the ground. All optical sensors are 
limited by solar illumination, cloud cover and haze. In spite of this, optical remote sensing 
has seen many useful if limited applications in agriculture and other areas.  The use of radar 
sensors for agricultural applications has been intensively studied since 1970. The all 
weather, day or night data acquisition capability of radar systems, provides a more reliable 
data source. However, the interaction of the radar signal with agricultural targets is affected 
by a variety of factors. From this perspective, it is convenient to separate the discussion into 
radar system parameters which affect radar backscatter - such as frequency, polarization 
and incidence angle - and target parameters which influence the scattering process.  
Target parameters can be related to the dielectric and geometrical properties of the material 
in question. Dielectric properties are very closely associated with the water content of the 
material while leaf shape and size (with respect to wavelength) are examples of geometrical 
characteristics (Brisco & Brown, 1998).  The brightness of features in a radar image is 
dependent on the portion of the transmitted energy that is returned back to the radar (hence 
the term backscatter) from targets on the surface. The magnitude or intensity of this 
backscattered energy is dependent on how the radar energy interacts with the surface, 
which is a function of several variables or parameters. These parameters include the 
particular characteristics of the radar system and the generated image products as well as 
the characteristics of the incident surface (land cover type, topography, roughness, etc.).  
Frequency or wavelength, incidence angle, and polarization are the primary system 
parameters which define a radar sensor and its data gathering characteristics. Other 
important system parameters which influence the type of product to use in an application 
include range and azimuth resolution, swath width, pulse length, transmitter power, and 
bandwidth. 

 
2.1. The effect of frequency 
With respect to the effect of frequency on microwave interaction with an agricultural target, 
the magnitude of the radar backscatter is dependent upon it (or wavelength) due to: 
differences in the dielectric constant of water content as a function of frequency; and to the 
relationship between wavelength and plant part size and/or penetration depth. The degree 
of moisture content affects the dielectrical properties of an object or medium. Changes in the 
electrical properties influence the absorption, transmission, and reflection of microwave 
energy. Thus, the moisture content will influence how targets and surfaces reflect energy 
from the radar signal and how they will appear on an image. In general, reflectivity (image 
brightness) increases with increased moisture content.  
Since agricultural targets are composed of significant and varying amounts of water this 
frequency dependence on the dielectric constant is very important in the interaction process. 
As frequency decreases the signal penetration into crops and/or soil increases and the sizes 

 

SAR sensors transmit microwave energy, illuminating the terrain, and measuring the 
amount of energy scattered by the target or surface. This response (also known as radar 
return or backscatter) is recorded by the SAR sensor. The greater the amount of energy 
scattered back to the sensor, the brighter the response recorded in the radar image. Active 
microwave sensors provide their own source of electromagnetic energy and are therefore 
capable of operating independent of sunlight. SARs can therefore acquire data day or night. 
Radars offer a variety of advantages for geoscientists and agronomists. These sensors are 
unaffected by adverse atmospheric conditions and because they operate independent of 
solar illumination, are available to acquire imagery 24 hours a day. Radar data provide a 
unique perspective of the landscape and many opportunities for quantitative terrain 
analysis.  
Optical RS has been used for monitoring the state of the world's agricultural production, 
including identifying and differentiating most of the major crop types and conditions. 
However for agricultural regions under frequent cloud cover, the use of this technology for 
crop monitoring can be unreliable. In contrast, radar RS data are sensitive to vegetation 
biomass and structure and as a result these sensors are an attractive option for crop 
monitoring. Radar data and visible and infra-red wavelengths provide complementary 
information related to different target properties (Brisco and Brown, 1998). The synergy 
associated with data acquired by SAR and optical sensors has led to intensive research 
activities towards the application of RS technologies. Used together, optical and radar data 
provide a valuable information source for agricultural applications. Results have been very 
promising for a wide range of specific applications including crop type identification, crop 
condition, crop monitoring and crop yield.  
Since the 1980s optical imagery from sensors such as Landsat and more recently Ikonos and 
Quickbird, has been used consistently to determine corn cultivated areas in Mexico, where 
over 7 million hectares of this staple crop are sown every year. Corn yield prediction is an 
information service provided by the National Institute of Research for Forestry, Agriculture 
and Livestock (INIFAP) to the Ministry of Agriculture, where it is used as a decision making 
aid. Techniques to combine information from optical and radar sensors have been proposed 
to detect and separate vegetation targets. However further development is needed to 
improve these techniques to increase accuracies for crop condition and crop monitoring. 
Information with respect to productivity is required as far ahead of harvest time as possible.  
Land use, based on intensive and diversified agricultural production, is integral to the 
economy in many countries. The heterogeneity of corn-growing conditions in developing 
countries makes accurate data for yield prediction difficult to obtain. Accuracy can be 
increased for a particular crop by integrating the information provided from optical and 
radar satellite images. 
Government agencies require the best accuracy for production plots in order to relate these 
statistics to the general agricultural regional or nationwide productivity. More accurate 
information will support (a) timely responses and better decision making, (b) production 
risk reduction and (c) increased efficiency in crop management and production.  
This chapter will first discuss the interaction of SAR microwaves with agricultural targets by 
considering the system and target parameters which influence the radar backscattering 
process. Then, the approaches for crop type identification, the first step in a monitoring 
program, will be discussed.  This will be followed by a review of crop condition, crop 
monitoring and crop yield estimation using optical and radar data. The chapter ends with 
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comments on present and future research for agricultural applications using optical and 
microwave remote sensing.  

 
2. Microwave Interaction with Agricultural Targets 
 

Remote sensing observations have been used for identification and monitoring of 
agricultural targets since the late 19th century when balloons first started carrying 
photographic cameras and other instruments over the ground. All optical sensors are 
limited by solar illumination, cloud cover and haze. In spite of this, optical remote sensing 
has seen many useful if limited applications in agriculture and other areas.  The use of radar 
sensors for agricultural applications has been intensively studied since 1970. The all 
weather, day or night data acquisition capability of radar systems, provides a more reliable 
data source. However, the interaction of the radar signal with agricultural targets is affected 
by a variety of factors. From this perspective, it is convenient to separate the discussion into 
radar system parameters which affect radar backscatter - such as frequency, polarization 
and incidence angle - and target parameters which influence the scattering process.  
Target parameters can be related to the dielectric and geometrical properties of the material 
in question. Dielectric properties are very closely associated with the water content of the 
material while leaf shape and size (with respect to wavelength) are examples of geometrical 
characteristics (Brisco & Brown, 1998).  The brightness of features in a radar image is 
dependent on the portion of the transmitted energy that is returned back to the radar (hence 
the term backscatter) from targets on the surface. The magnitude or intensity of this 
backscattered energy is dependent on how the radar energy interacts with the surface, 
which is a function of several variables or parameters. These parameters include the 
particular characteristics of the radar system and the generated image products as well as 
the characteristics of the incident surface (land cover type, topography, roughness, etc.).  
Frequency or wavelength, incidence angle, and polarization are the primary system 
parameters which define a radar sensor and its data gathering characteristics. Other 
important system parameters which influence the type of product to use in an application 
include range and azimuth resolution, swath width, pulse length, transmitter power, and 
bandwidth. 

 
2.1. The effect of frequency 
With respect to the effect of frequency on microwave interaction with an agricultural target, 
the magnitude of the radar backscatter is dependent upon it (or wavelength) due to: 
differences in the dielectric constant of water content as a function of frequency; and to the 
relationship between wavelength and plant part size and/or penetration depth. The degree 
of moisture content affects the dielectrical properties of an object or medium. Changes in the 
electrical properties influence the absorption, transmission, and reflection of microwave 
energy. Thus, the moisture content will influence how targets and surfaces reflect energy 
from the radar signal and how they will appear on an image. In general, reflectivity (image 
brightness) increases with increased moisture content.  
Since agricultural targets are composed of significant and varying amounts of water this 
frequency dependence on the dielectric constant is very important in the interaction process. 
As frequency decreases the signal penetration into crops and/or soil increases and the sizes 

 

SAR sensors transmit microwave energy, illuminating the terrain, and measuring the 
amount of energy scattered by the target or surface. This response (also known as radar 
return or backscatter) is recorded by the SAR sensor. The greater the amount of energy 
scattered back to the sensor, the brighter the response recorded in the radar image. Active 
microwave sensors provide their own source of electromagnetic energy and are therefore 
capable of operating independent of sunlight. SARs can therefore acquire data day or night. 
Radars offer a variety of advantages for geoscientists and agronomists. These sensors are 
unaffected by adverse atmospheric conditions and because they operate independent of 
solar illumination, are available to acquire imagery 24 hours a day. Radar data provide a 
unique perspective of the landscape and many opportunities for quantitative terrain 
analysis.  
Optical RS has been used for monitoring the state of the world's agricultural production, 
including identifying and differentiating most of the major crop types and conditions. 
However for agricultural regions under frequent cloud cover, the use of this technology for 
crop monitoring can be unreliable. In contrast, radar RS data are sensitive to vegetation 
biomass and structure and as a result these sensors are an attractive option for crop 
monitoring. Radar data and visible and infra-red wavelengths provide complementary 
information related to different target properties (Brisco and Brown, 1998). The synergy 
associated with data acquired by SAR and optical sensors has led to intensive research 
activities towards the application of RS technologies. Used together, optical and radar data 
provide a valuable information source for agricultural applications. Results have been very 
promising for a wide range of specific applications including crop type identification, crop 
condition, crop monitoring and crop yield.  
Since the 1980s optical imagery from sensors such as Landsat and more recently Ikonos and 
Quickbird, has been used consistently to determine corn cultivated areas in Mexico, where 
over 7 million hectares of this staple crop are sown every year. Corn yield prediction is an 
information service provided by the National Institute of Research for Forestry, Agriculture 
and Livestock (INIFAP) to the Ministry of Agriculture, where it is used as a decision making 
aid. Techniques to combine information from optical and radar sensors have been proposed 
to detect and separate vegetation targets. However further development is needed to 
improve these techniques to increase accuracies for crop condition and crop monitoring. 
Information with respect to productivity is required as far ahead of harvest time as possible.  
Land use, based on intensive and diversified agricultural production, is integral to the 
economy in many countries. The heterogeneity of corn-growing conditions in developing 
countries makes accurate data for yield prediction difficult to obtain. Accuracy can be 
increased for a particular crop by integrating the information provided from optical and 
radar satellite images. 
Government agencies require the best accuracy for production plots in order to relate these 
statistics to the general agricultural regional or nationwide productivity. More accurate 
information will support (a) timely responses and better decision making, (b) production 
risk reduction and (c) increased efficiency in crop management and production.  
This chapter will first discuss the interaction of SAR microwaves with agricultural targets by 
considering the system and target parameters which influence the radar backscattering 
process. Then, the approaches for crop type identification, the first step in a monitoring 
program, will be discussed.  This will be followed by a review of crop condition, crop 
monitoring and crop yield estimation using optical and radar data. The chapter ends with 
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Ferrazzoli’s (2002) work to retrieve crop variables considered three main steps in the 
process: i) identification of a convenient radar configuration, ii) modeling and iii) solution of 
the inverse problem. We now discuss aspects relevant to applying these steps to crop 
monitoring. 
SAR systems operate in different wavelength ranges or bands. The choice of wavelength is 
dependent upon the remote sensing application. L-band radars operate at a wavelength of 
15-30 cm and a frequency of 1-2 GHz. S-band operates at a wavelength of 8-15 cm and a 
frequency of 2-4 GHz. At these wavelengths S-band microwaves are not easily attenuated, 
making these sensors useful for near and far range weather observation. C-band radars 
operate at 4-8 cm wavelengths 4-8 GHz frequencies. These frequencies are well suited for 
many marine applications, in particular ice detection and monitoring. At smaller X band 
wavelengths (2.5-4 cm and a frequency of 8-12 GHz), microwaves are more sensitive to 
small scale changes, and these sensors have been used for studies on cloud development 
and to detect light precipitation. X band microwaves are very easily attenuated making 
them well suited for very short range weather observation. K band sensors operate at a 
wavelength of 0.75-1.2 cm or 1.7-2.5 cm and a corresponding frequency of 27-40 GHz or 12-
18 GHz.  
Microwave scattering from vegetation is dependent upon both the SAR frequency and 
polarization. Therefore, radar imagery collected using different polarization and wavelength 
combinations may provide different and complementary information. Multi-polarization 
combinations permit an image interpreter to infer more information about the agricultural 
surface characteristics. With polarimetric sensors any linear, circular or elliptical 
polarization can be synthesized, in addition to other polarimetric information including for 
example, co-polarization phase statistics or polarization signatures. Polarization signatures 
are three-dimensional plots which assist in the interpretation of the scattering behavior of 
the target.  The polarization signature of the target provides a convenient way of visualising 
a target's scattering properties. The signatures are also called "polarization response plots". 
An incident electromagnetic wave can be selected to have an electric field with ellipticity 
between -45º and +45º, and an orientation between 0 and 180º. These variables are used as 
the x- and y-axes of a 3-D plot portraying the polarization signature. For each of these 
possible incident polarizations, the strength of the backscatter can be computed for the same 
polarization on transmit and receive (the co-polarized signature) and for orthogonal 
polarizations on transmit and receive (the cross-polarized signature). The strength is 
displayed on the z-axis of the signatures.  
From experimental airborne SAR systems and the SIR-C (shuttle) mission SAR polarimetry 
has provided data to researchers who have studied a number of applications. It has been 
shown that the interpretation of a number of features in a scene is indeed facilitated when 
the radar is operated in polarimetric mode. The launch of RADARSAT-2 has made 
polarimetric data available on an operational basis, and uses of such data can be expected to 
become more routine and more sophisticated. Some agriculture applications for which 
polarimetric SAR has already proved useful include crop type identification, crop condition 
monitoring, soil moisture measurement and soil tillage and crop residue identification. 

 
2.2. The effect of the incidence angle 
With respect to the effect of incidence angle on microwave interaction with agricultural 
targets, the relationship between viewing geometry and the geometry of the surface features 

 

of the target components (i.e., leaves, stems, etc.) relative to the wavelength are smaller 
leading to a “smoother” target.  
The radar return from each resolution cell of an agricultural target is the vector sum of 
electromagnetic (EM) fields scattered from the elements of the vegetation canopy, and those 
scattered from the soil beneath. Individual scattered contributions are determined by the 
scattered dimensions to wavelength ratio. Radar returns from an ensemble of scatterers are 
determined by the population of those scatterers, by the scatterer dimension function, and 
by the EM reflection coefficient of each scatterer. When the scatterer dimension is 
approximately the size of the wavelength the shape of the scatterer becomes very important 
in determining the backscattered EM fields and the detailed calculations and interpretations 
are complex.  
Lower frequency radars are better suited for soil moisture estimation, especially when 
vegetations are present, while the higher frequency systems emphasize the crop component. 
When large amounts of vegetation are present L-band or lower frequencies are preferred to 
minimize the crop contribution to the backscatter (Brown et al., 1992). The higher 
frequencies are generally preferable for crop type mapping, but this can change regionally 
depending on the crop mix and seasonally as a function of crop development.   
When discussing microwave energy propagation and scattering, the polarization of the 
radiation is an important property. For a plane EM wave, polarization refers to the locus of 
the electric field vector in the plane perpendicular to the direction of propagation. The 
length of the vector represents the amplitude of the wave, the rotation rate of the vector 
represents the frequency of the wave and the polarization refers to the orientation and shape 
of the pattern traced by the tip of the vector. The linear combination of horizontal (H) and 
vertical (V) polarization states for the transmitted and received signals (with transmit 
denoted first) give HH, VV, HV and VH combinations. HV and VH are the cross-
polarizations while HH and VV are the like polarizations. With respect to the effect of 
polarization on microwave interaction with agricultural targets, polarization can be a useful 
discriminant in SAR image analyses. 
Most SAR systems are designed to transmit microwave radiation that is either horizontally 
polarized (H) or vertically polarized (V). If a SAR transmits and receives two orthogonal 
polarizations (such as H and V), and records both, and during processing retains the phase 
between these two polarization, then any transmit-receive polarization can be synthesized. 
It is the analysis of these transmit and receive polarization combinations that constitute the 
science of radar polarimetry. Systems that transmit and receive both of these linear 
polarizations are commonly used.  
Radar systems can have one, two or all four of these transmit/receive polarization 
combinations. Examples include the following types of radar systems: 

• HH or VV (or possibly HV or VH) – Single polarization 
• HH and HV, VV and VH, or HH and VV – Dual polarization 
• HH, VV, HV, and VH with phase information retained – Polarimetric 

 
Quadrature polarization and fully polarimetric can be used as synonyms for "polarimetric". 
The relative phase between channels is measured in polarimetric radars and is essential for 
polarization synthesis, for generating a range of polarimetric parameters and for image 
decomposition.  
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Ferrazzoli’s (2002) work to retrieve crop variables considered three main steps in the 
process: i) identification of a convenient radar configuration, ii) modeling and iii) solution of 
the inverse problem. We now discuss aspects relevant to applying these steps to crop 
monitoring. 
SAR systems operate in different wavelength ranges or bands. The choice of wavelength is 
dependent upon the remote sensing application. L-band radars operate at a wavelength of 
15-30 cm and a frequency of 1-2 GHz. S-band operates at a wavelength of 8-15 cm and a 
frequency of 2-4 GHz. At these wavelengths S-band microwaves are not easily attenuated, 
making these sensors useful for near and far range weather observation. C-band radars 
operate at 4-8 cm wavelengths 4-8 GHz frequencies. These frequencies are well suited for 
many marine applications, in particular ice detection and monitoring. At smaller X band 
wavelengths (2.5-4 cm and a frequency of 8-12 GHz), microwaves are more sensitive to 
small scale changes, and these sensors have been used for studies on cloud development 
and to detect light precipitation. X band microwaves are very easily attenuated making 
them well suited for very short range weather observation. K band sensors operate at a 
wavelength of 0.75-1.2 cm or 1.7-2.5 cm and a corresponding frequency of 27-40 GHz or 12-
18 GHz.  
Microwave scattering from vegetation is dependent upon both the SAR frequency and 
polarization. Therefore, radar imagery collected using different polarization and wavelength 
combinations may provide different and complementary information. Multi-polarization 
combinations permit an image interpreter to infer more information about the agricultural 
surface characteristics. With polarimetric sensors any linear, circular or elliptical 
polarization can be synthesized, in addition to other polarimetric information including for 
example, co-polarization phase statistics or polarization signatures. Polarization signatures 
are three-dimensional plots which assist in the interpretation of the scattering behavior of 
the target.  The polarization signature of the target provides a convenient way of visualising 
a target's scattering properties. The signatures are also called "polarization response plots". 
An incident electromagnetic wave can be selected to have an electric field with ellipticity 
between -45º and +45º, and an orientation between 0 and 180º. These variables are used as 
the x- and y-axes of a 3-D plot portraying the polarization signature. For each of these 
possible incident polarizations, the strength of the backscatter can be computed for the same 
polarization on transmit and receive (the co-polarized signature) and for orthogonal 
polarizations on transmit and receive (the cross-polarized signature). The strength is 
displayed on the z-axis of the signatures.  
From experimental airborne SAR systems and the SIR-C (shuttle) mission SAR polarimetry 
has provided data to researchers who have studied a number of applications. It has been 
shown that the interpretation of a number of features in a scene is indeed facilitated when 
the radar is operated in polarimetric mode. The launch of RADARSAT-2 has made 
polarimetric data available on an operational basis, and uses of such data can be expected to 
become more routine and more sophisticated. Some agriculture applications for which 
polarimetric SAR has already proved useful include crop type identification, crop condition 
monitoring, soil moisture measurement and soil tillage and crop residue identification. 
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With respect to the effect of incidence angle on microwave interaction with agricultural 
targets, the relationship between viewing geometry and the geometry of the surface features 

 

of the target components (i.e., leaves, stems, etc.) relative to the wavelength are smaller 
leading to a “smoother” target.  
The radar return from each resolution cell of an agricultural target is the vector sum of 
electromagnetic (EM) fields scattered from the elements of the vegetation canopy, and those 
scattered from the soil beneath. Individual scattered contributions are determined by the 
scattered dimensions to wavelength ratio. Radar returns from an ensemble of scatterers are 
determined by the population of those scatterers, by the scatterer dimension function, and 
by the EM reflection coefficient of each scatterer. When the scatterer dimension is 
approximately the size of the wavelength the shape of the scatterer becomes very important 
in determining the backscattered EM fields and the detailed calculations and interpretations 
are complex.  
Lower frequency radars are better suited for soil moisture estimation, especially when 
vegetations are present, while the higher frequency systems emphasize the crop component. 
When large amounts of vegetation are present L-band or lower frequencies are preferred to 
minimize the crop contribution to the backscatter (Brown et al., 1992). The higher 
frequencies are generally preferable for crop type mapping, but this can change regionally 
depending on the crop mix and seasonally as a function of crop development.   
When discussing microwave energy propagation and scattering, the polarization of the 
radiation is an important property. For a plane EM wave, polarization refers to the locus of 
the electric field vector in the plane perpendicular to the direction of propagation. The 
length of the vector represents the amplitude of the wave, the rotation rate of the vector 
represents the frequency of the wave and the polarization refers to the orientation and shape 
of the pattern traced by the tip of the vector. The linear combination of horizontal (H) and 
vertical (V) polarization states for the transmitted and received signals (with transmit 
denoted first) give HH, VV, HV and VH combinations. HV and VH are the cross-
polarizations while HH and VV are the like polarizations. With respect to the effect of 
polarization on microwave interaction with agricultural targets, polarization can be a useful 
discriminant in SAR image analyses. 
Most SAR systems are designed to transmit microwave radiation that is either horizontally 
polarized (H) or vertically polarized (V). If a SAR transmits and receives two orthogonal 
polarizations (such as H and V), and records both, and during processing retains the phase 
between these two polarization, then any transmit-receive polarization can be synthesized. 
It is the analysis of these transmit and receive polarization combinations that constitute the 
science of radar polarimetry. Systems that transmit and receive both of these linear 
polarizations are commonly used.  
Radar systems can have one, two or all four of these transmit/receive polarization 
combinations. Examples include the following types of radar systems: 

• HH or VV (or possibly HV or VH) – Single polarization 
• HH and HV, VV and VH, or HH and VV – Dual polarization 
• HH, VV, HV, and VH with phase information retained – Polarimetric 

 
Quadrature polarization and fully polarimetric can be used as synonyms for "polarimetric". 
The relative phase between channels is measured in polarimetric radars and is essential for 
polarization synthesis, for generating a range of polarimetric parameters and for image 
decomposition.  
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Research using C-HH or C-VV configurations has demonstrated that as fields are tilled, the 
increase in soil surface roughness results in an increase in backscatter (CCRS, 2008). Fields 
that are covered with significant post-harvest crop residue also experience an increase in 
backscatter. The increase in multiple scattering associated with rough tilled fields results in 
the depolarization of the microwave signal and induces a high cross-polarized backscatter. 
When residue cover is present on the fields, the increase in volume scattering has a similar 
effect and also results in higher cross-polarized responses (CCRS, 2008). 
Plants and soil parameters, also affect microwave interaction with agricultural targets. 
Several parameters show consistent significant correlations with backscatter. These 
parameters include plant height, leaf area index (LAI), plant biomass, and plant water 
content (Brisco & Brown, 1998). Soil type affects the radar backscatter though the soil water 
holding characteristics and the relative amounts of bound and free water. Organic matter, 
salinity, sodium content and other soil properties can affect backscatter although these 
affects are less pronounced relative to the impacts observed from soil roughness and water 
content.  

 
3. Agricultural Applications Using Optical and Microwave RS  
 

The intensity of vegetation reflectance is commonly greater than from most inorganic 
materials. Consequently, vegetation appears bright in the near-IR wavelengths due mostly 
the sensitivity of these wavelengths to internal plant pigmentation. Radar sensors are able to 
capture plant structure and soil moisture content. As a result, both optical and radar sensors 
can contribute to measuring and monitoring crop condition at different phenological stages, 
supporting the estimation of crop yields.  
For optical and radar RS, the classification of crops can be challenging as the difference in 
reflectance or backscatter can be small among crop types. In addition, differences in crop 
condition among fields of the same crop type, can cause confusion in separating crop by 
type. Multiple scattering within a canopy can be useful for discrimination of crops using 
radar RS. Research using multiple dates of radar data has demonstrated that radar RS could 
play a very important role in agricultural applications (Zhang, 1999). In addition to the 
sensitivity of radar backscatter to crop canopy characteristics, given their all weather 
capability, SAR sensors provide a reliable option for crop monitoring. Nevertheless, much 
research remains in order to advance the use of SAR for operational applications. 

 
3.1. Crop type and crop condition 
In order to successfully apply RS technologies for crop classification, refectance and 
backscatter signatures must be well defined for each crop type. Difficulty arises when 
signatures among crops are not sufficiently unique or when the variance in the signature 
within a single crop class is too large. Integration of optical and radar imagery is an 
attractive option. Both techologies offer complementary information about the crop canopy, 
and SAR sensors can fill the gap for optical acquisitions during periods of pesistent cloud 
cover. End of season crop maps are of value, but provision of early season crop area 
estimates provide additional value as they support in-season crop production and yield 
forecasting. The heterogeneity of corn-growing conditions in many countries makes 
accurate data for yield prediction difficult to obtain. Small agricultural plots, irregular 
shapes, different sowing seasons and variations in crop cultivars are contributing factors to 

 

plays an important role in how the radar energy interacts with targets and affects the 
corresponding brightness recorded on an image. Variations in viewing geometry will 
accentuate and enhance topography and relief in different ways, such that varying degrees 
of foreshortening, layover, and shadow may occur depending on surface slope, orientation, 
and shape. 
The effect of the incident angle (θ) on radar backscatter has proven to be difficult to study 
with airborne SARs because of the rapid change of θ across the swath and the large dynamic 
range in backscatter many targets exhibit with varying θ. This challenge is largely overcome 
on satellite platforms for which the change in θ across the swath is much smaller. 
Nevertheless, little research has been undertaken to either correct for incidence angle change 
or to exploit target information as a function of differences in this angle. Mohan and Mehta 
(1987) used multiple incidence angles in the analysis of SIR-B data. They concluded that 
microwave radar response at L-Band (HH) at 25.60 and 45.20 for various land cover features 
is indeed a function of the incidence angle. For crops differences in radar response are also 
related to the imaging wavelength as well as to the crop type and its development stage. 
Shallower incident angles increase the pathlength through the vegetation maximizing 
response from the crop canopy itself and reducing the contribution from the soil. The radar 
signal strength decreases exponentially as the canopy depth increases due to both 
microwave absorption and scattering. Shallower incident angles increase the extinction of 
the radar signal also due to pathlength. The extinction coefficient is a function of both 
absorption and multiple scattering losses. At small incidence angles, (<300) the backscatter is 
dominated by the direct scattering from the soil while for large incidence angles (>300), the 
backscatter is dominated by the direct scattering from the canopy. As a result, small 
incidence angles are favored for soil moisture applications since roughness effects and 
vegetation attenuation are minimized at these angles (Daughtry et al., 1991). In general, crop 
discrimination based on crop-canopy backscatter, is optimal at larger incidence angles.  
Much of the information required for crop monitoring can be provided by satellite radar 
systems operating at L and C band, at linear co- and cross-polarizations and at an 
intermediate incident angle θ ranges (30o – 40o). Retrieval techniques based on multi-
temporal data and assimilation of RS information in crop models appears promising. 
Significant further research and development is required to understand the information 
provided by polarimetric SARs and to develop the methods and models to extract soil and 
crop information from these advanced sensors.  
Crop type and crop growth stage define the geometry of the canopy and the size, shape and 
orientation of the canopy constituents which influence microwave attenuation and 
scattering. The difference in radar backscatter between grain crops and broad-leafed crops is 
largely explained by the significant difference in the geometry of these canopies, as well as 
the increased biomass and water content of the broad-leafed crops. A larger backscatter 
response is associated with broad-leaf crops. In general, for broad-leafed crops like corn C- 
and L-band backscatter increases rapidly with plant growth, saturating early in the growing 
season.  Little change in backscatter occurs during the rest of the growing season (Bouman, 
1988). This saturation effect does not occur for grain crops such as wheat and barley. For 
these lower biomass crops, very dynamic temporal variations in radar backscatter are 
observed throughout the growing season. These variations are largely due to changes in 
crop structure (such as the emergence of grain heads) and canopy moisture changes (as 
occur during the period of senescence).  
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Research using C-HH or C-VV configurations has demonstrated that as fields are tilled, the 
increase in soil surface roughness results in an increase in backscatter (CCRS, 2008). Fields 
that are covered with significant post-harvest crop residue also experience an increase in 
backscatter. The increase in multiple scattering associated with rough tilled fields results in 
the depolarization of the microwave signal and induces a high cross-polarized backscatter. 
When residue cover is present on the fields, the increase in volume scattering has a similar 
effect and also results in higher cross-polarized responses (CCRS, 2008). 
Plants and soil parameters, also affect microwave interaction with agricultural targets. 
Several parameters show consistent significant correlations with backscatter. These 
parameters include plant height, leaf area index (LAI), plant biomass, and plant water 
content (Brisco & Brown, 1998). Soil type affects the radar backscatter though the soil water 
holding characteristics and the relative amounts of bound and free water. Organic matter, 
salinity, sodium content and other soil properties can affect backscatter although these 
affects are less pronounced relative to the impacts observed from soil roughness and water 
content.  
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The intensity of vegetation reflectance is commonly greater than from most inorganic 
materials. Consequently, vegetation appears bright in the near-IR wavelengths due mostly 
the sensitivity of these wavelengths to internal plant pigmentation. Radar sensors are able to 
capture plant structure and soil moisture content. As a result, both optical and radar sensors 
can contribute to measuring and monitoring crop condition at different phenological stages, 
supporting the estimation of crop yields.  
For optical and radar RS, the classification of crops can be challenging as the difference in 
reflectance or backscatter can be small among crop types. In addition, differences in crop 
condition among fields of the same crop type, can cause confusion in separating crop by 
type. Multiple scattering within a canopy can be useful for discrimination of crops using 
radar RS. Research using multiple dates of radar data has demonstrated that radar RS could 
play a very important role in agricultural applications (Zhang, 1999). In addition to the 
sensitivity of radar backscatter to crop canopy characteristics, given their all weather 
capability, SAR sensors provide a reliable option for crop monitoring. Nevertheless, much 
research remains in order to advance the use of SAR for operational applications. 

 
3.1. Crop type and crop condition 
In order to successfully apply RS technologies for crop classification, refectance and 
backscatter signatures must be well defined for each crop type. Difficulty arises when 
signatures among crops are not sufficiently unique or when the variance in the signature 
within a single crop class is too large. Integration of optical and radar imagery is an 
attractive option. Both techologies offer complementary information about the crop canopy, 
and SAR sensors can fill the gap for optical acquisitions during periods of pesistent cloud 
cover. End of season crop maps are of value, but provision of early season crop area 
estimates provide additional value as they support in-season crop production and yield 
forecasting. The heterogeneity of corn-growing conditions in many countries makes 
accurate data for yield prediction difficult to obtain. Small agricultural plots, irregular 
shapes, different sowing seasons and variations in crop cultivars are contributing factors to 

 

plays an important role in how the radar energy interacts with targets and affects the 
corresponding brightness recorded on an image. Variations in viewing geometry will 
accentuate and enhance topography and relief in different ways, such that varying degrees 
of foreshortening, layover, and shadow may occur depending on surface slope, orientation, 
and shape. 
The effect of the incident angle (θ) on radar backscatter has proven to be difficult to study 
with airborne SARs because of the rapid change of θ across the swath and the large dynamic 
range in backscatter many targets exhibit with varying θ. This challenge is largely overcome 
on satellite platforms for which the change in θ across the swath is much smaller. 
Nevertheless, little research has been undertaken to either correct for incidence angle change 
or to exploit target information as a function of differences in this angle. Mohan and Mehta 
(1987) used multiple incidence angles in the analysis of SIR-B data. They concluded that 
microwave radar response at L-Band (HH) at 25.60 and 45.20 for various land cover features 
is indeed a function of the incidence angle. For crops differences in radar response are also 
related to the imaging wavelength as well as to the crop type and its development stage. 
Shallower incident angles increase the pathlength through the vegetation maximizing 
response from the crop canopy itself and reducing the contribution from the soil. The radar 
signal strength decreases exponentially as the canopy depth increases due to both 
microwave absorption and scattering. Shallower incident angles increase the extinction of 
the radar signal also due to pathlength. The extinction coefficient is a function of both 
absorption and multiple scattering losses. At small incidence angles, (<300) the backscatter is 
dominated by the direct scattering from the soil while for large incidence angles (>300), the 
backscatter is dominated by the direct scattering from the canopy. As a result, small 
incidence angles are favored for soil moisture applications since roughness effects and 
vegetation attenuation are minimized at these angles (Daughtry et al., 1991). In general, crop 
discrimination based on crop-canopy backscatter, is optimal at larger incidence angles.  
Much of the information required for crop monitoring can be provided by satellite radar 
systems operating at L and C band, at linear co- and cross-polarizations and at an 
intermediate incident angle θ ranges (30o – 40o). Retrieval techniques based on multi-
temporal data and assimilation of RS information in crop models appears promising. 
Significant further research and development is required to understand the information 
provided by polarimetric SARs and to develop the methods and models to extract soil and 
crop information from these advanced sensors.  
Crop type and crop growth stage define the geometry of the canopy and the size, shape and 
orientation of the canopy constituents which influence microwave attenuation and 
scattering. The difference in radar backscatter between grain crops and broad-leafed crops is 
largely explained by the significant difference in the geometry of these canopies, as well as 
the increased biomass and water content of the broad-leafed crops. A larger backscatter 
response is associated with broad-leaf crops. In general, for broad-leafed crops like corn C- 
and L-band backscatter increases rapidly with plant growth, saturating early in the growing 
season.  Little change in backscatter occurs during the rest of the growing season (Bouman, 
1988). This saturation effect does not occur for grain crops such as wheat and barley. For 
these lower biomass crops, very dynamic temporal variations in radar backscatter are 
observed throughout the growing season. These variations are largely due to changes in 
crop structure (such as the emergence of grain heads) and canopy moisture changes (as 
occur during the period of senescence).  
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RADARSAT-1 imagery provided information on crop type and condition, with or without 
the integration of multi-spectral optical imagery. Regression analysis established that some 
indicators of crop vigor - in particular Leaf Area Index and crop height - were correlated 
with backscatter.  The success of this RADARSAT-1 study was attributed to the acquisition 
of the SAR data during the critical reproduction and seed development crop growth stages.  
(McNairn et al., 2002). 

 
3.2 Corn monitoring and crop yield 
The prediction of final yield or determination and monitoring of crop condition throughout 
the growing season has considerable economic value for the agronomic community. Yields 
vary considerably from year to year. Consequently, considerable effort has been devoted to 
the estimation of final crop yield using remotely sensed data. Many studies have reported 
on the use of optical RS for crop monitoring and yield prediction using optical RS (Soria-
Ruiz & Fernandez-Ordonez, 2003; Ferencz et al., 2004; Soria-Ruiz et al., 2004; Calera et al., 
2004; Fang et al., 2008). Although the successful use of optical RS has been demonstrated, 
implementation of a reliable operational approach dependent upon optical imagery is 
difficult in regions prone to continuous cloud coverage during the growing seasons. Some 
results for central Mexico are shown in Figures 1 and 2.  

 
 

 

Fig. 1. Corn monitoring in 2008 using Spot Images. State of Mexico. Mexico. 
 

 

classification errors. Accuracy can be increased for this particular crop through 
combinations of the information obtained from optical and radar satellite images. 
Research studies have demonstrated that timing of image acquisition is very important to 
the success of crop mapping with optical imagery. Unless optical imagery is available 
during key stages of crop development and when field data are collected, these images 
alone will not provide the information necessary for operational field-level crop monitoring. 
Acquisition of SAR data during key phenological stages is more reliable and consequently, 
these data are an important information source for crop monitoring system. SAR or SAR-
optical solution for crop monitoring have been explored in different regions of the world, 
and these studies are now reviewed.   
Through integration of both optical and SAR imagery, McNairn et al. (2008) demonstrated 
that multi-temporal satellite are successful in the classification of crops for a variety of 
cropping sytems. McNairn et al. (2009) indicate that multitemporal TerraSAR-X data can 
provide a classification accuracy of 84%; using a post-classification filter to remove noise in 
the map product final accuracies of 95% were obtained.  
Many studies have reported on the use of airborne optical multispectral imagery to estimate 
crop parameters such as leaf area index, canopy temperature, and plant height. These 
studies examined the relationship between crop condition and spectral response to 
determine whether these images could be used to estimate various crop condition 
parameters. A number of statistically significant correlations exist between the image 
reflectance and the crop condition parameters and these correlations vary as a function of 
crop type, time of year, and crop condition. The results suggest that in many cases, multi-
spectral optical imagery can be used to monitor variations in crop condition parameters 
across the growing season for a variety of crop types (Cloutis et al,. 1996). 
On the other hand and as already explains, SAR investigations have confirmed that 
microwaves are sensitive to both soil and crop characteristics. Results using multi-temporal 
RADARSAT-1 imagery have confirmed that C-HH backscatter can detect differences in crop 
type, crop growth stage and crop indicators like crop height, biomass and leaf area index. 
Active microwave systems have a significant advantage over optical systems, particularly 
for crop monitoring, since SAR acquisitions are not impeded by cloud cover. The multi-
beam modes associated with RADARSAT-1 also provide significant flexibility related to the 
timing, spatial resolution and incidence angle of the acquired imagery (McNairn et al., 2000) 
The availability of multi-polarization data from a number of SAR sensors operating at 
different frequencies (X-Band from TerraSAR-X, C-Band from ASAR and RADARSAT-2 and 
L-Band from ALOS PALSAR) has significantly advanced the use of SAR for agriculture and 
land cover mapping. The multi-polarized configurations provide more information related 
to crop structure and crop condition. Using simulations of data in preparation for the 
availability of RADARSAT-2 data, the Canada Centre of Remote Sensing (CCRS) gathered 
airborne polarimetric imagery over several Canadian sites in 1998 and 1999. These data were 
used to evaluate the sensitivity of multi-polarized SAR data to characteristics of corn, wheat 
and soybean crops (McNairn et al., 2000). Multiple polarizations provided a significant 
advantage for crop identification relative to the use of a single or dual polarization. The 
most important polarization for crop classification was the linear cross polarization (HV or 
VH). Cross polarization responses are a result of multiple scattering from within a crop 
canopy. Differences in canopy architecture due to differences in crop type result in unique 
cross polarization signatures. In a study using C-HH RADARSAT-1 data, multiple dates of 
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RADARSAT-1 imagery provided information on crop type and condition, with or without 
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combinations of the information obtained from optical and radar satellite images. 
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the success of crop mapping with optical imagery. Unless optical imagery is available 
during key stages of crop development and when field data are collected, these images 
alone will not provide the information necessary for operational field-level crop monitoring. 
Acquisition of SAR data during key phenological stages is more reliable and consequently, 
these data are an important information source for crop monitoring system. SAR or SAR-
optical solution for crop monitoring have been explored in different regions of the world, 
and these studies are now reviewed.   
Through integration of both optical and SAR imagery, McNairn et al. (2008) demonstrated 
that multi-temporal satellite are successful in the classification of crops for a variety of 
cropping sytems. McNairn et al. (2009) indicate that multitemporal TerraSAR-X data can 
provide a classification accuracy of 84%; using a post-classification filter to remove noise in 
the map product final accuracies of 95% were obtained.  
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determine whether these images could be used to estimate various crop condition 
parameters. A number of statistically significant correlations exist between the image 
reflectance and the crop condition parameters and these correlations vary as a function of 
crop type, time of year, and crop condition. The results suggest that in many cases, multi-
spectral optical imagery can be used to monitor variations in crop condition parameters 
across the growing season for a variety of crop types (Cloutis et al,. 1996). 
On the other hand and as already explains, SAR investigations have confirmed that 
microwaves are sensitive to both soil and crop characteristics. Results using multi-temporal 
RADARSAT-1 imagery have confirmed that C-HH backscatter can detect differences in crop 
type, crop growth stage and crop indicators like crop height, biomass and leaf area index. 
Active microwave systems have a significant advantage over optical systems, particularly 
for crop monitoring, since SAR acquisitions are not impeded by cloud cover. The multi-
beam modes associated with RADARSAT-1 also provide significant flexibility related to the 
timing, spatial resolution and incidence angle of the acquired imagery (McNairn et al., 2000) 
The availability of multi-polarization data from a number of SAR sensors operating at 
different frequencies (X-Band from TerraSAR-X, C-Band from ASAR and RADARSAT-2 and 
L-Band from ALOS PALSAR) has significantly advanced the use of SAR for agriculture and 
land cover mapping. The multi-polarized configurations provide more information related 
to crop structure and crop condition. Using simulations of data in preparation for the 
availability of RADARSAT-2 data, the Canada Centre of Remote Sensing (CCRS) gathered 
airborne polarimetric imagery over several Canadian sites in 1998 and 1999. These data were 
used to evaluate the sensitivity of multi-polarized SAR data to characteristics of corn, wheat 
and soybean crops (McNairn et al., 2000). Multiple polarizations provided a significant 
advantage for crop identification relative to the use of a single or dual polarization. The 
most important polarization for crop classification was the linear cross polarization (HV or 
VH). Cross polarization responses are a result of multiple scattering from within a crop 
canopy. Differences in canopy architecture due to differences in crop type result in unique 
cross polarization signatures. In a study using C-HH RADARSAT-1 data, multiple dates of 
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number of statistically significant correlations were found between the imagery and the crop 
condition parameters, and these correlations varied as a function of crop type, sensor and 
crop condition parameter. The results suggested that airborne remote sensing is well suited 
for measuring variations in crop conditions and that C-band SAR and multi-spectral 
imagery provided complementary information (Cloutis, 1999). 
Several methods to estimate crop yield over large hilly areas that include high spatial 
resolution satellite  imagery have been applied. These approaches incorporated QuickBird 
imagery with a production efficiency model (PEM) to estimate crop  yield. The results 
indicated that QuickBird imagery can improve the accuracy of predicted results relative to 
the Landsat TM image.  The predicted yield approximated well with the data reported by 
the farmers (r2 = 0.86; n = 80). The spatial distributions of crop  yield derived also offers 
valuable information to manage agricultural production and understand ecosystem 
functioning (Gang et al., 2009). In order to attain better accuracy, Soria-Ruiz et al., (2007) 
have applied optical and microwave RS data for corn monitoring and crop yield estimation 
under the heterogeneous corn-growing conditions in Mexico. Fusion of Landsat ETM+ and 
RADARSAT-1 provided better results than using optical data alone, for identifying crop and 
other land covers (Soria-Ruiz et al., 2008). These results are summarized in Figure 3. 
 

 
Fig. 3. Land-cover map obtained of data fusion from Landsat ETM and RADARSAT - 1 
(Soria-Ruiz et al., 2008). 

 

 

 

Fig. 2. Corn yield estimation using LAI and Spot images during 2008. State of Mexico, 
Mexico. 

 
The dielectric constant of water is very large compared to the values of most other materials 
or targets. Consequently there is a strong dependence of the radar backscatter on the 
amount of water present in vegetation. However, in order to use the radar backscatter to 
assess potential crop yield directly (for example using regression analysis) or through a 
yield model it is necessary to relate the backscatter to vegetation parameters indicative of 
crop productivity. Leaf area index (LAI) along with the intensity of the solar radiation 
determines the amount of energy available to the plant for photosynthesis, which in turn 
drives the plant development and subsequent yield. LAI is related to whole plant biomass, 
light interception and loss of water through evapotranspiration. From LAI, Major et al., 
(1986) defined LAI duration which provides a good indication of biomass throughout the 
season and of the total photosynthetic rate. Consequently, establishing a link between LAI 
and SAR backscatter would assist with the estimation of crop productivity and yield. 
Airborne optical multi-spectral and C-band HH-polarized SAR imagery were acquired in 
conjunction with ground-based measurements of various crop conditions (Leaf Area Index, 
canopy temperature, plant height) at a test site in southern Alberta, Canada in July 1994. 
Data were acquired for a variety of crops (wheat, canola, peas and beans) and irrigation 
practices. A number of crop condition-imagery relationships were examined to determine 
whether the imagery could be used to estimate the various crop condition parameters. A 
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number of statistically significant correlations were found between the imagery and the crop 
condition parameters, and these correlations varied as a function of crop type, sensor and 
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for measuring variations in crop conditions and that C-band SAR and multi-spectral 
imagery provided complementary information (Cloutis, 1999). 
Several methods to estimate crop yield over large hilly areas that include high spatial 
resolution satellite  imagery have been applied. These approaches incorporated QuickBird 
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indicated that QuickBird imagery can improve the accuracy of predicted results relative to 
the Landsat TM image.  The predicted yield approximated well with the data reported by 
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valuable information to manage agricultural production and understand ecosystem 
functioning (Gang et al., 2009). In order to attain better accuracy, Soria-Ruiz et al., (2007) 
have applied optical and microwave RS data for corn monitoring and crop yield estimation 
under the heterogeneous corn-growing conditions in Mexico. Fusion of Landsat ETM+ and 
RADARSAT-1 provided better results than using optical data alone, for identifying crop and 
other land covers (Soria-Ruiz et al., 2008). These results are summarized in Figure 3. 
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assess potential crop yield directly (for example using regression analysis) or through a 
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determines the amount of energy available to the plant for photosynthesis, which in turn 
drives the plant development and subsequent yield. LAI is related to whole plant biomass, 
light interception and loss of water through evapotranspiration. From LAI, Major et al., 
(1986) defined LAI duration which provides a good indication of biomass throughout the 
season and of the total photosynthetic rate. Consequently, establishing a link between LAI 
and SAR backscatter would assist with the estimation of crop productivity and yield. 
Airborne optical multi-spectral and C-band HH-polarized SAR imagery were acquired in 
conjunction with ground-based measurements of various crop conditions (Leaf Area Index, 
canopy temperature, plant height) at a test site in southern Alberta, Canada in July 1994. 
Data were acquired for a variety of crops (wheat, canola, peas and beans) and irrigation 
practices. A number of crop condition-imagery relationships were examined to determine 
whether the imagery could be used to estimate the various crop condition parameters. A 
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5. Conclusion 
 

Crop yield is a key element in rural development and an indicator of national food security. 
Optical and radar RS have been used separately in most cases for agriculture applications. 
Increased exploitation of SAR data is expected as these data become more readily accessible 
and as users become more familiar with the processing and interpretation of these data. In 
addition significant research is still required to advance methods and models to derive 
meaningful crop information from SAR data. Recent advances in the integration of optical 
and SAR data for agriculture applications are shedding more light on the communities 
understanding of how best to exploit both imagery sources. These advancements will assist 
in securing more accuracy results to support day-to-day decision making. Optical and radar 
RS are based on different physical principles. Radar data are sensitive to water content in 
the vegetation and the large scale structure of the canopy. Optical wavelenghts respond 
largely to the internal leaf structure and pigmentation. SAR data do not directly measure 
plant parameters, such as chlorophyll, important for plant photosythnesis. However 
parameters indicative of plant production, such as leaf area index, influence radar 
backscatter.  
Vegetation type identification has been successful when multi-dimensional approaches have 
been applied, often with accuracies at or above operationally effective goals of 90% 
classification accuracy. As with optical imagery, quantification of crop condition is more 
challenging for SAR data, particularly because radar backscatter also includes scattering 
contributions for the soil. Nevertheless, the integration of SAR and optical imagery for crop 
condition and productivity estimation appears promising.  
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4. Present and Future Research 
 

Recent research to assess relative classification accuracies of multi-polarized combinations 
for target crops using airborne data has been reported. In addition to identifying crop type 
and variety, identifying crop growth stage is valuable. Crop condition, loosely defined as 
the vigor or health of a crop in a particular growth stage, is related to crop productivity and 
yield; however, the relationship is complex. Main crop condition indicators include biomass, 
height, leaf area and contents of plant water, chlorophyll and nitrogen. Crop-type and crop-
condition mapping are among the applications that are expected to benefit the most from 
the technical enhancements embodied by RADARSAT-2. The potential of RADARSAT-1 
data for these applications has been rated as "limited", whereas for RADARSAT-2 data this 
potential is anticipated to be "strong". The Science and Operational Applications Research 
for RADARSAT-2 Program (SOAR) is promoting the evaluation of SAR capabilities by 
providing images to our project: N° 2657  RADARSAT-2 for Corn Monitoring and Crop 
Yield in Mexico (Soria-Ruiz et al., 2007).  
Within this project, we are researching a) the use of RADARSAT-2 data, SPOT and Ikonos 
data to determine cultivated areas and monitor crop condition; b) relating polarization 
signatures from RADARSAT-2 data to corn Leaf Area Index and photosynthetic active 
radiation (PAR) parameters. The expected benefits of this project are: to obtain knowledge 
about crop type, crop condition and crop yield with better accuracy than with current 
methodologies; to support national corn farmers associations; to support the design of 
agriculture related policies within state agriculture plans; to support the corn product 
industry and aid government decision making. Relevant results and economical impact will 
imply operational usage of RADARSAT- 2 data in the agricultural sector in Mexico (Soria-
Ruiz et al., 2007). 
Satellite imagery is an efficient method for mapping crop characteristics over large spatial 
areas and tracking temporal changes in soil and crop conditions. Some SAR sensors such as 
RADARSAT-1 acquire imagery with a single transmit-receive polarization, providing a 
single radar image. Therefore, more than one acquisition date is usually required to estimate 
meaningful crop information. With RADARSAT-2 several new features are expected to 
prove beneficial to the agricultural sector. These advancements include the availability of 
dual-polarization and quad-polarization modes, enabling the simultaneous acquisition of 
multiple polarizations on transmit and receive. In the quad-polarized mode four 
polarization channels are acquired. Valuable crop information can be extracted from one 
RADARSAT-2 image, particularly if these data are integrated with optical or SAR data 
acquired at complementary (X and L-band) frequencies.  
Crop type and crop condition mapping are among the applications together with crop yield 
that are expected to benefit the most from access to advanced sensors such as RADARSAT-
2.  The applications potential for RADARSAT-2 data is anticipated to be strong (van der 
Sanden, 2004). Images acquired in the polarimetric and ultra- fine resolution modes are 
expected to contain moderately improved information in support of crop-yield mapping. 
For crop condition mapping, the improved potential of the polarimetric and ultra-fine 
resolution data products for crop yield mapping can be explained by the increased 
sensitivity to crop structure and the capacity to obtain within-field zonal information. 
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5. Conclusion 
 

Crop yield is a key element in rural development and an indicator of national food security. 
Optical and radar RS have been used separately in most cases for agriculture applications. 
Increased exploitation of SAR data is expected as these data become more readily accessible 
and as users become more familiar with the processing and interpretation of these data. In 
addition significant research is still required to advance methods and models to derive 
meaningful crop information from SAR data. Recent advances in the integration of optical 
and SAR data for agriculture applications are shedding more light on the communities 
understanding of how best to exploit both imagery sources. These advancements will assist 
in securing more accuracy results to support day-to-day decision making. Optical and radar 
RS are based on different physical principles. Radar data are sensitive to water content in 
the vegetation and the large scale structure of the canopy. Optical wavelenghts respond 
largely to the internal leaf structure and pigmentation. SAR data do not directly measure 
plant parameters, such as chlorophyll, important for plant photosythnesis. However 
parameters indicative of plant production, such as leaf area index, influence radar 
backscatter.  
Vegetation type identification has been successful when multi-dimensional approaches have 
been applied, often with accuracies at or above operationally effective goals of 90% 
classification accuracy. As with optical imagery, quantification of crop condition is more 
challenging for SAR data, particularly because radar backscatter also includes scattering 
contributions for the soil. Nevertheless, the integration of SAR and optical imagery for crop 
condition and productivity estimation appears promising.  
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1. Introduction

Throughout history, humans have tried to represent what they see through images. Mapmak-
ers have always sought ways in which to represent both the location and the three dimensional
shape of land. At the beginning, the way to obtain a 3D representation of land was to measure
planimetry and height (as we can identify later by longitude, latitude and height) using basic
measuring devices. Nowadays, the improvements of airborne and spatial instruments make
it possible to produce images by sensing the electromagnetic radiation from the Earth. So,
we can distinguish two classes of remote sensors: optical sensors and radar sensors. Optical
sensors, such as Landsat or SPOT 5, operate around the visible spectrum and provide images
with a fine resolution (less than 5 meters for SPOT 5). Thus, these kinds of sensors become
very useful for civilian applications (cartography, elevation map, agriculture, hydrography,
management of natural hazards, meteorology, geology, deforestation and so on). Consider-
ing the subject of this chapter, the extraction of terrain elevation by stereoscopic images can
give digital elevation models with an error of about 5 meters (Toutin, 2000). However, optical
sensors could be critically useless because of weather conditions or lack of light (i.e. sun).
Thus, the use of radar sensors is a good way to overcome the limitations of optical sensors:
not very sensitive to rain, considered as active sensors (because they have their own source
of energy). Thanks to the signal processing applied to radar signal (pulse compression and
synthetic aperture), radar systems can provide images with a very high resolution (for ex-
ample, Radarsat-2 has an ultra-high resolution mode of about 3 meters for resolution). So,
radar images are considered as additional information to optical images. With regard to these
properties, one can estimate that radar images are used to get elevation terrain. The more in-
tuitive way to extract depth information from remote sensing images is stereogrammetry. As
the brain operates on optical images from eyes, the technique of radargrammetry is applied
to SAR (Synthetic Aperture Radar) stereo data and provides digital elevation models (DEM).
Considering this preamble to the radargrammetric world, this chapter examines one way to
produce digital elevation models (DEM) from a mountainous area (the French Alps) and the
way to improve the accuracy of the DEM. So, we will organize the discussion in three parts.
In part 1, in order to better understand the stereo computation, we need to explain the basic
characteristics of a radar image, which is particularly important to be considered during the
radargrammetric processing. Thus, a radar image can be seen as a distribution of reflected
electromagnetic energy on the ground. So, each element (i.e. a pixel) of an image is described
by its size along the azimuth and range axis. Also, specific characteristics of a radar image are
described as layover, shadowing and foreshortening. Because radargrammetric processing is
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where Pt is the transmitted power, G is the gain of the transmitted and received antenna,
λc is the wavelength of the transmitted wave, R represents the distance between the radar
and the scene and σ is the radar cross section. This parameter depends on many parameters
such as the frequency and polarisation state of the emitted wave, the dielectric nature of the
object, geometrical body of the object and so on. For example, buildings forming a corner with
the ground or other buildings, correspond to high reflected energy. Conversely, roughness
surfaces diffuse the incident energy and correspond to low reflected energy.

2.2 Signal processing and radar imaging
The side looking aperture radar (see figure 1) makes it possible to get radar images of the
ground by emitting pulses of electromagnetic waves. The platform (aircraft or satellite) of

height

azimuth

range

R0

θv

line of site

H

θl
θL

L

l

swath

antenna footprint
NADIR

Fig. 1. Configuration of side-looking

such a radar travels forward in the flight direction or along-track (azimuth axis) with the nadir
directly beneath the platform which is at the height H. The range axis refers to the across-track
dimension perpendicular to the flight direction. The microwave beam is transmitted obliquely
(elevation angle θv to the direction of flight illuminating a swath. The side looking geometry is
necessary to avoid the Doppler ambiguity. Some configurations exhibit a squint angle rather
than an antenna pointing perpendicularly to the flight direction. The footprint of the antenna
is defined through the line of sight of the main beam of the antenna and the aperture angles
(along the range and azimuth axis) of this antenna. This aperture angle refers to the physical
dimension of the antenna (respectively l and L). Swath width refers to the strip of the Earth’s
surface from which data is collected by the radar. The longitudinal extent of the swath is
defined by the motion of the aircraft with respect to the surface, whereas the swath width is
measured perpendicularly to the longitudinal extent of the swath.

based on fitting images, we need to establish a common reference to radar images and to set
up geographical coordinates for each image. Considering the position of the sensor, we can es-
tablish rigorous radar projection equations that can be compared to the so-called photogram-
metric equations. As the radiometry is important to interpret a radar image, we consider the
main radiometric models and the speckle phenomenon considered as noise in the SAR image.
In part 2, considering a radar image, we will present the basic operations of extraction from
satellite radar data. There are several methods to reconstruct elevation model from radar im-
ages. These images are essentially described as 2D information. So, one has to extrapolate 3D
information from 2D description (as DEM). There are different methods to do this: clinometry,
stereoscopy, interferometry and polarimetry. Since any sensor, system or method has its own
advantages and disadvantages, the choice of a radargrammetric technique depends on the
sensors and the means used during image acquisition. For the stereoscopic method, the ca-
pability of radar image pairing to achieve radargrammetic processing depends on geometric
configuration in relation with the radar trajectory. Considering this radar trajectory, one can
define the radar stereo base, the intersection angle and the parallax. We propose to review dif-
ferent ways to process the matching operations. These ways are correlation operations based
upon searching for match points as area correlation methods or elementary correlation. After
that, we will expose some improvements in the matching process (pyramidal scheme, speckle
filtering). Part 3 will deal with the description of radargrammetric applications on real data
(from SIRC shuttle mission) and the different steps to obtain a DEM. First of all, we describe
the radar image and especially the relations between the satellite route and the ground radar
image. This step is crucial in order to efficiently match the stereo radar images. Also, we ex-
plain the significance of using ground control points (GCPs) to rectify radar images. The next
step is the matching operation between the two stereo SAR images. It consists in determining
the point co-ordinates inside the secondary image for each point in the reference image, which
is called the corresponding pixel. The computation of the 2D normalized cross-correlation co-
efficient is used on SAR images. At this step, we use a hierarchical strategy to reduce process
time and use a filter to get the high accuracy disparity map. Then, we apply the rigorous
radar stereo intersection problem and compute the stereo radargrammetric equations. Using
the solutions, we obtain a DEM from the stereo radar images. This DEM is compared with
a reference DEM. At the end, we move on to the point of improvement of the DEM: obvious
improvements (correction of incoherent points) and further improvements in progress (use of
adaptive correlation windows or polarimetric parameters).

2. Radargrammetric sensors

2.1 Introduction
As the acronym RADAR means “Radio Detection and Ranging”, the basic principles are to
detect and range objects located in front of the radar system. In the context of remote sensing,
a scene (i.e. the terrain) is considered to be imaged by transmitting an incident electromagnetic
wave from the radar, reflecting towards the radar (monostatic consideration) and receiving the
reflected wave.The radar signal is obtained through the conversion of an electrical current on
the antenna surface induced by an electromagnetic field around this antenna and vice-versa.
Thus, the received signal contains information about the scene such as dielectric properties.
Firstly, we can describe the received power Pr through the radar equation:

Pr =
Pt.G2.λ2

c

(4π)3 R4
σ
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where Pt is the transmitted power, G is the gain of the transmitted and received antenna,
λc is the wavelength of the transmitted wave, R represents the distance between the radar
and the scene and σ is the radar cross section. This parameter depends on many parameters
such as the frequency and polarisation state of the emitted wave, the dielectric nature of the
object, geometrical body of the object and so on. For example, buildings forming a corner with
the ground or other buildings, correspond to high reflected energy. Conversely, roughness
surfaces diffuse the incident energy and correspond to low reflected energy.

2.2 Signal processing and radar imaging
The side looking aperture radar (see figure 1) makes it possible to get radar images of the
ground by emitting pulses of electromagnetic waves. The platform (aircraft or satellite) of
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Fig. 1. Configuration of side-looking

such a radar travels forward in the flight direction or along-track (azimuth axis) with the nadir
directly beneath the platform which is at the height H. The range axis refers to the across-track
dimension perpendicular to the flight direction. The microwave beam is transmitted obliquely
(elevation angle θv to the direction of flight illuminating a swath. The side looking geometry is
necessary to avoid the Doppler ambiguity. Some configurations exhibit a squint angle rather
than an antenna pointing perpendicularly to the flight direction. The footprint of the antenna
is defined through the line of sight of the main beam of the antenna and the aperture angles
(along the range and azimuth axis) of this antenna. This aperture angle refers to the physical
dimension of the antenna (respectively l and L). Swath width refers to the strip of the Earth’s
surface from which data is collected by the radar. The longitudinal extent of the swath is
defined by the motion of the aircraft with respect to the surface, whereas the swath width is
measured perpendicularly to the longitudinal extent of the swath.

based on fitting images, we need to establish a common reference to radar images and to set
up geographical coordinates for each image. Considering the position of the sensor, we can es-
tablish rigorous radar projection equations that can be compared to the so-called photogram-
metric equations. As the radiometry is important to interpret a radar image, we consider the
main radiometric models and the speckle phenomenon considered as noise in the SAR image.
In part 2, considering a radar image, we will present the basic operations of extraction from
satellite radar data. There are several methods to reconstruct elevation model from radar im-
ages. These images are essentially described as 2D information. So, one has to extrapolate 3D
information from 2D description (as DEM). There are different methods to do this: clinometry,
stereoscopy, interferometry and polarimetry. Since any sensor, system or method has its own
advantages and disadvantages, the choice of a radargrammetric technique depends on the
sensors and the means used during image acquisition. For the stereoscopic method, the ca-
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step is the matching operation between the two stereo SAR images. It consists in determining
the point co-ordinates inside the secondary image for each point in the reference image, which
is called the corresponding pixel. The computation of the 2D normalized cross-correlation co-
efficient is used on SAR images. At this step, we use a hierarchical strategy to reduce process
time and use a filter to get the high accuracy disparity map. Then, we apply the rigorous
radar stereo intersection problem and compute the stereo radargrammetric equations. Using
the solutions, we obtain a DEM from the stereo radar images. This DEM is compared with
a reference DEM. At the end, we move on to the point of improvement of the DEM: obvious
improvements (correction of incoherent points) and further improvements in progress (use of
adaptive correlation windows or polarimetric parameters).

2. Radargrammetric sensors

2.1 Introduction
As the acronym RADAR means “Radio Detection and Ranging”, the basic principles are to
detect and range objects located in front of the radar system. In the context of remote sensing,
a scene (i.e. the terrain) is considered to be imaged by transmitting an incident electromagnetic
wave from the radar, reflecting towards the radar (monostatic consideration) and receiving the
reflected wave.The radar signal is obtained through the conversion of an electrical current on
the antenna surface induced by an electromagnetic field around this antenna and vice-versa.
Thus, the received signal contains information about the scene such as dielectric properties.
Firstly, we can describe the received power Pr through the radar equation:

Pr =
Pt.G2.λ2
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by a matched filter that fine tunes the range resolution δd:

δd =
c

2.Bp

Thus, the range resolution is inversely equal to the bandwidth of the emitted signal. Therefore,
using the parameters of the SIR-C mission and especially the value of Bp (10 Mhz), we can get
a range resolution of about 15 meters.

2.2.3 Azimuth resolution
Crossrange resolution is naturally achieved by use of an antenna with a narrow beam and
specified by θL. If the beamwidth along the crossrange axis is given approximately by
θL ≈ λ/L where λ is the wavelength of the transmitted signal , the corresponding azimuth
resolution δa at range R0 is then δa = λ.R0/L. Considering the SIR-C mission again, the az-
imuth resolution would be about 30 kilometers, which is also unacceptable. The synthetic
aperture processes the received signal by using the fact that the radar views the scene from
slightly different angles. These different views (at each emitted pulse) are obtained because
the radar moves through its synthetic aperture. Considering the response of one point on
the ground, the reflected signal from this point can be seen as a frequency modulated signal
(Doppler frequency). Also, a matched filtering operation is applied along the azimuth axis
under certain assumptions (width of Doppler spectrum and duration of the seen point), we
write the azimuth resolution δa as

δa =
L
2

which gives an azimuth resolution of 6 meters considering the characteristics of the antenna
of the shuttle (SIR-C).

2.2.4 Radar image corrections
The values of resolution given above are usually better than those obtained by the real system.
Also, the signal processing must take into account undesirable effects that affect the perfor-
mances of the radar. Concerning our discussion about radargrammetry, we can note among
these effects:

• the range migration that can be modelled by the parabolic variation of the distance
between the target point on the ground and the radar along the synthetic aperture (this
point is corrected by different processing methods (Carrara et al., 1995)),

• the radiometric variations due to the change of received signal power from the begin-
ning of the swath (near range) to the end of the swath (far range) for each position of
the radar (using well-known ground points as RCS references can correct this effect),

• the motion compensation that corrects the deviation of the antenna from its nominal
flight path.

Despite the corrections, some errors such as bad localization of pixels can still be found on the
radar image. These errors can finally be eliminated by making use of ground control points
such as buildings, cross-roads, mountain tops and so on.

2.2.1 Processing the image
This chapter presents results from data obtained by a pulse radar. The word "resolution"
means the precision to which we can measure the location of a point target and not neces-
sary the capability of the radar to distinguish two targets (volume of confusion). Also, we
can define the unfocused resolution along the range axis δd = cτ/2 and along the azimuth
axis δa which partially depends on the value of R0. At each position for the radar, an electro-
magnetic pulse is emitted with the period repetition commonly known as the inverse of the
pulse repetition frequency (PRF). The pulse duration is very brief compared with the period
of repetition. Thus, the reflected signal is recorded during almost the period repetition minus
the pulse duration. The time of the beginning of the recorded signal is called tp and the end
is referred td. Also, we can define the physical limit of the radar image which is processed in
the slant plane (see figure 2)

• the near range Rp = (c.tp)/2,

• the far range Rd = (c.td)/2.
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S

H

O
ground plane

rlg

slant plane (radar image)

R

swath

RP : near range

line of sight <=> slant plane
θv 2θv 2

Fig. 2. Projection to the slant plane and to the ground plane

In order to get a ground-plane radar image, we have to interpole and resample the slant-plane
radar image and be sure that the range resolution is constant along the range axis. Ground-
plane imagery must be obtained with minimal distortion if comparisons with maps taken
from other sensors (for example sensors) are needed.

2.2.2 Range resolution
Actually, the term SAR refers to signal processing that improves the azimuth resolution. Con-
sidering the parameters of the SIR-C mission, the pulse duration is equal to 33.8 µs and the
resulting range resolution is more than 30 kilometers,which is unacceptable for remote sensing
applications. Fine resolution is achieved by transmitting and receiving frequency modulated
radar waves. The modulation is characterized by a wide bandwidth Bp. The echo is processed
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by a matched filter that fine tunes the range resolution δd:

δd =
c

2.Bp

Thus, the range resolution is inversely equal to the bandwidth of the emitted signal. Therefore,
using the parameters of the SIR-C mission and especially the value of Bp (10 Mhz), we can get
a range resolution of about 15 meters.

2.2.3 Azimuth resolution
Crossrange resolution is naturally achieved by use of an antenna with a narrow beam and
specified by θL. If the beamwidth along the crossrange axis is given approximately by
θL ≈ λ/L where λ is the wavelength of the transmitted signal , the corresponding azimuth
resolution δa at range R0 is then δa = λ.R0/L. Considering the SIR-C mission again, the az-
imuth resolution would be about 30 kilometers, which is also unacceptable. The synthetic
aperture processes the received signal by using the fact that the radar views the scene from
slightly different angles. These different views (at each emitted pulse) are obtained because
the radar moves through its synthetic aperture. Considering the response of one point on
the ground, the reflected signal from this point can be seen as a frequency modulated signal
(Doppler frequency). Also, a matched filtering operation is applied along the azimuth axis
under certain assumptions (width of Doppler spectrum and duration of the seen point), we
write the azimuth resolution δa as

δa =
L
2

which gives an azimuth resolution of 6 meters considering the characteristics of the antenna
of the shuttle (SIR-C).

2.2.4 Radar image corrections
The values of resolution given above are usually better than those obtained by the real system.
Also, the signal processing must take into account undesirable effects that affect the perfor-
mances of the radar. Concerning our discussion about radargrammetry, we can note among
these effects:

• the range migration that can be modelled by the parabolic variation of the distance
between the target point on the ground and the radar along the synthetic aperture (this
point is corrected by different processing methods (Carrara et al., 1995)),

• the radiometric variations due to the change of received signal power from the begin-
ning of the swath (near range) to the end of the swath (far range) for each position of
the radar (using well-known ground points as RCS references can correct this effect),

• the motion compensation that corrects the deviation of the antenna from its nominal
flight path.

Despite the corrections, some errors such as bad localization of pixels can still be found on the
radar image. These errors can finally be eliminated by making use of ground control points
such as buildings, cross-roads, mountain tops and so on.

2.2.1 Processing the image
This chapter presents results from data obtained by a pulse radar. The word "resolution"
means the precision to which we can measure the location of a point target and not neces-
sary the capability of the radar to distinguish two targets (volume of confusion). Also, we
can define the unfocused resolution along the range axis δd = cτ/2 and along the azimuth
axis δa which partially depends on the value of R0. At each position for the radar, an electro-
magnetic pulse is emitted with the period repetition commonly known as the inverse of the
pulse repetition frequency (PRF). The pulse duration is very brief compared with the period
of repetition. Thus, the reflected signal is recorded during almost the period repetition minus
the pulse duration. The time of the beginning of the recorded signal is called tp and the end
is referred td. Also, we can define the physical limit of the radar image which is processed in
the slant plane (see figure 2)

• the near range Rp = (c.tp)/2,

• the far range Rd = (c.td)/2.
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Fig. 2. Projection to the slant plane and to the ground plane

In order to get a ground-plane radar image, we have to interpole and resample the slant-plane
radar image and be sure that the range resolution is constant along the range axis. Ground-
plane imagery must be obtained with minimal distortion if comparisons with maps taken
from other sensors (for example sensors) are needed.

2.2.2 Range resolution
Actually, the term SAR refers to signal processing that improves the azimuth resolution. Con-
sidering the parameters of the SIR-C mission, the pulse duration is equal to 33.8 µs and the
resulting range resolution is more than 30 kilometers,which is unacceptable for remote sensing
applications. Fine resolution is achieved by transmitting and receiving frequency modulated
radar waves. The modulation is characterized by a wide bandwidth Bp. The echo is processed
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seems to be shorter than the real one and this effect is maximum when the radar beam is
perpendicular to the mountain slope.

2.3.3 Layover effect
The layover effect occurs when the radar beam reaches the top of a mountain or a hill before
its base. The straight segment [CD] and its image [C’D’] onto the slant range illustrate this
effect in figure 3. Also, a terrain slope towards the radar produces a viewing permutation
between the top and the base of a mountain on a radar image.

2.3.4 Shadowing effect
The shadowing effect occurs when the radar beam is not able to illuminate the radar scene.
This effect that can be seen in figure 3 considering the straight segment from the point E’,
image of the point E, to the end of the swath. Also, the radar shadow is considered as an
optical shadow and induces a black area on the radar image because no reflected wave comes
from this kind of region (for example, point F is not seen on the radar image). All these effects
are quite severe in order to understand a radar image well and especially in mountainous
areas. Moreover, the incidence angle of the radar beam is another important parameter to es-
timate the influence on the interpreted radar image. So, the efficiency of the radargrammetric
processing must take into account these characteristics.

2.3.5 Geometrical model of the radar position
The capabilities to link each pixel of a radar image to a real position on the terrain is one of
the most important steps of the radargrammetric processing because correction, rectification,
resizing and superimposition processings of the image need to know the geometrical position
of a pixel. The model of the platform (e.g. in our study a satellite) flight path is described in
figure 4 provides relation between radar image indexes and the terrain (Girard, 2003) thanks
to

• radar parameters (frequency, size of the antenna, incidence angle . . . ),

• instantaneous position and motion of the radar platform,

• an ellipsoidal model of the Earth.

For the last item, the figure 4 gives several parameters to describe the model as

• angles λ and φ which are respectively the longitude position and the latitude position,

• Earth’s referential (G, i, j,k) which is established by the centre of the Earth G, the i-axis
towards the Greenwich meridian, the k-axis coinciding with the Earth’s axis of rota-
tion and the j-axis forming a right-handed system with i-axis and k-axis instantaneous
position and motion of the radar platform,

• referential of satellite (S, l,r, t) linked to the satellite and described by the position S of
the satellite, the l-axis colinear to the vector �GS, the t-axis simultaneously perpendicular
to the l-axis and the vector �̇S and the r-axis forming a right-handed system with l-axis
and t-axis.

As described in (Dhond & Aggarwal, 1989), stereoscopic processing needs to know several
parameters which corresponds, for radargrammetry processing, to:

• the wavelength λc of the transmitted wave,

• the azimuth resolution δa and the range resolution δd,

2.3 Geometric interpretation of a SAR image
Actually, the importance of geometry for the interpretation of radar images recurs throughout
this chapter. As we wrote before, the radar system can be considered as an Èall-weatherÉ
system and contrary to optical imagery, does not need ambient light or an external source of
energy to obtain images. However, upon comparing a SAR image and an optical image, we
can assume that certain properties of an optical image are not included in the radar image.
For example, this phenomenon is clearly visible when looking at pixels farther from the radar,
which appear smaller along the range axis than pixels closer to the radar. Although the cross
range resolution is not affected by the radar imagery process, we suppose that the relief of
the terrain will induce radiometric and, especially, geometric distortion. Thus, if we consider
a ground point with a height h and located at a range R from the radar at the height H, the
position xsol along the range axis is given by:

xsol =
√

R2 − (H − h)2

and means that a single radar image doesn’t give the altitude of a pixel but must be associated
to a height model of the terrain. This is one of the tricky points about the interpretation of a
radar image.

2.3.1 Distortion of a radar image
The projection of a terrain slope on the slant range of the radar induces well-known distortion
that can be expected as regards the planimetry (see figure 3). And, the values of resolution
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Fig. 3. Geometrical distortion occurs in the slant radar image.

given above are usually better than those obtained by the real system. Also, the signal pro-
cessing must take into account undesirable effects that affect the performances of the radar.
Concerning our discussion about radargrammetry, we can note among these effects the fore-
shortening effect, the layover effect and the shadowing effect which result from relief displace-
ment.

2.3.2 Foreshortening effect
The foreshortening effect occurs when the radar beam reaches the base of a slope tilted to-
wards the radar before the top of this same slope. The straight segment [AB] and its image
[A’B’] onto the slant range illustrate this effect in figure 3. Thus, the radar measured distance
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seems to be shorter than the real one and this effect is maximum when the radar beam is
perpendicular to the mountain slope.

2.3.3 Layover effect
The layover effect occurs when the radar beam reaches the top of a mountain or a hill before
its base. The straight segment [CD] and its image [C’D’] onto the slant range illustrate this
effect in figure 3. Also, a terrain slope towards the radar produces a viewing permutation
between the top and the base of a mountain on a radar image.

2.3.4 Shadowing effect
The shadowing effect occurs when the radar beam is not able to illuminate the radar scene.
This effect that can be seen in figure 3 considering the straight segment from the point E’,
image of the point E, to the end of the swath. Also, the radar shadow is considered as an
optical shadow and induces a black area on the radar image because no reflected wave comes
from this kind of region (for example, point F is not seen on the radar image). All these effects
are quite severe in order to understand a radar image well and especially in mountainous
areas. Moreover, the incidence angle of the radar beam is another important parameter to es-
timate the influence on the interpreted radar image. So, the efficiency of the radargrammetric
processing must take into account these characteristics.

2.3.5 Geometrical model of the radar position
The capabilities to link each pixel of a radar image to a real position on the terrain is one of
the most important steps of the radargrammetric processing because correction, rectification,
resizing and superimposition processings of the image need to know the geometrical position
of a pixel. The model of the platform (e.g. in our study a satellite) flight path is described in
figure 4 provides relation between radar image indexes and the terrain (Girard, 2003) thanks
to

• radar parameters (frequency, size of the antenna, incidence angle . . . ),

• instantaneous position and motion of the radar platform,

• an ellipsoidal model of the Earth.

For the last item, the figure 4 gives several parameters to describe the model as

• angles λ and φ which are respectively the longitude position and the latitude position,

• Earth’s referential (G, i, j,k) which is established by the centre of the Earth G, the i-axis
towards the Greenwich meridian, the k-axis coinciding with the Earth’s axis of rota-
tion and the j-axis forming a right-handed system with i-axis and k-axis instantaneous
position and motion of the radar platform,

• referential of satellite (S, l,r, t) linked to the satellite and described by the position S of
the satellite, the l-axis colinear to the vector �GS, the t-axis simultaneously perpendicular
to the l-axis and the vector �̇S and the r-axis forming a right-handed system with l-axis
and t-axis.

As described in (Dhond & Aggarwal, 1989), stereoscopic processing needs to know several
parameters which corresponds, for radargrammetry processing, to:

• the wavelength λc of the transmitted wave,

• the azimuth resolution δa and the range resolution δd,

2.3 Geometric interpretation of a SAR image
Actually, the importance of geometry for the interpretation of radar images recurs throughout
this chapter. As we wrote before, the radar system can be considered as an Èall-weatherÉ
system and contrary to optical imagery, does not need ambient light or an external source of
energy to obtain images. However, upon comparing a SAR image and an optical image, we
can assume that certain properties of an optical image are not included in the radar image.
For example, this phenomenon is clearly visible when looking at pixels farther from the radar,
which appear smaller along the range axis than pixels closer to the radar. Although the cross
range resolution is not affected by the radar imagery process, we suppose that the relief of
the terrain will induce radiometric and, especially, geometric distortion. Thus, if we consider
a ground point with a height h and located at a range R from the radar at the height H, the
position xsol along the range axis is given by:

xsol =
√

R2 − (H − h)2

and means that a single radar image doesn’t give the altitude of a pixel but must be associated
to a height model of the terrain. This is one of the tricky points about the interpretation of a
radar image.

2.3.1 Distortion of a radar image
The projection of a terrain slope on the slant range of the radar induces well-known distortion
that can be expected as regards the planimetry (see figure 3). And, the values of resolution
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given above are usually better than those obtained by the real system. Also, the signal pro-
cessing must take into account undesirable effects that affect the performances of the radar.
Concerning our discussion about radargrammetry, we can note among these effects the fore-
shortening effect, the layover effect and the shadowing effect which result from relief displace-
ment.

2.3.2 Foreshortening effect
The foreshortening effect occurs when the radar beam reaches the base of a slope tilted to-
wards the radar before the top of this same slope. The straight segment [AB] and its image
[A’B’] onto the slant range illustrate this effect in figure 3. Thus, the radar measured distance
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Considering a point M defined by its height h and its geocentric coordinates (x,y,z) in the
(G, i, j,k) reference, we can write the above expression:

x2 + y2

(a + h)2 +
z2

(b + h)2 = 1

2.3.7 Radar coordinates and image coordinates
In the radar reference, each pixel of the image gives information about the range distance r
and the time t elapsed since the beginning of the recorded raw data. Another way to describe
a radar image refers obviously to the azimuth u and range r coordinates. Also, a data trans-
formation is feasible via the number of looks Nf used to establish the radar image (Curlander,
1991) and the spatial sampling frequency fe along the range axis:

{
t = Nf

fr
.u + tinit

r = c
2 fe

.v + r0

We have to note that the values of u and v are immediately obtained from the radar image. At
this time, we have to set up the coordinates t and r in the defined Earth’s reference.

2.3.8 Range sphere and Doppler cone
We can define the range sphere as the constant distance r of a point M from the radar located
at the position S:

|−→SM| = r

Moreover, the Doppler cone is the cone of equal Doppler frequency and has its apex located
at the centre of the range sphere:

fD =
2
λc

.
�̇S.
−→
SM

|−→SM|
In the case of side-looking radar, the centroid Doppler frequency fD is equal to zero, which
means the cone becomes a plane perpendicular to the velocity vector

−→
SM. Considering the

coordinates

• (x,y,z) of the point M on the radar image,

• (XS,YS, ZS) of the position S of the radar,

• (ẊS, ẎS, ŻS) of the velocity of the radar,

the equations 2.3.8 and 2.3.8 establish a system of 2 equations of 3 unknowns (x,y,z) whose
solutions describe a circle called Doppler circle (see figure 5). The Earth’s model as defined
before and raised of height he finally makes it possible to get two solutions of the given system.
One of these can be eliminated considering the line of site (LOS) (figure 6). Unfortunately,
the different slopes of terrain above the Earth’s ellipsoid that we described before and the
associated effects (especially in foreshortening areas) on the radar image result in more than
one solution.
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Fig. 4. Position and motion of a satellite

• the central Doppler frequency fD of the received signal,

• the time t0 for which the values of the position and the velocity of the satellite are
known,

• the initial time tinit of the beginning of the radar image,

• the range distance r0 given for a reference line of the image,

• parameters that make it possible to calculate the behaviour of the satellite (position,
orientation, velocity) for each value of time.

Actually, the position and velocity of the satellite are known at specific values of time which
are called ephemerides. Thus, we have to interpolate the path of the satellite in order to have
all the position and velocity of the satellite along the flight path.

2.3.6 Geographic coordinates of a radar image
Thanks to the parameters describing the flight path of the satellite, it is possible to give geo-
graphic information for each pixel of the radar image. In order to establish this relation and to
measure locations accurately, some references of coordinates are used (Dufour, 2001). In this
chapter, we use the global coordinate system which has been described before (see figure 4).
The ellipsoidal height h of a point is the vertical distance of the point in question above the
reference ellipsoid. The reference ellipsoid is described by the WGS84 system (geodetic) and
the significant parameters defined by

• the semi-major axis a = 6378137.0 meters,

• the semi-minor axis b = 6356752.3 meters.
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Considering a point M defined by its height h and its geocentric coordinates (x,y,z) in the
(G, i, j,k) reference, we can write the above expression:

x2 + y2

(a + h)2 +
z2

(b + h)2 = 1

2.3.7 Radar coordinates and image coordinates
In the radar reference, each pixel of the image gives information about the range distance r
and the time t elapsed since the beginning of the recorded raw data. Another way to describe
a radar image refers obviously to the azimuth u and range r coordinates. Also, a data trans-
formation is feasible via the number of looks Nf used to establish the radar image (Curlander,
1991) and the spatial sampling frequency fe along the range axis:

{
t = Nf

fr
.u + tinit

r = c
2 fe

.v + r0

We have to note that the values of u and v are immediately obtained from the radar image. At
this time, we have to set up the coordinates t and r in the defined Earth’s reference.

2.3.8 Range sphere and Doppler cone
We can define the range sphere as the constant distance r of a point M from the radar located
at the position S:

|−→SM| = r

Moreover, the Doppler cone is the cone of equal Doppler frequency and has its apex located
at the centre of the range sphere:

fD =
2
λc

.
�̇S.
−→
SM

|−→SM|
In the case of side-looking radar, the centroid Doppler frequency fD is equal to zero, which
means the cone becomes a plane perpendicular to the velocity vector

−→
SM. Considering the

coordinates

• (x,y,z) of the point M on the radar image,

• (XS,YS, ZS) of the position S of the radar,

• (ẊS, ẎS, ŻS) of the velocity of the radar,

the equations 2.3.8 and 2.3.8 establish a system of 2 equations of 3 unknowns (x,y,z) whose
solutions describe a circle called Doppler circle (see figure 5). The Earth’s model as defined
before and raised of height he finally makes it possible to get two solutions of the given system.
One of these can be eliminated considering the line of site (LOS) (figure 6). Unfortunately,
the different slopes of terrain above the Earth’s ellipsoid that we described before and the
associated effects (especially in foreshortening areas) on the radar image result in more than
one solution.
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• the central Doppler frequency fD of the received signal,

• the time t0 for which the values of the position and the velocity of the satellite are
known,

• the initial time tinit of the beginning of the radar image,

• the range distance r0 given for a reference line of the image,

• parameters that make it possible to calculate the behaviour of the satellite (position,
orientation, velocity) for each value of time.

Actually, the position and velocity of the satellite are known at specific values of time which
are called ephemerides. Thus, we have to interpolate the path of the satellite in order to have
all the position and velocity of the satellite along the flight path.

2.3.6 Geographic coordinates of a radar image
Thanks to the parameters describing the flight path of the satellite, it is possible to give geo-
graphic information for each pixel of the radar image. In order to establish this relation and to
measure locations accurately, some references of coordinates are used (Dufour, 2001). In this
chapter, we use the global coordinate system which has been described before (see figure 4).
The ellipsoidal height h of a point is the vertical distance of the point in question above the
reference ellipsoid. The reference ellipsoid is described by the WGS84 system (geodetic) and
the significant parameters defined by

• the semi-major axis a = 6378137.0 meters,

• the semi-minor axis b = 6356752.3 meters.
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target on the radar image. Moreover, we can attach to each pixel of the radar image a local
incidence angle so that we can notice variations in pixel brightness concerning one target
object (rocks, trees, grass, buildings). Finally, we can note that the variation of incidence angles
is less for a satellite radar than an airborne radar because of the height of the platform. Among
the natural Earth’s surfaces, we can characterize (Ulaby, 1981) three kinds of surface

• bare surface where simple reflections occur and the amount of energy towards the radar
depends on the roughness of the soil,

• farmed surface where reflections are quite complex and depend on the crops, the mois-
ture, the direction of the parcels and so on,

• vegetation surface where the reflection phenomena essentially depend on the wave-
length. For example, the waves of the radar band X are only reflected by the top of
the canopy. Lower wavelength waves penetrate the canopy and volume scattering has
to be considered. Finally, some features on the ground can be considered as close tar-
gets,which means these features have two (or more) surfaces (generally smooth) form-
ing a right angle and cause double (or more) bounce reflections (figure 8).
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2.4 Radiometric phenomena in an SAR image
The first remark concerns the main difference between the radar image and the optical image.
The Earth’s surfaces reflecting strong energy towards the radar correspond to very bright pix-
els on the radar image (and can appear dark on an optical image). The radar scene reflects
a certain amount of radiation according to its geometrical and physical characteristics. This
part will deal with radiometric phenomena that occur on the ground and which essentially
depend on the electrical properties of the soil and the roughness of the area. Moreover, as
we have seen before, the geometric shape of an area or an object on the ground mainly deter-
mines the radiometry of a pixel and the brightness of a feature could be a combination with
other objects. Another important parameter is the wavelength of the incident radiation wave
and the electromagnetic interaction falls with either surface interaction or volume interaction.
Also, we can separate the interactions into two main topics:

• smooth surfaces that reflect (nearly) all the incident waves towards to a particular di-
rection: specular reflection. If the surface is tilted towards the radar, the corresponding
radar image appears very bright. Conversely, if the surface is not turned towards the
radar (e.g. calm water or paved roads), the surface appears dark on the radar image;

• rough surface that scatters the incident wave in many directions: diffuse reflector.

In order to determine the degree of roughness of a surface, we use to establish (Beckman &
Spizzichino, 1987) a relation between the state of the surface quantified by the average height
variation h, the wavelength of the wave λc and the local incidence angle θi (see figure 7). This
relation is known as the Rayleigh criterion:




h <
λc

8cosθi
lorsque λc � h

h <
λc

32cosθi
lorsque λc � h

Let us consider the local incidence angle: an incidence angle is the angle between the radar
beam and the target object. The value of this angle determines the radar appearance of this
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the natural Earth’s surfaces, we can characterize (Ulaby, 1981) three kinds of surface

• bare surface where simple reflections occur and the amount of energy towards the radar
depends on the roughness of the soil,

• farmed surface where reflections are quite complex and depend on the crops, the mois-
ture, the direction of the parcels and so on,

• vegetation surface where the reflection phenomena essentially depend on the wave-
length. For example, the waves of the radar band X are only reflected by the top of
the canopy. Lower wavelength waves penetrate the canopy and volume scattering has
to be considered. Finally, some features on the ground can be considered as close tar-
gets,which means these features have two (or more) surfaces (generally smooth) form-
ing a right angle and cause double (or more) bounce reflections (figure 8).
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a certain amount of radiation according to its geometrical and physical characteristics. This
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depend on the electrical properties of the soil and the roughness of the area. Moreover, as
we have seen before, the geometric shape of an area or an object on the ground mainly deter-
mines the radiometry of a pixel and the brightness of a feature could be a combination with
other objects. Another important parameter is the wavelength of the incident radiation wave
and the electromagnetic interaction falls with either surface interaction or volume interaction.
Also, we can separate the interactions into two main topics:

• smooth surfaces that reflect (nearly) all the incident waves towards to a particular di-
rection: specular reflection. If the surface is tilted towards the radar, the corresponding
radar image appears very bright. Conversely, if the surface is not turned towards the
radar (e.g. calm water or paved roads), the surface appears dark on the radar image;

• rough surface that scatters the incident wave in many directions: diffuse reflector.

In order to determine the degree of roughness of a surface, we use to establish (Beckman &
Spizzichino, 1987) a relation between the state of the surface quantified by the average height
variation h, the wavelength of the wave λc and the local incidence angle θi (see figure 7). This
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beam and the target object. The value of this angle determines the radar appearance of this
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analysis has become more sophisticated (various incident angles, various frequencies and po-
larisations of the wave and so on).

3.2 Basics of radargrammetry as a radar stereoscopic method
3.2.1 Principle
Stereoscopy is a viewing method that forces our eyes to see, at the same time, two images
taken from different angles. This technique allows us to see in three dimensions as it rein-
forces physiological indicators. The indicators used by stereoscopic method are parallax and
convergence angle and can be defined as follows:

• the parallax P of an observed point is a parameter that is directly connected to the point
elevation and it increases with the altitude of the point,

• the convergence angle ∆θv is defined by the intersection of the two lines of sight of the
radar and this angle increases as the baseline Bs rises.

In figure 9, the same-side stereoscopic configuration is exposed and the description of the
parallax P, the base-line Bs and the intersection angle ∆θv = θv1 − θv2 is given. The latter
parameters have an important function as regards the quality and the accuracy of the terrain
reconstruction.
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Fig. 9. One radar stereoscopic configuration.

3.2.2 Matching step
Stereoscopic techniques applied to radars are influenced by optical techniques (we can com-
pare the baseline Bs in the radargrammetry configuration and the vertex in the human de-
scription), except that SAR images replace optical systems images. But, the main difficulty is
to get used to new and unnatural radar viewing (as we exposed before) and especially when
both geometric and radiometric disparities are large. However, radar images can be viewed
in stereo after training. The point of radargrammetry is to match two radar images by a “reg-
istration” processing. The registration step aligns two images containing the same radar scene
but viewed from different positions. The aim of the matching step is to get a dense description
in order to achieve the accuracy of image registration. The main difficulty of the registering

(b)(a) (c)
Fig. 8. Reflection phenomena: (a) from slope towards the radar, (b) from corner reflector
(double bounce reflection) and (c) multiple bounce reflections.

The typical occurrence of this phenomenon is the corner reflection. Corner reflectors are very
common in urban sites and show up as very bright targets on the radar image.

2.4.1 Speckle phenomena
As the radar image is created through a radar coherent wave, a particular effect modifies the
radiometry of pixels as a noise-like effect inherent in coherent imaging systems. This effect
is obviously visible on large covered-grass areas and looks like a "salt and pepper" texture.
This texture is due to the chaotic response of multiple small targets on the ground whose
global response is seen as a constructive or destructive random process. Thus, this kind of
process randomly produces bright and dark pixels: the radar image is speckled. Many articles
are dedicated to the study of the speckle phenomena (Goodman, 1976). Even it could be
considered as information for special applications, the speckle effect is seen as a multiplicative
noise and degrades the quality of a radar image.

3. Radargrammetric operations

3.1 State-of-the-art
The definition of radargrammetry has been stated by Leberl (Leberl, 1990): “Radargramme-
try is the technology of extracting geometric information from radar images”. To extract the
geometrical characteristics of the ground, four different techniques are implemented: stere-
oscopy, clinometry (Horn, 1975), interferometry (Massonet & Rabaute, 1993) and polarimetry
(Schuler et al., 1996). These are usually combined with SAR systems which have been briefly
presented in this paper. Because the aim of this chapter is only to expose the radargrammetry
as a radar stereoscopic method, the other ones will not be more developed. The first works
on radargrammetry began after the Second World War and the first principles were defined
by La Prade (La Prade, 1963). These works were completed by several mathematical devel-
opments (Gracie et al, 1970) and fully developed by numerous researchers (Rosenfeld, 1968)
(Leberl, 1990) (Polidori, 1997). All of these developments were tested and improved thanks to
several operational measurements both airborne (for example (Azevedo, 1971) mapping the
world’s tropical belt) and spatial (for example (Schrier, 1993) geocoding radar images from
ERS-1 mission). Since the 1980s with the Shuttle Imaging Radar (SIR-A, SIR-B and especially
SIR-C), the European satellite (ERS-2 and ENVISAT), the Canadian sensor (RADARSAT-1 and
2), the number of researchers working on the radargrammetric topic has increased and data
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analysis has become more sophisticated (various incident angles, various frequencies and po-
larisations of the wave and so on).
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convergence angle and can be defined as follows:

• the parallax P of an observed point is a parameter that is directly connected to the point
elevation and it increases with the altitude of the point,

• the convergence angle ∆θv is defined by the intersection of the two lines of sight of the
radar and this angle increases as the baseline Bs rises.

In figure 9, the same-side stereoscopic configuration is exposed and the description of the
parallax P, the base-line Bs and the intersection angle ∆θv = θv1 − θv2 is given. The latter
parameters have an important function as regards the quality and the accuracy of the terrain
reconstruction.
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The typical occurrence of this phenomenon is the corner reflection. Corner reflectors are very
common in urban sites and show up as very bright targets on the radar image.
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This texture is due to the chaotic response of multiple small targets on the ground whose
global response is seen as a constructive or destructive random process. Thus, this kind of
process randomly produces bright and dark pixels: the radar image is speckled. Many articles
are dedicated to the study of the speckle phenomena (Goodman, 1976). Even it could be
considered as information for special applications, the speckle effect is seen as a multiplicative
noise and degrades the quality of a radar image.
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The definition of radargrammetry has been stated by Leberl (Leberl, 1990): “Radargramme-
try is the technology of extracting geometric information from radar images”. To extract the
geometrical characteristics of the ground, four different techniques are implemented: stere-
oscopy, clinometry (Horn, 1975), interferometry (Massonet & Rabaute, 1993) and polarimetry
(Schuler et al., 1996). These are usually combined with SAR systems which have been briefly
presented in this paper. Because the aim of this chapter is only to expose the radargrammetry
as a radar stereoscopic method, the other ones will not be more developed. The first works
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is almost impossible without a preprocessing of images (for example, radiometric inversion).
However, some studies (Toutin & Gray, 2000) demonstrate that we can have conflicting con-
clusions about theory developments and image applications. Anyway, the choice of the pairs
of stereoscopic images comes up regarding the capability to get the parallax values and the
accuracy of the height reconstruction. Thus, a compromise has to be reached between these
two topics and concerns the baseline Bs to the height H of the platform ratio. This ratio can
vary from 0.25 to 2. For example, a study about RADARSAT measurements (Sylvander et al.,
1997) suggests an intersection angle of about 8◦ that corresponds to a value of B on H ratio
equal about 0.3.

3.3.2 Correlation matching operation
The most common image matching method is area correlation. For a given area in the pri-
mary image, the matching computation has to detect the closest one in the secondary image
by searching for the best matched area. The difference of position is the value of the parallax
or disparity. The classical method of finding match areas is to use an analytical metric com-
parison and the zero-mean normalized cross-correlation (ZNCC) can be applied to searching
for windows of radar images. These windows are usually squared and the size is (2n+1) by
(2n+1) pixels, so a centre pixel can de defined. The ZNCC is often used because of robustness
on the radiometric variations of the radar image and the result is given by the cross-correlation
coefficient ρ. This coefficient ρ can be stated as follows:

ρ =
E[I1 I2] − E[I1]E[I2]√

V(I1)V(I2)

operations comes from the dissimilarities between the pair of images that are caused by dif-
ferent imaging configurations. The identification of corresponding image points is the main
feature of the processing. This step is generally achieved by using several methods and we
will present two of them:

• grey-level image matching,

• edge-based method.

The first one is generally computed with the normalised cross-correlation coefficient (Leberl
et al., 1994) and many improvements such as the use of the sum of mean normalised absolute
difference or the least squares solutions are investigated. The second one is based on the fact
that an object or a structure may look quite similar in both images whatever the radar position
(Marr & Hildreth, 1980). However, this method needs some preprocessing (e.g. filtering oper-
ations) in order to be really efficient and the application to , for example, a mountainous area
is not possible because of the small area of edges relatively to the total area of images. Thus,
the combination of both methods can achieve good results (Paillou & Gelautz, 1999).

3.2.3 Disparity measurement and terrain reconstruction
For each pair of images, we get one map of disparities along both the azimuth axis and the
range axis. In the case of a flat Earth, no disparity along the azimuth axis should occur when
radar images come from parallel flight paths. But, because of the lack of precision of the radar
trajectories, azimuth disparities exist and the way to eliminate these is to resample images
into an epipolar geometry. At the end of the radagrammetric processing, the computation of
a disparity map obtained under the flight conditions produces the terrain elevation which is
called DEM (e.g. Digital Elevation Model). The calculated height of each pixel on the image
agrees with the different equations describing the geometry of the flights of path. Moreover, in
order to get a better DEM, the use of ground control points is essential to correct the geometric
model of the terrain and to set up the best stereomodel as regards the solution of the stereo
geometry.

3.3 Radargrammetric processing
As the radargrammetric method was briefly described in the late section, we intend to expose
more precisely all the steps required to reach a terrain elevation thanks to a pair of stereo radar
images.

3.3.1 Acquisition of stereo images
An important radar stereoscopic issue is the way measurements have to be made. Two main
configurations can be considered: same-side (the radar is located on the same side considering
the position of the two radars) and opposite-side (the scene is located between the two radars)
viewing. Considering the same-side configuration (see figure 10), a large baseline (e.g. a large
intersection angle) makes it possible to achieve good geometry for stereo plotting because of
the increase in parallax values. And the higher the parallax value is, the more accurate the ele-
vation reconstruction is. Conversely, the matching processing needs to manipulate images as
closely identical as possible in order to succeed in stereo viewing. That implies a small inter-
section angle. The opposite-side configuration (figure 11) provides a large baseline and thus
precise stereo plotting. Moreover, we can see in figures 11 and 10 the consequence of a range
estimation error (the real point M migrates to the point Me that is located by processing) that
is less significant in the opposite-side case than the same-side one But, the radiometric differ-
ences are so important in the case of opposite-side configuration that the matching operation
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3.3.2 Correlation matching operation
The most common image matching method is area correlation. For a given area in the pri-
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ferent imaging configurations. The identification of corresponding image points is the main
feature of the processing. This step is generally achieved by using several methods and we
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• edge-based method.

The first one is generally computed with the normalised cross-correlation coefficient (Leberl
et al., 1994) and many improvements such as the use of the sum of mean normalised absolute
difference or the least squares solutions are investigated. The second one is based on the fact
that an object or a structure may look quite similar in both images whatever the radar position
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is not possible because of the small area of edges relatively to the total area of images. Thus,
the combination of both methods can achieve good results (Paillou & Gelautz, 1999).
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radar images come from parallel flight paths. But, because of the lack of precision of the radar
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into an epipolar geometry. At the end of the radagrammetric processing, the computation of
a disparity map obtained under the flight conditions produces the terrain elevation which is
called DEM (e.g. Digital Elevation Model). The calculated height of each pixel on the image
agrees with the different equations describing the geometry of the flights of path. Moreover, in
order to get a better DEM, the use of ground control points is essential to correct the geometric
model of the terrain and to set up the best stereomodel as regards the solution of the stereo
geometry.

3.3 Radargrammetric processing
As the radargrammetric method was briefly described in the late section, we intend to expose
more precisely all the steps required to reach a terrain elevation thanks to a pair of stereo radar
images.

3.3.1 Acquisition of stereo images
An important radar stereoscopic issue is the way measurements have to be made. Two main
configurations can be considered: same-side (the radar is located on the same side considering
the position of the two radars) and opposite-side (the scene is located between the two radars)
viewing. Considering the same-side configuration (see figure 10), a large baseline (e.g. a large
intersection angle) makes it possible to achieve good geometry for stereo plotting because of
the increase in parallax values. And the higher the parallax value is, the more accurate the ele-
vation reconstruction is. Conversely, the matching processing needs to manipulate images as
closely identical as possible in order to succeed in stereo viewing. That implies a small inter-
section angle. The opposite-side configuration (figure 11) provides a large baseline and thus
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estimation error (the real point M migrates to the point Me that is located by processing) that
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Fig. 12. Matching operations between primary image and secondary image.

3.3.3 Epipolar geometry
The use of smaller correlation windows is one way to limit the false matching result. For
example, an epipolar constraint (Zhang et al., 1995) can be applied and reduce the research of
the matched window along the azimuth axis. Considering parallel flight paths at a constant
altitude and using the epipolar geometry, we can reduce the search area assuming that for a
given point in an image, the corresponding point is located on the same azimuth line. Ideally,
the search area can be reduced on a thin strip of one pixel thickness on the epipolar line.
Practically, it is better to have a reduced search area one to 3 pixels wide along the azimuth axis
because the estimation errors can lead to mistaken parameters. Finally, the epipolar geometry
considerably reduces the size of the search area and also reduces computing time. Moreover,
it limits false matching because for one pixel to match, there are fewer candidates on the
other images than a larger window. The second way uses a partial knowledge of the terrain
elevation that limits the research along the range axis: knowing the minimum and maximum
elevation of the area, we compute the minimum and the maximum disparities along the range
axis.

3.3.4 Pyramidal procedure
Another way can be considered as a hierarchical strategy used to reduce processing time and
to make it possible to work with large images (Denos, 1992). The principle is quite simple:
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Fig. 11. Opposite-side configuration and range error consequence

where I1 and I2 represents the amplitude value of the pixels of the window. The mean or
mathematical expectation E[Ii] is calculated thanks the following expression:

E[I1,2] =
1
N

N

∑
k=1

Ik
1,2 (1)

where N represents the number of pixels inside the window. Moreover, the variance expres-
sion V(.) about the window Ii is given by:

V(I1,2) = E[(I1,2 − E[I1,2])2] (2)

The value of ρ is bounded by (-1) and (+1) and the windows are considered matched for the
maximum value of ρ. The coefficient ρ is calculated for each position (azs and rgs) of the
researching window in the researching area. Also, we get a correlation surface obtained with
the values of the coefficient ρ and the maximum of this surface gives the disparity dispaz along
the azimuth axis

dispaz = |azs(max) − azr|
and the disparity disprg along the range axis

disprg = |rgs(max) − rgr| .

This step is carried out for each point of the primary image in order to get the disparity map.
The figure 12 illustrates the correlation computation applied for one pixel inside the primary
image. Considering the assumptions of radiometric distortions in a radar image, the cross-
correlation computation does not work very well on such degraded images (shadowing effect
for example). That is the reason why the choices of the viewing configuration and the value of
BS are very important. Especially in mountainous areas, a large part of unmatched pixels can
occur because of the shortening and layover effects. Finally, the choice of the greatest value
of ρ for a given correlation computation is not necessarily the optimum criterion but must be
considered with other parameters. Several methods can be applied to improve the matching
operation.
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for example). That is the reason why the choices of the viewing configuration and the value of
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Fig. 14. Speckle filtering

The consequence of the filters on the radargrammetric performances depends on the correla-
tion method. In our case, the computation of correlation matching based on the radar image
radiometry can be improved thanks to median or Lee filters. As an overall conclusion, the fil-
tering step is not essential to set up a radargrammetric tool kit but the application of a speckle
filter to specific areas of the radar image could be beneficial in order to cancel the bad matching
operations.

3.3.6 Computation of the radar stereo model
The objective of this step is to extract three-dimensional geometric data from radar stereo pairs
of images by using the coordinates (position and velocity) of the satellite along the flight path.
The results of such a computation is to calculate the coordinates (x,y,z) in the chosen reference
as described in part 2.3.5. In the case of monocular observations, the height information h is
known and we have to get the position of this point. Therefore, we can establish the system
given the coordinates (x,y,z) according to the value of h of one point and the corresponding
position (Xi,Yi, Zi) and the velocity (Ẋi, Ẏi, Żi) of the satellite indexed by i ∈ 1,2:




(x − Xi)2 + (y − Yi)2 + (z − Zi)2 = r2
i

(x − Xi)Ẋi + (y − Yi)Ẏi + (z − Zi)Żi = 0
x2 + y2

(a + h)2 +
z2

(b + h)2 = 1
(3)

Alternatively, the binocular observations use the diversity of the vision angle to get the co-
ordinates of the point (stereoscopic method). In the radar image, a pixel is referenced by its
range and azimuth indexes. On the one hand, the range distance locates the point on a range
sphere that the centre is the radar position: this is the range sphere. On the other hand, the
azimuth position of a pixel can give the Doppler cone which is replaced by a plane in our case
because of the null Doppler frequency at the perpendicular direction of the radar beam. The
intersection of the range sphere and the Doppler plane provides two solutions but only one is
obviously the right one according to the direction of the radar beam. The solution (x,y,z) of
the search point satisfies the following equations system




(x − X1)2 + (y − Y1)2 + (z − Z1)2 = r2
1

(x − X1)Ẋ1 + (y − Y1)Ẏ1 + (z − Z1)Ż1 = 0
(x − X2)2 + (y − Y2)2 + (z − Z2)2 = r2

2
(x − X2)Ẋ2 + (y − Y2)Ẏ2 + (z − Z2)Ż2 = 0

(4)

from the original image, we build an image pyramid. At each level, the image size is reduced
by a factor 2k corresponding to the kth-iteration step. The images are reduced by transforming
the pixels gray levels: in the reduced image, each pixel value corresponds to other pixels in the
previous image. There are several possibilities for the transformation law: a simple one i.e the
average of 4 pixels to get one pixel (see figure 13) in the reduced image or a more elaborated
law i.e a Gaussian filter (Burt & Adelson, 1983) whose impulse response is given as follows:

wk(u,v) =
1

2kσI
√

2π
exp(−u2 + v2

22kσ2
I

)

where σI is the standard deviation of the image I(u,v). For each iteration, the matching pro-

Fig. 13. Radar images with growing resolutions: from the first step (a) to the final step (c)

cess makes it possible to establish an approximate disparity map. Thus, we are able to predict
the disparity offsets at the next level of the hierarchical process, reducing computation time
and speckle errors. With increasing interaction, we obtain better accuracy for each level. At
the final step, the last disparity map is used to produce the Digital Elevation Model. In this
way, some DEM have been produced by using very large areas such as the one computed
thanks to the RADARSAT-1 data about 8,000 by 8,000 pixels.

3.3.5 Speckle filtering
As previously developed, the speckle phenomenon affects the interpretation of a radar im-
age and is undesirable for radargrammetric applications. Speckle reduction is required prior
image analysis in order to improve the use of radar images. The reduction operations called
speckle filtering may be very subtle because we have to get rid of the speckle effect but not of
the edges and structures in the image (figure 14). Several studies (Denos, 1992) (Jacquis, 1997)
prove that speckle filtering could be efficient in order to improve radargrammetric processing.
But, other works about the needs to remove the speckle effect (Dowman et al., 1993) demon-
strate that speckle filtering does not improve the results of radargrammetric computation.
Anyway, speckle reduction can be achieved in two ways:

• multi-look processing that refers to the division of the radar beam in Nf narrow sub-
beams and the result is independent as regards the speckle effect. The Nf images are
summed and averaged to form the final image (Porcello et al., 1976). However, this
simple method degrades the azimuth resolution by a factor of Nf ,

• filtering techniques applied to the SAR image (Frost et al., 1982) (Lee, 1981) (Kuan et al.,
1985) (Wu & Maître, 1990).
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• multi-look processing that refers to the division of the radar beam in Nf narrow sub-
beams and the result is independent as regards the speckle effect. The Nf images are
summed and averaged to form the final image (Porcello et al., 1976). However, this
simple method degrades the azimuth resolution by a factor of Nf ,

• filtering techniques applied to the SAR image (Frost et al., 1982) (Lee, 1981) (Kuan et al.,
1985) (Wu & Maître, 1990).
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4. Radargrammetric experimental results

4.1 Introduction
This part is dedicated to the application of the radargrammetric operations described in the
latter parts, on raw data recorded by the shuttle Endeavour during the SIR-C mission (Evans,
2006). We obtained first results by using preprocessed radar images (Fayard et al. 2006) (Fa-
yard et al., 2007a) (Fayard et al., 2007b). Therefore, we will present in this section the DEM of
a mountainous area (French Alps) obtained through radargrammetric processing.

4.2 Description of SIR-C images
For our studies, we have several images obtained by the SIR-C mission during the month of
April, 1994. The interesting area is around the French and Italian Alps. For obvious reasons,
we prefer to deal with mountain areas in order to get elevation information rather than urban
or lake areas. Thus, the stereoscopic pair of radar images is the PR17310 and PR17429 part
of flight as described in figure 15. This part is also very interesting because we can obtain

Fig. 15. Elevation map of the interesting area get from Google Maps

elevation information thanks to the IGN maps published about this region. The two flight
paths are close as regards the time consideration (PR17429 on the 10th of April 1994 at 6h31
and PR17310 on the 12th of April 1994 at 5h34) so the radiometric difference due to season
modifications (snow) are not present as we can see in figure 16. Moreover, the SIR-C raw data

(a) SAR image from the PR17429 viewing (b) SAR image from the PR17310 viewing

Fig. 16. SAR images of the interesting area

where the position (X1,2,Y1,2, Z1,2) and the velocity (Ẋ1,2, Ẏ1,2,dotZ1,2) of the radar are re-
quired to obtain a solution. Mathematically speaking, the above system is oversized because
we have 3 unknowns for 4 equations. Thus, one of the 4 equations seems to be useless. How-
ever, the choice of the unused equation is not arbitrarily made but we must base our judge-
ment on the practical measurements (see the next part 4.4.4 and especially the Stereoscopic
localisation in the geocentric reference section)

3.3.7 Using the disparity map
In order to obtain the relief of the scene which corresponds to the height h of each pixel of the
radar image (see figures 1 and 9), we can use the disparity map which has been set up for the
correlation step for a pixel which is located at the value of rg along the range axis. Generally,
we can consider the baseline BS described by the co-ordinate BSr along the range axis and BSh

along the height axis. The expression of the disparity p which is also the value of parallax is
given by (Leberl, 1990):

p =
√

r2
g + (H − h)2 − H2 −

√
(rg − BSr )2 + (H + BSh − h)2 − (H + BSh )2 − BSr

where the parallax p depends on the value of rg for a given height h. Thus, the expression
of h is the root of a quadratic degree equation. In the case of parallel flight paths with the
same height H of the two flight paths (e.g. BSh is null or BSr = BS), the expression of h can be
exhibited as:

h =
2 H BS + 2 H p −

√
4 H2 B2

S + p ∆

p + BS

with specifying that

∆ = 8 BS (H2 − r2
g + rg BS) + p (4 B2

S + p2 + 4 p BS) + 4 p (H2 − r2
g + rg BS)

This expression can be more simple in the case of a plane front wave, which means the height
of the radar H is much greater than the height h of the point and also than the parallax p:

• considering the parallax along the ground range:

h =
p

cotθv1 ± cotθv2

• considering the parallax along the slant range:

h =
p

cosθv1 ± cosθv2

where the sign (-) is about the same-side configuration and the sign (+) the opposite-side one.
The latter expressions are used for the SIR-C configuration and are available for altitudes less
than 3,000 meters. Finally, the results of a DEM can exhibit empty or inconsistent areas because
of the nature of the terrain (for example low radiometric levels). In order to improve the
reconstruction of an elevation model, some operations such as interpolation could be applied
to known areas (for example, to constrain flatness in the case of lakes).
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the importance of determining the satellite track parameters. Inversely, for the secondary
image (e.g. #2) and from the knowledge of the height h and the co-ordinates (x,y,z) of a
given point, we search for the least value of the solution r2 of the system (3) according to the
position and velocities of the satellite related to the image #2. This solution r2 also gives the
azimuth position az2 of the corresponding pixel (because the radar beam is perpendicular to
the flight path) and the calculation of the co-ordinate rg2 is easy thanks to the value of r2 and
the radar position (X2,Y2, Z2). This step is repeated for each point in the image #1 and thus the
corresponding points establish the epipolar line Ps in the image #2. To obtain the epipolar line
Pr in the reference image #1 from the epipolar line Ps in the secondary image #2, we have to
apply the same operations i.e. forward localisation then backward localisation except that for
the forward localisation from a given point of Ps, the corresponding point is calculated for only
one height hmean. All these operations are summarized in figure 19. In order to illustrate the
achieving epipolar lines, we propose an example of epipolar line in the working area which is
shown in the figure 20 from a specific point: the peak of Agrenier. This point is located in the
working area by its co-ordinates azr and rgr in the radar image reference. For the mentioned

is also recorded with the viewing parameters which are quite important for radargrammetric
processing.

4.3 Preprocessing images
As it was mentioned before (part 2.3.5 about the geometrical model of the radar position),
we have to describe images taking into account the co-ordinates in order to apply matching
parameters. This description requires precise information about satellite trajectory.

4.3.1 Parameters of satellite tracks
In a previous section (in the part 3.3.6 about the computation of the stereo model), we drew the
readert’s attention to the importance of knowing the position and the velocity of the satellite
during the viewing flight in order to resolve the equations (3) and (4). We cannot use the
flat Earth model or strictly parallel flight in the case of raw data. Therefore, it is possible to
evaluate all the positions and velocities of the satellite along its track thanks to certain viewing
parameters:

• time duration τi defined by the time tinit of the beginning and the time tend of the end
of the recorded data,

• data sets giving the position and the velocity of the satellite at three moments tDS1 , tDS2

and tDS3 (these moments are 4.5 seconds apart).

Thus, the interpolation of the satellite track is possible in order to link, for each pixel of the
radar image, a value of the position and the velocity of the satellite along the azimuth axis.
Moreover, because this interpolation is not sufficient in order to get the absolute position of
radar pixels, the geocentric co-ordinates of each corner of the radar images are used to refer
images to the geocentric reference. The co-ordinates of these points, latitude and longitude,
are given considering the null height:

• PNRET (e.g. Near Range Early Time),

• PNRLT (e.g. Near Range Last Time),

• PFRET (e.g. Far Range Early Time),

• PFRLT (e.g. Far Range Last Time).

The figure 17 describes the geometry of the viewing path and the corresponding parameters.
Also, the definition of an absolute reference for radar images is essential to get the height of
the pixels and to apply epipolar transformation on radar images.

4.3.2 Epipolar resampling
In the section (part 3.3.3 about the epipolar geomtry), we moved on to the epipolar procedure
that reduces the execution time for matching computation. This procedure makes it possible
to limit to a thin width of azs pixels (azs is equal to one in theory) the search in the secondary
image of the corresponding point of pr (which is in the reference image) as can be seen in
the figure 18. There are two steps to put the radar images in the epipolar geometry: forward
localisation and backward localisation. For each point pr in the reference image (e.g. #1),
forward localisation is set up by using the system described by (3) and a given set of values
of the height h. The result of this forward localisation is a set of points which are the solutions
(x,y,z) of (3) for each value of h and a given value of r1. We have to note that the value of
r1 is calculated thanks to the image co-ordinates az1 (along the azimuth axis) and rg1 (along
the range axis) of a pixel and the position of the satellite corresponding to this pixel hence
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the importance of determining the satellite track parameters. Inversely, for the secondary
image (e.g. #2) and from the knowledge of the height h and the co-ordinates (x,y,z) of a
given point, we search for the least value of the solution r2 of the system (3) according to the
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radar image, a value of the position and the velocity of the satellite along the azimuth axis.
Moreover, because this interpolation is not sufficient in order to get the absolute position of
radar pixels, the geocentric co-ordinates of each corner of the radar images are used to refer
images to the geocentric reference. The co-ordinates of these points, latitude and longitude,
are given considering the null height:

• PNRET (e.g. Near Range Early Time),

• PNRLT (e.g. Near Range Last Time),

• PFRET (e.g. Far Range Early Time),

• PFRLT (e.g. Far Range Last Time).

The figure 17 describes the geometry of the viewing path and the corresponding parameters.
Also, the definition of an absolute reference for radar images is essential to get the height of
the pixels and to apply epipolar transformation on radar images.

4.3.2 Epipolar resampling
In the section (part 3.3.3 about the epipolar geomtry), we moved on to the epipolar procedure
that reduces the execution time for matching computation. This procedure makes it possible
to limit to a thin width of azs pixels (azs is equal to one in theory) the search in the secondary
image of the corresponding point of pr (which is in the reference image) as can be seen in
the figure 18. There are two steps to put the radar images in the epipolar geometry: forward
localisation and backward localisation. For each point pr in the reference image (e.g. #1),
forward localisation is set up by using the system described by (3) and a given set of values
of the height h. The result of this forward localisation is a set of points which are the solutions
(x,y,z) of (3) for each value of h and a given value of r1. We have to note that the value of
r1 is calculated thanks to the image co-ordinates az1 (along the azimuth axis) and rg1 (along
the range axis) of a pixel and the position of the satellite corresponding to this pixel hence
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Fig. 20. Working area: PR17310 image extract

our studies, we choose 8 GCPs which cover the full terrain elevation range and are located al-
most at the border of the image. These GCPs are listed in table 3 just as the difference between
the actual and the calculated positions of the GCPs. This comparison can be made thanks to
the height information of GCPs and the forward and backward localisation operations. We
note an average difference along the azimuth axis of about 6.25 pixels with a standard devi-
ation value of 0.46 pixels and respectively 3.25 and 0.89 pixels along the range distance. So,
the global correction which is applied to the secondary image reference makes it possible to
recalculate the epipolar line (figure 22) that is passed through the actual corresponding point.
In figure 22, we can see the search for an area about 3 pixels wide.

Input data Output results
Geocentric co-ordinates Height Range Image co-ordinates

x (m) y (m) z (m) h (m) r2 (m) azs (index) rgs (index)
4,501,176.05 536,781.38 4,472,535.72 500 272,640.34 1233 239
4,501,729.01 537,104.25 4,472,653.93 1,000 272,459.73 1,232 225
4,502,281.18 537,426.02 4,472,773.02 1,500 272,279.67 1,232 212
4,502,832.56 537,746.71 4,472,892.99 2,000 272,100.16 1,231 198
4,503,383.16 538,066.31 4,473,013.85 2,500 271,921.20 1,230 185
4,503,932.97 538,384.84 4,473,135.57 3,000 271,742.78 1,229 172
4,504,482.01 538,702.30 4,473,258.16 3,500 271,564.90 1,228 158
4,505,030.27 539,018.69 4,473,381.61 4,000 271,387.57 1,228 145

Table 2. Backward localisation applied on the peak of Agrenier.
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Fig. 19. Achievement the epipolar lines (reference and secondary).
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4,501,176.05 536,781.38 4,472,535.72
1,000 4,501,729.01 537,104.25 4,472,653.93
1,500 4,502,281.18 537,426.02 4,472,773.02
2,000 4,502,832.56 537,746.71 4,472,892.99
2,500 4,503,383.16 538,066.31 4,473,013.85
3,000 4,503,932.97 538,384.84 4,473,135.57
3,500 4,504,482.01 538,702.30 4,473,258.16
4,000 4,505,030.27 539,018.69 4,473,381.61

Table 1. Forward localisation applied on the peak of Agrenier.

area, the IGN map gives approximately a set of heights from hmin = 500 meters to hmax = 4,000
meters. The step increment of height ∆h is set to 500 meters thus we obtain 8 points for each
value of h by the forward localisation. These points are described in the geocentric reference
with the values (x,y,z) (see table 1) Also, for each output result described in table 1, we obtain
the solutions r2 and the corresponding points identified by image co-ordinates (see table 2).
The output results describe the epipolar line in the secondary image (e.g. image #2) and this
line is drawn in the working area of the PR17429 image in figure 21. Considering this figure,
we notice the following:

1. the calculated corresponding point is on the epipolar line,

2. the calculated epipolar line does not pass through the actual corresponding point i.e.
the peak of Agrenier.

The result is that the corresponding point is correctly found on the epipolar line and the ac-
curacy of the localisation is not sufficient to retrieve the right corresponding point. Also, this
inaccuracy must be corrected in order to set up the right disparity map.

4.3.3 Use of ground control points (GCP)
Because of the geode model inaccuracy, the quality of the terrain elevation reconstruction will
be low. Also, we have to refine the stereo model parameters and some GCPs are required. In
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our studies, we choose 8 GCPs which cover the full terrain elevation range and are located al-
most at the border of the image. These GCPs are listed in table 3 just as the difference between
the actual and the calculated positions of the GCPs. This comparison can be made thanks to
the height information of GCPs and the forward and backward localisation operations. We
note an average difference along the azimuth axis of about 6.25 pixels with a standard devi-
ation value of 0.46 pixels and respectively 3.25 and 0.89 pixels along the range distance. So,
the global correction which is applied to the secondary image reference makes it possible to
recalculate the epipolar line (figure 22) that is passed through the actual corresponding point.
In figure 22, we can see the search for an area about 3 pixels wide.
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Table 1. Forward localisation applied on the peak of Agrenier.

area, the IGN map gives approximately a set of heights from hmin = 500 meters to hmax = 4,000
meters. The step increment of height ∆h is set to 500 meters thus we obtain 8 points for each
value of h by the forward localisation. These points are described in the geocentric reference
with the values (x,y,z) (see table 1) Also, for each output result described in table 1, we obtain
the solutions r2 and the corresponding points identified by image co-ordinates (see table 2).
The output results describe the epipolar line in the secondary image (e.g. image #2) and this
line is drawn in the working area of the PR17429 image in figure 21. Considering this figure,
we notice the following:

1. the calculated corresponding point is on the epipolar line,

2. the calculated epipolar line does not pass through the actual corresponding point i.e.
the peak of Agrenier.

The result is that the corresponding point is correctly found on the epipolar line and the ac-
curacy of the localisation is not sufficient to retrieve the right corresponding point. Also, this
inaccuracy must be corrected in order to set up the right disparity map.

4.3.3 Use of ground control points (GCP)
Because of the geode model inaccuracy, the quality of the terrain elevation reconstruction will
be low. Also, we have to refine the stereo model parameters and some GCPs are required. In
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Fig. 22. Drawing the corrected epipolar line in the PR17429

4.4.2 Speckle filtering
In our application, we use two methods to reduce speckle effect. The first one is the multi-
look technique which has been described before (see part 3.3.5 about the speckle filtering) and
the value of Nf is equal to 4 in order not to degrade the azimuth resolution regarding the
value of SIR-C parameters. Moreover, a Lee filter is applied to the radar images so the edges
are preserved, which could be important considering the mountainous area. Several tests are
done and the best results are obtained by using a 5 by 5 pixel window (that seems to be correct
as regards the heterogeneous area). Although the speckle reduction improves the quality of
the terrain reconstruction, it is not sufficient for certain areas.

4.4.3 Pyramidal computation
This method has been developed in the above section 3.3.4 and the results of this procedure
will now be exposed. Firstly, we obtain the disparity map of our working area without the
pyramidal steps within 50 minutes of computation using a 1.8 GHz workstation with 1GB of
RAM. The resulting disparity map is described in figure 24. After that, we apply the pyra-
midal approach to the radar images and the resulting disparity map is obtained within 24
minutes of computation using the same workstation as before. This first consequence speaks
in favour of the pyramidal scheme. Moreover, the quality of disparity map described in figure
25 is obviously better than the one in figure 24. Also, we can note two advantages of applying
the pyramidal steps: computation time reduction and disparity map quality improvement.

4.4.4 Stereoscopic localisation in the geocentric reference
Thanks to the disparity map, we can reconstruct the terrain elevation by resolving the system
(4). We remember this system is oversized because of 3 unknowns described by 4 equations.
So, we have to choose the equation to be removed by studying the sensitivity of induced
errors. This sensitivity corresponds to a correlation success when errors of about plus or minus
10 pixels are applied to the actual location of corresponding points along the azimuth axis or

Fig. 21. Drawing the epipolar line in the PR17429 image

name of the GCP difference difference
∆azs ∆rgs

Peak of Agrenier 6 3
Les Ourgières 6 3

Peak of Clapouse 7 4
Dent du Ratier 6 3

East of Col Garnier 7 5
Peak of Fond Queyvras 6 3
SE peak of Rochebrune 6 2

Top of Assan 6 3

Table 3. Difference of the co-ordinates of actual GCPs and their calculated corresponding
points.

4.4 Radargrammetric processing
At this step of the entire processing, we obtain preprocessed images to which the specific
radargrammetric processing will be applied: matching processing, disparity map and terrain
elevation.

4.4.1 Confidence in correlation coefficient
After computing the matching operation which is described in part 3.3.2 (see the section Cor-
relation matching operation), we obtain the disparity map. However, the values of disparity
should be considered according to the confidence in correlation coefficient. The highest value
inside a correlation surface can be perfectly detected and the corresponding position is obvi-
ous: this corresponds to a high confidence of correlation. But, this maximum position cannot
clearly obtained so the confidence correlation is considered as low (see figure 23). For this
case, additional noise can modify the results of the disparity map and so applying the speckle
reduction and pyramidal procedure should strengthen the correlation results.
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Fig. 22. Drawing the corrected epipolar line in the PR17429
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4.4 Radargrammetric processing
At this step of the entire processing, we obtain preprocessed images to which the specific
radargrammetric processing will be applied: matching processing, disparity map and terrain
elevation.

4.4.1 Confidence in correlation coefficient
After computing the matching operation which is described in part 3.3.2 (see the section Cor-
relation matching operation), we obtain the disparity map. However, the values of disparity
should be considered according to the confidence in correlation coefficient. The highest value
inside a correlation surface can be perfectly detected and the corresponding position is obvi-
ous: this corresponds to a high confidence of correlation. But, this maximum position cannot
clearly obtained so the confidence correlation is considered as low (see figure 23). For this
case, additional noise can modify the results of the disparity map and so applying the speckle
reduction and pyramidal procedure should strengthen the correlation results.
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Fig. 24. Disparity map without the pyramidal procedure

section 4.3.3 about the use of ground control points). The conclusion is that the errors are less
than the resolution values both for the localisation (latitude and longitude) reconstruction and
for the height reconstruction.

4.4.5 Post processed DEMs
Thanks to the transformation applied at this step, we can reconstruct the terrain elevation of
the working area which is seen in figure 20 by resolving the system described through config-
uration #2. In order to quantify the accuracy of our elevation reconstruction, we compare it
with the SRTM (Shuttle Radar Topography Mission) DEM (see figure 26). We need to apply a
resampling operation to our DEM because its resolution is higher than that of the SRTM . In
this way, the DEM we obtain (which we can called the raw DEM) and the comparison with
the SRTM DEM are shown in figure 27. The first results of the comparison are described in
table 5 and show that an error of height reconstruction of less than 50 meters occurs for only
46.4 percent of pixels. Moreover, only 80 percent of pixels exhibit an error less than 200 meters.
These results mean that post processing must be applied to the raw DEM. This post processing
consists in removing the obvious errors which are detected by a comparison between neigh-
bouring areas. The choice of the worked area is done thanks to an eye examination and the
connected disparity is not computed to obtain the DEM. Also, the calculated DEM is not com-
plete but more accurate than the raw one and the corresponding errors are shifted to a blank
pixel (see figure 28). After removing these bad disparities, we can compare this corrected and
post processed DEM with that of the STRM and the results of the comparison are described
in table 5. The examination of the results shows us that more than 98 percent of pixels present
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Fig. 23. Different values of confidence in correlation coefficients

configuration #1 configuration #2
azimuth(m) range(m) azimuth(m) range(m)

longitude 340 0.14 13.5 19.4
latitude 438 0.13 9.8 23.5
height 404 0.8 16 37

Table 4. RMS errors (in meters) resulting from a one pixel error in the disparity map along
the azimuth axis or the range axis and considering the two configurations of the binocular
system.

the range axis. Thus, by resolving 3 of the 4 equations of 4, we obtain the co-ordinates (x,y,z)
which are described in the geocentric reference as latitude φ, longitude λ and height h and
compared with the actual terrain model. The resulting error is calculated as a root-mean
square operation applying to all the pixels of the working area. The results for a location
error of one pixel are summarized in table 4. Two configurations of an undersized system
are studied: the first one (configuration #1) uses the two iso-Doppler equations and one iso-
range equation and the second one (configuration #2) uses two iso-range equations and one
iso-Doppler equation. The result is obvious: it is better to chose the second configuration
because an error of one pixel along the azimuth axis induces an error of less than one meter
regarding the height reconstruction although the sensitivity along the range axis seems to be
less in the first configuration. Another conclusion from this study is that the minimum of the
correlation surface does not occur at a null shift along the azimuth and the range axis. That
means this shift induce errors in the localisation and in the height reconstruction. These errors
are calculated thanks to the GCPs which are used for the correction of the image indexes (see
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Fig. 24. Disparity map without the pyramidal procedure
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Fig. 26. SRTM DEM of the working area

they can be compared to the optical stereoscopic method. The aim of radargrammetry is to
extract the height information of a radar scene from a stereo pair of radar images. Compared
with the optical method, radargrammetry is based on the geometry of the visualisation flight
path over the scene and the parallax induced by two views of a point characterized by its
elevation. This parallax is also called the disparity between a primary image and a secondary
image. The disparity is defined for each pixel in the radar image and is determined by match-
ing computation in order to set up a disparity map. This disparity map of all the radar scenes
is essential to reconstruct the height elevation by resolving a stereo-model which is described
by range sphere and Doppler circle equations for each position of the radar. The accuracy of
the terrain reconstruction depends on the quality of the disparity map and also on the success
of the matching operation. This operation can be improved by several processing steps and
especially the reduction of the speckle effect and the pyramidal approach. We can note that
the geometry of the viewing scene also influences the achievement of the 3D co-ordinates of
the terrain. At the end of the discussion, we illustrated radargrammetric processing by using
SIR-C data over the French Alps. We showed all the steps required to obtain an acceptable
DEM: from the registration of each pixel of the radar image regarding the satellite path (posi-
tion and velocity) to post processing the DEM by removing the obvious bad reconstruction to
choosing the better stereo-model and to using GCPs in order to refine the radar images. The
resulting DEM of our radargrammetric processing is almost identical to the DEM which can
be obtained thanks to specific matching and filtering operations. One of the advantages of our
method is the simplicity with which an acceptable DEM is obtained.
However, it is possible to apply new methods to further improve the crucial matching step
and this is what we will be working on next. We will investigate the improvement of the
radargrammetric tool kit along two axes. The first one deals with the opportunities to apply
some optical methods during the correlation step. Especially, the work will deal with stereo
matching algorithm with an adaptive window in an SAR context. Depending on the statistical
behaviour of the radar signal, we can manage the size of the correlation window in order

Fig. 25. Disparity map with the pyramidal procedure by using three levels of resolution

number of consideration of height errors
nature of DEM considered < 20 m < 50 m < 100 m < 200 m

points % εmoy % εmoy % εmoy % εmoy
raw DEM 2938 21.9 9.8 46.4 22.9 65.9 37.4 80.0 55.2

corrected DEM 2126 29.5 9.8 61.6 22.7 85.5 36.3 98.7 49.6

Table 5. Percent of errors and average errors εmoy of the calculated DEMs.

an error of less than 200 meters (in comparison with the 80 percent without post computation)
and the pixels whose height error is less than 50 meters are more than 61 percent (46.4 percent
before). Considering the relief type and the resolution values, these results are close to the
results obtained by other satellites (Toutin, 2000) (Toutin & Gray, 2000).

5. Conclusion and further developments

This chapter has dealt with the relevance of using stereoscopic radar images in order to re-
trieve the relief of terrain. Firstly, the basic characteristics of the radar image (SAR image)
were described and the parameters which were different from those of an optical image were-
pointed out especially the image resolution and set up in the slant plane. Other characteristics
such as the geometric and radiometric distortions were described in the rest of the section.
These distortions have to be taken into account in radar stereoscopic applications in order to
determine the better viewing parameters and avoid the consequences of specific radar image
geometry (for example, foreshortening) and radiometry (for example, speckle effect). In the
second part, we presented the radargrammetric method applied to radar images and how
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they can be compared to the optical stereoscopic method. The aim of radargrammetry is to
extract the height information of a radar scene from a stereo pair of radar images. Compared
with the optical method, radargrammetry is based on the geometry of the visualisation flight
path over the scene and the parallax induced by two views of a point characterized by its
elevation. This parallax is also called the disparity between a primary image and a secondary
image. The disparity is defined for each pixel in the radar image and is determined by match-
ing computation in order to set up a disparity map. This disparity map of all the radar scenes
is essential to reconstruct the height elevation by resolving a stereo-model which is described
by range sphere and Doppler circle equations for each position of the radar. The accuracy of
the terrain reconstruction depends on the quality of the disparity map and also on the success
of the matching operation. This operation can be improved by several processing steps and
especially the reduction of the speckle effect and the pyramidal approach. We can note that
the geometry of the viewing scene also influences the achievement of the 3D co-ordinates of
the terrain. At the end of the discussion, we illustrated radargrammetric processing by using
SIR-C data over the French Alps. We showed all the steps required to obtain an acceptable
DEM: from the registration of each pixel of the radar image regarding the satellite path (posi-
tion and velocity) to post processing the DEM by removing the obvious bad reconstruction to
choosing the better stereo-model and to using GCPs in order to refine the radar images. The
resulting DEM of our radargrammetric processing is almost identical to the DEM which can
be obtained thanks to specific matching and filtering operations. One of the advantages of our
method is the simplicity with which an acceptable DEM is obtained.
However, it is possible to apply new methods to further improve the crucial matching step
and this is what we will be working on next. We will investigate the improvement of the
radargrammetric tool kit along two axes. The first one deals with the opportunities to apply
some optical methods during the correlation step. Especially, the work will deal with stereo
matching algorithm with an adaptive window in an SAR context. Depending on the statistical
behaviour of the radar signal, we can manage the size of the correlation window in order

Fig. 25. Disparity map with the pyramidal procedure by using three levels of resolution

number of consideration of height errors
nature of DEM considered < 20 m < 50 m < 100 m < 200 m

points % εmoy % εmoy % εmoy % εmoy
raw DEM 2938 21.9 9.8 46.4 22.9 65.9 37.4 80.0 55.2

corrected DEM 2126 29.5 9.8 61.6 22.7 85.5 36.3 98.7 49.6

Table 5. Percent of errors and average errors εmoy of the calculated DEMs.

an error of less than 200 meters (in comparison with the 80 percent without post computation)
and the pixels whose height error is less than 50 meters are more than 61 percent (46.4 percent
before). Considering the relief type and the resolution values, these results are close to the
results obtained by other satellites (Toutin, 2000) (Toutin & Gray, 2000).

5. Conclusion and further developments

This chapter has dealt with the relevance of using stereoscopic radar images in order to re-
trieve the relief of terrain. Firstly, the basic characteristics of the radar image (SAR image)
were described and the parameters which were different from those of an optical image were-
pointed out especially the image resolution and set up in the slant plane. Other characteristics
such as the geometric and radiometric distortions were described in the rest of the section.
These distortions have to be taken into account in radar stereoscopic applications in order to
determine the better viewing parameters and avoid the consequences of specific radar image
geometry (for example, foreshortening) and radiometry (for example, speckle effect). In the
second part, we presented the radargrammetric method applied to radar images and how
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Fig. 28. Quantification of the corrected DEM.

to improve the confidence of the correlation during the matching computation. The second
method concerns the registration of the different areas of the image considering polarimetric
parameters. Because certain areas inside an SAR image are not cooperative to the matching
cooperation (e.g. shadowed or foreshortened areas), these kinds of areas could be matched
together regarding the polarimetric parameters of the areas.
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to improve the confidence of the correlation during the matching computation. The second
method concerns the registration of the different areas of the image considering polarimetric
parameters. Because certain areas inside an SAR image are not cooperative to the matching
cooperation (e.g. shadowed or foreshortened areas), these kinds of areas could be matched
together regarding the polarimetric parameters of the areas.
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1. Introduction 
 

The observation of a scene by an imaging sensor produces an image that is a function of the 
sensor characteristics and the sensor ability to interact with the targets in the scene. In this 
process the true classes in the scene can be merged or become very close in the image 
generated by the sensor in such way that each image, one for each sensor, can present 
different number of prevalent classes. As an example, Figure 1 shows a six classes scene that 
was observed by two sensors in two different ways. The first sensor generates an image that 
has three prevalent classes (green, blue and orange) and the second sensor generates an 
image with four prevalent classes (green, black, purple and red). 
There are several mathematical approaches that can be used to classify the scene using one 
or more images of the scene. These approaches include Support Vector Machine (Bruzone et 
al., 2006; Camps-Valls et al., 2007), Artificial Intelligence (Liu et al., 2008), Decision Trees (Pal 
& Mather, 2003), New Nearest Neighbor Approaches (Zhu & Basir, 2005; Samaniego et al., 
2008) and the most used statistical approach (Valet et al., 2001). In the context of the 
statistical classification, the Bayesian approach is widely used for the classification error 
mitigation (Fukunaga, 1990). In the statistical classification method based in the Maximum 
A Posteriori (MAP) the image set to be classified must contain all images with the same 
number and type of classes (Schowengerdt, 1997).  
In this Chapter is presented an extension for the classical MAP classification for the case in 
which each image in a set of images can have different numbers and types of prevalent 
classes. In this extension, one image is chosen as the reference image to be classified 
according with its dominant classes and the others images are used as additional 
information (Maximo & Fernandes, 2008).  
In the example shown in Figure 1 if the image 1 is selected as the reference image with three 
prevalent classes and image 2 as the complementary information, the perfect classification is 
given in Figure 2a. If the image 2 is selected as the reference, the ideal classification is given 
in the Figure 2b. 
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2.2 The MAP decision rule for a reference image 
It will be considered the general case in which every n-th image, n = 1, 2,…, N, has Mn 
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reference image, in the sense that we want to classify only the first image in its prevalent 

 

   

           (a)  Ground Truth                          (b) Image 1                                 (c) Image 2 
Fig. 1. Classes definition: (a) Ground truth with six classes, (b) Three dominant classes 
(green, blue and orange) in the image generated by the first sensor and (c) Four dominant 
classes (green, black, purple and red) in the image generated by the second sensor 
 

  

                   (a) Classification in 3 classes                       (b) Classification in 4 classes 
Fig. 2. The ideal classification 
 
In section 2 is presented the MAP classification and the proposed extension that consider 
one image in a set of images as the reference and that each image may have different 
numbers and types of prevalent classes. Section 3 shows the application of the proposed 
extended MAP classification method in comparison with the classical MAP classification by 
using simulated Single-Look Synthetic Aperture Radar (SLC-SAR) images (Oliver & 
Quegan, 1998). The classification performance comparison is due by the Kappa coefficient 
estimation (Rosenfield & Fitzpatrick-Lins, 1986). 

 
2. The classification decision rule 
 

2.1 The MAP decision rule  
Given a set of N images where each image has M classes represented by wm, m =1, 2,…M, the 
Bayes Risk is defined as (Sharf, 1991; Swain, 1978): 
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Figure 3(a) shows the ground truth of a scene with 6 classes with the labels: w1,1, w1,2,  w2,4, 
w3,4, w2,3 and w3,3. The scene is observed by two different SAR sensors which generate two 
different and independent images with the mean values defined in Table 1. The different 
simulated images are shown in Figure 3(b)-3(e).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                           (a) Ground Truth with six classes  

 
(b) Image 1a in Set 1 and 2 

 
(c) Image 1b in Set 3 and 4 

 
(d) Image 2a in  Set 1 and 3 

 
(e) Image 2b in Set 2 and 4 

Fig. 3. Simulated SAR images with six classes 
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w2,3 
w3,3 
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3. Simulation example 
 

3.1 The simulated SAR images 
Four set of two One-Look SAR images were simulated according to Table 1. The simulated 
SAR images have 512x512 pixels and are Rayleigh distributed (Oliver & Quegan, 1998). All 
of them have six classes and were smoothed by a KxK mean filter (K = 3, 5 and 7). The 
filtering causes that the distribution ( )

1 2

(1) ( 2 ) ( )( | , ,... )
N

n N
X m m mp x w w w  or ( ) ( )( | )n n

X mp x w  fit with a 
Gaussian distribution. 
 

 Mean values of the Rayleigh r.v. for the classes 
Classes: w1,1 w1,2 w2,3 w2,4 w3,3 w3,4 

Set 1 
Image 1a 20.6 19.4 24.4 25.6 29.4 30.6 
Image 2a 30 35 39.4 55.6 40.6 54.4 

Set 2 
Image 1a 20.6 19.4 24.4 25.6 29.4 30.6 
Image 2b 30 45 59 106 61 104 

Set 3 
Image 1b 21 19 34 36 49 51 
Image 2a 30 35 39.4 55.6 40.6 54.4 

Set 4 
Image 1b 21 19 34 36 49 51 
Image 2b 30 45 59 106 61 104 

Table 1. Images sets with six classes parameters 
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a) Image 1 was classified by equation (8) in six classes as a single image  (N = 1); 
b) Image 1 and 2 were classified in six classes by equation (8) as a bidimensional observation 
process  (N = 2) and 
c) Image 1 is selected as the reference image having the classes (1)

1w , (1)
2w and (1)

3w and image 
2 as the complementary image with the classes (2)

1w , (2)
2w , (2)

3w and  (2)
4w  in the classification 

structure given by equation (14). 
 
In the supervised classification processes (1)

1( | )N
Xp x W  and ( ) 1

1( | )n n
Xp x W −  were estimated 

in a neighborhood of 20x20 pixels in each class and classes combinations. The error matrix 
(Congalton, 1991) for the Kappa estimation was also calculated in a different neighborhood 
also of 20x20 in each class. Figure 4 shows the samples used for the probability density 
estimations and for the error matrix calculation. The Kappa estimated values and its RMS 
error (Congalton & Green, 1999) considering the smooth filter with KxK = 3x3, 5x5 and 7x7 
for the three classifications processes are shown in Tables 4 to 6. 
 

 
(a) Estimation and test sample for the six classes classification 

 

 
(b) Estimation and test samples for three classes classification 

 
Fig. 4. Samples distributions in the images:  estimation window and  test window 
 

 

It is been considered that the sensors have some particular characteristics such that the first 
image generated by the sensor 1 (image 1a or 1b) has three prevalent classes and the second 
image (image 2a or 2b) generated by the sensor 2 has four classes. In all  sets the Images 1a 
and 1b have three predominant classes each of them composed by two different classes: 
 

(1) (1)
1 1 1,1 1,2( , )w f w w=  
(1) (1)
2 2 2 ,3 2 ,4( , )w f w w=  (27) 
(1) (1)
3 3 3,3 3,4( , )w f w w=  

 
and in all  sets the images 2a and 2b have four predominant classes each of them composed 
as follow: 
 

(2) (2)
1 1 1,1( )w f w=  
(2) (2)
2 1 1,2( )w f w=   (28) 
(2) (2)
3 3 2 ,3 3,3( , )w f w w=  
(2) (2)
4 4 2 ,4 3,4( , )w f w w=  

 
Image 1a has its predominant classes with the mean values of its components classes very 
close (difference equal to 1.2 - set 1 and 2). In image 1b the predominant classes are more 
separated (difference equal to 3.0 - set 3 and 4). Image 2a has its predominant classes with 
the mean values of its components classes very close (difference equal to 1.2 - set 1 and 3). In 
image 2b its predominant classes are more separated and more different (difference equal to 
3.0 - set 2 and 4). Due to this simulated characteristics the classification become easier and 
therefore more precise from set 1 to set 4. 
The a priori probabilities of the classes in the ground truth are given in Table 2 and the 
conditional probability is presented in Table 3. 
 

Classes: w1,1 w1,2 w2,3 w2,4 w3,3 w3,4 
Probabilities: 1/4 1/4 3/16 1/16 1/16 3/16 

Table 2.  Six classes a priori probabilities 
 

Classes: m2=1 m2 =2 m2 =3 m2 =4 
m1 =1 1/2 1/2 0 0 
m1 =2 0 0 3/4 1/4 
m1 =3 0 0 1/4 3/4 

Table 3.  Conditional probabilities 
1 2

(1) (2)( | )m mP w w  

 
3.2 The classification results 
It was performed a supervised image classification of the six classes images in set 1, 2, 3 and 
4 in three ways:  
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The Kappa classification results using equation (8) with the smoothing filter wit KxK = 3x3, 
5x5 and 7x7 are shown in Tables 8 - 10. The values in the last line of Tables 8 - 10 can be 
considered for each smooth filter as the limit value for the MAP classification in the ideal 
case for the simulated images. Comparing these values with the values in the last line of 
Tables 4 – 6, respectively, we conclude that for the worst case (set 1 and set 1o) the 
classification of the set 1 with a reference image has its Kappa: 
75.8% of the value of the best classification in set 1o for 3x3 smooth window, 
80.4% of the value of the best classification in set 1o for 5x5 smooth window, and 
86.9% of the value of the best classification in set 1o for 7x7 smooth window. 
Figures 8(a)-(c) and 9(a)-(c) show for the 5x5 smooth filter the classification results for the 
three classes images according to the images in the sets 1o, 2o, 3o and 4o. Figure 8(d)-(e) and 
Figure 9(d)-(e) repeat the three classes classification for the image 1a and 1b as reference 
images shown in Figure 5(d)-(e) and Figure 6(d)-(e), respectively. 
 

 Mean values of the Rayleigh r.v. for the classes 
Classes: w1 w2 w3 

Set 1o 
Image 1oa 19.4 25.6 30.6 
Image 2oa 30 40.6 55.6 

Set 2o 
Image 1oa 19.4 25.6 30.6 
Image 2ob 30 61 106 

Set 3o 
Image 1ob 19 36 51 
Image 2oa 30 40.6 55.6 

Set 4o 
Image 1ob 19 36 51 
Image 2ob 30 61 106 

Table 7. Images sets with three classes parameters 
 

Classification in 3 classes: (equat. 8)  Set 1o Set 2o Set 3o Set 4o 
Image 1o 0.39±0.02 0.39±0.02 0.77±0.01 0.77±0.01 

Image 1o and 2o  0.66±0.02 0.93±0.01 0.85±0.01 0.95±0.01 
Table 8. Kappa values for the classification in three classes (3x3 smooth window) 
 

Classification in 3 classes: (equat. 8)  Set 1o Set 2o Set 3o Set 4o 
Image 1o 0.61±0.02 0.61±0.02 0.93±0.01 0.93±0.01 

Image 1o and 2o  0.92±0.01 0.99±0.01 0.98±0.01 0.99±0.01 
Table 9. Kappa values for the classification in three classes (5x5 smooth window) 
 

Classification in 3 classes: (equat. 8)  Set 1o Set 2o Set 3o Set 4o 
Image 1o 0.81±0.02 0.81±0.01 0.99±0.01 0.99±0.01 

Image 1o and 2o  0.99±0.01 1.00 1.00 1.00 
Table 10. Kappa values for the classification in three classes (7x7 smooth window) 

 

The classification, as could be expected, is better with the use of the two images and become 
also better from the set 1 to 4. The classification performance considering the reference 
image is better than the others including the most critical situation that is given by the 
images in the set 1.  
 

Classification in 6 classes (equat. 8)  Set 1 Set 2 Set 3 Set 4 
Image 1 0.17±0.01 0.17±0.01 0.33±0.01 0.33±0.01 
Image 1 and 2 0.32±0.01 0.51±0.01 0.53±0.01 0.71±0.01 
Classification in 3 classes (equat. 14) Set 1 Set 2 Set 3 Set 4 
Reference Image 1 0.50±0.02 0.53±0.02 0.79±0.01 0.81±0.01 

Table 4. Kappa values for the classification (3x3 smooth window) 
 

Classification in 6 classes (equat. 8) Set 1 Set 2 Set 3 Set 4 
Image 1 0.26±0.01 0.26±0.01 0.43±0.01 0.43±0.01 
Image 1 and 2 0.55±0.01 0.73±0.01 0.78±0.01 0.91±0.01 
Classification in 3 classes (equat. 14) Set 1 Set 2 Set 3 Set 4 
Reference Image 1 0.74±0.02 0.78±0.01 0.94±0.01 0.96±0.01 

Table 5. Kappa values for the classification (5x5 smooth window) 
 

Classification in 6 classes (equat. 8) Set 1 Set 2 Set 3 Set 4 
Image 1 0.34±0.01 0.34±0.01 0.52±0.01 0.53±0.01 
Image 1 and 2 0.73±0.01 0.84±0.01 0.90±0.01 0.98±0.01 
Classification in 3 classes (equat. 14) Set 1 Set 2 Set 3 Set 4 
Reference Image 1 0.86±0.01 0.88±0.01 0.99±0.01 0.99±0.01 

Table 6. Kappa values for the classification (7x7 smooth window) 
 
Figures 5 and 6 show the classification results for the original SAR images smoothed by a 
5x5 mean filter. In these figures it can be seen that the classification becomes better from the 
set 1 to 4 and the classification with the reference image get the best classification results.  

 
3.3 The classification in three classes 
We will now consider an extreme case in which the ground truth in Fig 3(a) has only three 
classes as shown in Fig 7(a) in such way that: 
 

w1 = w1,1 ∪  w1,2 
w2 = w2,3 ∪  w2,4  (29) 
w3 = w3,3 ∪  w3,4. 

 
It is also considered the maximum possible classes separation in Table 1 resulting in images 
with Rayleigh r.v. mean values shown in Table 7.  Figures 7(b)-7(e) show the four sets of 
images in the simulation. 
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Figures 5 and 6 show the classification results for the original SAR images smoothed by a 
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set 1 to 4 and the classification with the reference image get the best classification results.  

 
3.3 The classification in three classes 
We will now consider an extreme case in which the ground truth in Fig 3(a) has only three 
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It is also considered the maximum possible classes separation in Table 1 resulting in images 
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(a)  Image 1b in set 3 and in set 4 

Six classes classification 

 
(b)  Image 1b and 2a in set 3 

Six classes classification 

 
(c)  Image 1b and 2b in set 4 

Six classes classification 

 
(d)  Image 1b as reference in set 3 

Three classes classification 

 
(e)  Image 1b as reference in set 4 

Three classes classification 
Six classes:    w1,1:       w1,2 :       w2,3 :       w2,4 :       w3,3 :      w3,4 :  
Three classes:   (1)

1w :         (1)
2w :         (1)

3w :  
Fig. 6. Classification results in set 3 and set 4 ( 5x5  smooth filter) 

 

 
(a) Image 1a in set 1 and in set 2 

 Six classes classification 

 
(b)  Image 1a and 2a in set 1 

 Six classes classification 

 
(c)  Image 1a and 2b in set 2 

 Six classes classification 

 
(d)  Image 1a as reference in set 1 

 Three classes classification 

 
(e)  Image 1a as reference in set 2 

 Three classes classification 
Six classes:    w1,1:       w1,2 :       w2,3 :       w2,4 :       w3,3 :      w3,4 :  
Three classes:   (1)

1w :         (1)
2w :         (1)

3w :  
Fig. 5. Classification results in set 1 and set 2 ( 5x5  smooth filter) 
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(a) Image 1oa in set 1o and in set 2o 

Three classes classification 

 
(b)  Image 1oa and 2oa in set 1o 

Three classes classification 

 
(c)  Image 1oa and 2ob in set 2o 

 Three classes classification 

 
(d)  Image 1a as reference in set 1 

 Three classes classification 

 
(e)  Image 1a as reference in set 2 

 Three classes classification 
Three classes:     (1)

1w :         (1)
2w :         (1)

3w :   
Fig. 8. Classification results in set 1o and set 2o ( 5x5  smooth filter) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                       (a) Ground Truth  with three classes 
 

 
(b) Image 1oa in Set 1o and 2o 

 

 
(c) Image 1ob in Set 3o and 4o 

 
(d) Image 2oa in  Set 1o and 3o 

 

 
(e) Image 2ob in Set 2o and 4o 

Fig. 7. Simulated images with three classes 
 

w1 

 
w2 

 
w3 



MAP Classification of a Reference Image  
Using Auxiliaries Images with Different Prevalent Classes 469

 

 
(a) Image 1oa in set 1o and in set 2o 

Three classes classification 

 
(b)  Image 1oa and 2oa in set 1o 

Three classes classification 

 
(c)  Image 1oa and 2ob in set 2o 

 Three classes classification 

 
(d)  Image 1a as reference in set 1 

 Three classes classification 

 
(e)  Image 1a as reference in set 2 

 Three classes classification 
Three classes:     (1)

1w :         (1)
2w :         (1)

3w :   
Fig. 8. Classification results in set 1o and set 2o ( 5x5  smooth filter) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                       (a) Ground Truth  with three classes 
 

 
(b) Image 1oa in Set 1o and 2o 

 

 
(c) Image 1ob in Set 3o and 4o 

 
(d) Image 2oa in  Set 1o and 3o 

 

 
(e) Image 2ob in Set 2o and 4o 

Fig. 7. Simulated images with three classes 
 

w1 

 
w2 

 
w3 



Geoscience and Remote Sensing470

 

4. Conclusions 
 

In the MAP classification context, it was shown a classification rule that consider a reference 
image to be classified and a set of complementary images as additional information. The 
images in the classification process can have different numbers and types of prevalent 
classes. The different prevalent classes are due to the imaging sensor characteristics 
(frequency, polarization, resolution etc) and its interaction with the scene (incidence angle, 
geometry, reflectivity etc). 
It was presented a simulation example considering four sets of two amplitude SAR images 
of a scene. The reference and the complementary images have three and four dominant 
classes respectively. The original Rayleigh distributed images were filtered by a moving 
average filter and the new Gaussian distributed images had theirs parameters estimated for 
the MAP classification. The performance of the classification was evaluated by the error 
matrix Kappa coefficient. 
In general, to apply the classification process that has a reference image to be classified and 
a set of images as complementary information one has to follow these steps to calculate the 
GMF 

1
( )s

mF x   given by equation (12): 
 
a) Each image, including the reference image, must be observed or raw classified in order to 
be established a raw map of all possible classes in the scene and in the images. In the 
presented simulation the scene has six classes 1,1 1,2 2 ,3 2 ,4 3,3 3,4{ , , , , , }w w w w w w . The images 
have the classes { (1)

1w , (1)
2w , (1)

3w } and { (2)
1w , (2)

2w , (2)
3w , (2)

4w } that are compositions of the 
former classes. The classes in each image and in the scene (considered as the ground truth) 
must have an association as shown in equations (27) and (28). 
 
b) It must be estimated the a priori probability 

1

(1)( )mP w  and the conditional probabilities, 
( ) 1

1( | )
n

n n
mP w W −  with { }1 2

(1) (2) ( )
1 , ,...,

n

nn
m m mW w w w= . The classes ( )

n

n
mw  that don’t have an association 

with the classes in 1
nW , through the former classes in the scene, have as result 

( ) 1
1( | ) 0

n

n n
mP w W − = . In the simulation, the classes (1) (1)

1 1 1,1 1,2( , )w f w w=  and (2) (2)
3 3 2 ,3 3,3( , )w f w w=  

don’t have intersection and, therefore, ( 2 ) (1)
3 1( | ) 0P w w = . 

 
c) It must be estimated the conditional distribution parameters of (1)

1( | )N
Xp x W  and 

( )
1( | )n N

Xp x W  for all classes combinations that have intersections. In the simulation, the 
classes (1)

1w  and ( 2 )
3w  don’t have intersection and, therefore, ( ) (1) ( 2 )

1 3( | , ) 0n
Xp x w w = . If the 

images are not independent, the conditional distribution 1( | )N
Xp x W  must be calculated 

instead ( )
1( | )n N

Xp x W . 
 
d) Given 

1
( )s

mF x  for each class 
1

(1)
mw  , m1=1, 2,…, M1 , the decision rule (14) can be applied to 

classify only the reference image x(1) using the x(2), x(3),…, x(N)  images as auxiliary 
information in the MAP decision processes. 

 

 

 
(a)  Image 1ob in set 3o and in set 4o 

Three classes classification 

 
(b)  Image 1ob and 2oa in set 3o 

Three classes classification 

 
(c)  Image 1ob and 2ob in set 4o 

Three classes classification 

 
(d)  Image 1b as reference in set 3 

three classes classification 

 
(e)  Image 1b as reference in set 4 

three classes classification 
Three classes:     (1)

1w :         (1)
2w :         (1)

3w :  
Fig. 9. Classification results in set 3o and set 4o ( 5x5  smooth filter) 
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1. Introduction 
 

In this chapter, the use of satellite remote sensing to monitor active geological processes is 
described. Specifically, threats posed by volcanic eruptions are briefly outlined, and 
essential monitoring requirements are discussed. As an application example, a collaborative, 
multi-agency operational volcano monitoring system in the north Pacific is highlighted with 
a focus on the 2007 eruption of Kliuchevskoi volcano, Russia. The data from this system 
have been used since 2004 to detect the onset of volcanic activity, support the emergency 
response to large eruptions, and assess the volcanic products produced following the 
eruption. The overall utility of such integrative assessments is also summarized.  
 
The work described in this chapter was originally funded through two National Aeronautics 
and Space Administration (NASA) Earth System Science research grants that focused on the 
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. A 
skilled team of volcanologists, geologists, satellite tasking experts, satellite ground system 
experts, system engineers and software developers collaborated to accomplish the 
objectives. The first project, Automation of the ASTER Emergency Data Acquisition Protocol for 
Scientific Analysis, Disaster Monitoring, and Preparedness, established the original collaborative 
research and monitoring program between the University of Pittsburgh (UP), the Alaska 
Volcano Observatory (AVO), the NASA Land Processes Distributed Active Archive Center 
(LP DAAC) at the U.S. Geological Survey (USGS) Earth Resources Observation and Science 
(EROS) Center, and affiliates on the ASTER Science Team at the Jet Propulsion Laboratory 
(JPL) as well as associates at the Earth Remote Sensing Data Analysis Center (ERSDAC) in 
Japan. This grant, completed in 2008, also allowed for detailed volcanic analyses and data 
validation during three separate summer field campaigns to Kamchatka Russia. The second 
project, Expansion and synergistic use of the ASTER Urgent Request Protocol (URP) for natural 
disaster monitoring and scientific analysis, has expanded the project to other volcanoes around 
the world and is in progress through 2011.  

22



Geoscience and Remote Sensing474

 

Russian Institute of Volcanology and Seismology (IVS)/Kamchatka Volcanic Eruption 
Response Team (KVERT) is also maintained. Once a volcano is identified as having 
increased thermal output, ASTER is automatically tasked and the volcano is targeted at the 
next available opportunity. After the data are acquired, scientists at all the agencies have 
access to the images, with the primary science analysis carried out at the University of 
Pittsburgh and AVO. Results are disseminated to the responsible monitoring agencies and 
the global community through e-mail mailing lists.  

 
2. Overview 
 

Few natural hazards have the devastating impact of large volcanic eruptions (Figure 1). 
These events can affect scales from the local citizen to the rare global impact where large 
Plinian eruptions can alter global climate for years to decades (Yang and Schlesinger, 2002). 
Eruptions can present significant and varying levels of threat to public safety and health by 
way of explosive forces that launch rocks and ash, destructive pyroclastic lava flows and 
gaseous emissions, disruption of transportation and communication, introduction of disease 
and the loss of life. In addition to threats on the ground, aircraft and passengers are at 
considerable risk if travelling in affected areas (Miller and Casadevall, 2000). This is a 
particular concern in the north Pacific where numerous flight routes pass over active 
volcanoes (Figure 2).  
 

 
Fig. 1. An ash-rich volcanic cloud from the 1989-1990 eruption of Redoubt volcano (courtesy 
J. Warren, April 21, 1990). Large eruption clouds such as these are a major hazard to 
commercial aviation in the busy north Pacific corridor.  
 
Therefore, advance warning of incipient volcanic activity can lead to better and more 
accurate eruption prediction and help to save lives. High-quality and detailed data are 
needed in order to assess the relative risks posed by any one of the potentially active 
volcanoes along the Aleutian-Kamchatka-Kurile arcs. These data can include seismic 

 

The focus on ASTER data is due to the suitability of the sensor for natural disaster 
monitoring and the availability of data. The instrument has several unique facets that make 
it especially attractive for volcanic observations (Ramsey and Dehn, 2004). Specifically, 
ASTER routinely collects data at night, it has the ability to generate digital elevation models 
using stereo imaging, it can collect data in various gain states to minimize data saturation, it 
has a cross-track pointing capability for faster targeting, and it collects data up to ±85º 
latitude for better global coverage. As with any optical imaging-based remote sensing, the 
viewing conditions can negatively impact the data quality. This impact varies across the 
optical and thermal infrared wavelengths as well as being a function of the specific 
atmospheric window within a given wavelength region. Water vapor and cloud formation 
can obscure surface data in the visible and near infrared (VNIR)/shortwave infrared (SWIR) 
region due mainly to non-selective scattering of the incident photons. In the longer 
wavelengths of the thermal infrared (TIR), scattering is less of an issue, but heavy cloud 
cover can still obscure the ground due to atmospheric absorption. Thin clouds can be 
optically-transparent in the VNIR and TIR regions, but can cause errors in the extracted 
surface reflectance or derived surface temperatures. In regions prone to heavy cloud cover, 
optical remote sensing can be improved through increased temporal resolution. As more 
images are acquired in a given time period the chances of a clear image improve 
dramatically. The Advanced Very High Resolution Radiometer (AVHRR) routine 
monitoring, which commonly collects 4-6 images per day of any north Pacific volcano, takes 
advantage of this fact. The rapid response program described in this chapter also improves 
the temporal resolution of the ASTER instrument. 

 
ASTER has been acquiring images of volcanic eruptions since soon after its launch in 
December 1999. An early example included the observations of the large pyroclastic flow 
deposit emplaced at Bezymianny volcano in Kamchatka, Russia. The first images in March 
2000, just weeks after the eruption, revealed the extent, composition, and cooling history of 
this large deposit and of the active lava dome (Ramsey and Dehn, 2004). The initial results 
from these early datasets spurred interest in using ASTER data for expanded volcano 
monitoring in the north Pacific. It also gave rise to the multi-year NASA-funded programs 
of rapid response scheduling and imaging throughout the Aleutian, Kamchatka and Kurile 
arcs. Since the formal establishment of the programs, the data have provided detailed 
descriptions of the eruptions of Augustine, Bezymianny, Kliuchevskoi and Sheveluch 
volcanoes over the past nine years (Wessels et al., in press; Carter et al., 2007, 2008; Ramsey 
et al., 2008; Rose and Ramsey, 2009).  
 
The initial research focus of this rapid response program was specifically on automating the 
ASTER sensor’s ability for targeted observational scheduling using the expedited data 
system. This urgent request protocol is one of the unique characteristics of ASTER. It 
provides a limited number of emergency observations, typically at a much-improved 
temporal resolution and quicker turnaround with data processing in the United States 
rather than in Japan. This can speed the reception of the processed data by several days to a 
week. The ongoing multi-agency research and operational collaboration has been highly 
successful. AVO serves as the primary source for status information on volcanic activity, 
working closely with the National Weather Service (NWS), Federal Aviation Administration 
(FAA), military and other state and federal emergency services. Collaboration with the 
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2000, just weeks after the eruption, revealed the extent, composition, and cooling history of 
this large deposit and of the active lava dome (Ramsey and Dehn, 2004). The initial results 
from these early datasets spurred interest in using ASTER data for expanded volcano 
monitoring in the north Pacific. It also gave rise to the multi-year NASA-funded programs 
of rapid response scheduling and imaging throughout the Aleutian, Kamchatka and Kurile 
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provides a limited number of emergency observations, typically at a much-improved 
temporal resolution and quicker turnaround with data processing in the United States 
rather than in Japan. This can speed the reception of the processed data by several days to a 
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successful. AVO serves as the primary source for status information on volcanic activity, 
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resolution data of the volcanic activity. The integrated analysis of all available data offers an 
enhanced perspective on the subtle and unique differences among volcanoes and on the 
likelihood of impending eruptive activity at a given site.  
 
The scientists and engineers assembled to carry out the previously described NASA-funded 
research programs have the goal of improving volcanic monitoring in the north Pacific 
region in order to minimize the subsequent risks and increase scientific knowledge of these 
dynamic geologic processes. Incorporating the finer spatial resolution, multispectral ASTER 
data in the analysis process allowed this possibility and added greater clarity to the 
characterization of many remote volcanoes in the north Pacific region. 
 
The work involved developing and implementing algorithms and tools to detect new 
activity, establish protocols for escalating response activity, create system linkages between 
AVO, the LP DAAC and JPL to enable semi-automated transmission of satellite tasking 
requests, develop the tools and procedures to identify ASTER overpass opportunities and 
control scheduling requests, secure sensor tasking authorization from the ASTER Science 
Team, employ existing systems to capture, downlink and process ASTER data, and finally 
create new data distribution mechanisms to ensure the timely availability of the acquired 
data. New data analysis procedures are then employed to assess current conditions and 
issue alerts when needed. 

 
3. Sensors 
 

The critical imaging requirements (i.e., optimum temporal frequency, spatial resolution, 
wavelengths, etc.) must be understood in order to use sensors on Earth-orbiting spacecraft 
to monitor volcanoes. The most commonly used instruments for volcano monitoring in the 
north Pacific include AVHRR, Geostationary Operational Environmental Satellite (GOES), 
Multifunctional Transport Satellites (MTSAT-1R), Moderate Resolution Imaging 
Spectroradiometer (MODIS), the Landsat Enhanced Thematic Mapper Plus (ETM+), and 
ASTER (Table 1).  Sub-meter visible data from several commercial satellites (e.g. QuickBird, 
WorldView, IKONOS and GeoEye) have also recently become integrated as another useful 
tool for volcano monitoring.   
 
Current sensors such as AVHRR, MODIS, MTSAT, and GOES provide the frequency 
necessary to detect the onset of large thermal anomalies in near real-time (Dehn et al, 2000; 
Wright et al., 2002, Schneider et al., 2000). In comparison, high spatial resolution instruments 
such as ASTER and Landsat ETM+ provide data at a much improved spatial scale ideal for 
scientific analysis, damage assessment, and smaller scale monitoring, but at the expense of 
rapid repeat times (Harris et al., 1998; Ramsey and Dehn, 2004). In order to obtain frequent 
status updates where attempting to initially identify thermal anomalies, sensors offering 
quick revisits (i.e., GOES, AVHRR, MODIS) are used (Figure 3). The disadvantage is that 
such data are collected at a coarse spatial resolution allowing only very large or very hot 
anomalies to be detected, whereas the non-eruptive or small-scale activity is missed 
completely at many of the remote volcanoes. Higher spatial resolution data (i.e., ASTER, 
ETM+) are employed in order to obtain more detailed information of lava flows, thermal 
anomalies, and gas emissions. However, nominally ASTER can only revisit a site once every 

 

monitoring, deformational analysis, studies of the emitted gas, visual and thermal 
observations, as well as the use of orbital remote sensing. The volcanoes can be monitored 
using in situ equipment, airborne and satellite imaging systems, or some combination of all 
of these.  
 
Ground-based seismic and deformation measurements commonly provide the earliest 
indications of renewed activity and subsurface magma movement at a particular volcano 
(Stephens and Chouet, 2001; Fournier et al., 2009; Lu et al., 2007). Increased seismic activity 
and a determination of the frequency, depth, and type of earthquakes below a volcano can 
be leading indicators of later eruptions. Field- or space-based measurements of volcanically 
induced deformation together with increased levels of heat and gas emissions can further 
verify the seismic results and lead to a more complete picture of the changes with time. 
Changes in the alignment of surface features are noted through precise measurements and 
the collection of spectral, thermal, and GPS data can serve to validate the satellite-based 
observations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. North Pacific flight route map and the locations of the active volcanoes of the Alaska 
Peninsula, the Aleutian Islands, the Kamchatka Peninsula, the Kurile Islands, and into Japan 
(Courtesy USGS Fact Sheet 030-97).  
 
In addition to ground-based measurements, satellite-based observations of volcanoes are of 
value. Satellite-based observations are useful in the northern Pacific and at many other 
active volcanoes around the world, where limited resources do not allow extensive ground-
based monitoring. Large regions of the world and widely distributed and commonly remote 
targets can be monitored frequently and economically using satellite data. These images can 
reveal changes in thermal or gas emission, in the composition of the surface rocks, and in the 
deformation over time. They can thus provide additional insight into the evolving status of 
volcanoes. Fixed-wing aircraft and helicopters can also be used where resources permit to 
carry sensors such as thermal cameras, gas sensors, and cameras, which obtain higher 
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4. Ground Systems and Data Acquisition 
 

The infrastructure needed to support ASTER urgent request tasking, data collection, 
processing and eventual distribution is summarized in Figure 4. The five key steps of the 
volcano monitoring sequence are shown in the center of the figure. Corresponding 
contributions by participating groups are shown in the outer circle, occurring in a sequence 
that commences at the arrow and proceeds clockwise. The existing ASTER mission 
procedures and systems were used for final tasking, collection, and data processing. 
 

 
Fig. 3. Comparison of satellite data at several spatial resolutions over Redoubt volcano, 
Alaska during daylight hours between 21:30 and 22:01 UTC on June 6, 2009.  (A) False-color 
subset of ASTER 15 m VNIR bands 3,2,1 as R,G,B.   Figures B-E show TIR bands (centered 
on about 11 micrometers) from four different sensors: (B) ASTER 90 m TIR band 14, (C) 
MODIS 1 km TIR band 31, (D) AVHRR 1.1km TIR band 4, and (E) GOES 8 km TIR band 4. 

 

16 days at the equator viewing nadir. This temporal frequency is improved with off-nadir 
pointing and/or at higher latitudes. For example, at the higher latitudes of Kamchatka the 
temporal frequency can be shortened to 13 hours with off nadir pointing. 
 
The ASTER URP has been used in support of North Pacific volcano monitoring to improve 
the collection probability and the speed of ASTER data availability. Through this approach, 
data are typically available within six hours after acquisition. This combination of frequent 
coarse spatial resolution change detection and less frequent detailed higher resolution 
imaging has proven very valuable scientifically and operationally. The three bands of 
ASTER VNIR data span from 0.52 to 0.86 micrometers at a ground resolution of 15 m. These 
data have been used to generate digital elevation models, map the eruption deposits and 
changing surface characteristics and to detect ground temperatures in excess of 800 °C. 
Thermal anomaly and gas emissions identification is accomplished primarily using sensor 
bands in the SWIR and TIR wavelengths. The six ASTER SWIR bands cover wavelengths 
from 1.6 to 2.43 micrometers at 30-m ground resolution. Unfortunately, the ASTER SWIR 
subsystem is no longer operational after 2008, but the data were commonly used to detect 
alteration minerals on the surface and temperatures between 100 °C and 460 °C. The ASTER 
TIR subsystem has five TIR bands from 8.125 to 11.65 micrometers at 90-m ground 
resolution. These data have been used to extract temperatures less than 100 °C, map silicate 
and carbonate minerals, model the vesicle content of lavas, and estimate the thermal inertia 
of the surfaces. A brief history of the ASTER mission, including key orbital and data 
characteristics, is provided in the text box entitled The ASTER Mission. 
 

Criteria GOES / MTSAT AVHRR MODIS LANDSAT 
ETM+ 

ASTER 

Revisit 
frequency 

Geostationary 2 passes 
per day 

1-2 days 16 days 16 days, less 
off-nadir 

Ground 
resolution 

At 60°N latitude: 
2 km VIS 
8 km IR 

1.1 km 
(LAC) 

250m (B1-2), 
500m (B3-7), 
1000m 
 (B8-36) 

30m (B1-5, 7) 
60m (B6) 
15m (B8) 

15m (B1-3), 
30m (B4-9), 
90m (B10-14) 

Spectral 
coverage 

5 bands: 
0.55 to 12.5 µm 

6 bands:  
0.58 to 12.4 
µm 

36 bands:  
0.405 to 
14.385 µm 

8 bands: 
0.45 to 12.5 
µm  

14 bands:  
0.52 to 11.65 
µm 

Swath 
Width 

Full Earth view 2,399 km 2,330 km 185 km 60 km 

Orbit 
Altitude 

35,800 km 833 km 705 km 705 km 705 km 

Table 1. Comparison of key characteristics for sensors used in the operational north Pacific 
monitoring system.  
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entire system of cross-satellite integration and supporting systems is located at AVO; LP 
DAAC; JPL; ERSDAC; Goddard Space Flight Center (GSFC); White Sands, New Mexico; and 
includes the ASTER instrument on the Terra spacecraft. The work of this project has 
contributed new techniques in event detection and tasking of a complex instrument.  

 
4.1 Event Detection 
 

The core of the triggering mechanism for the ASTER emergency acquisition requests is 
based on the Okmok algorithm (Dean et al., 1998). This algorithm uses a time series of 
AVHRR data to detect thermal anomalies above an expected average seasonal background 
temperature. Deviations in temperature may signal increased thermal emission and an 
impending eruption at a particular volcano. The algorithm scanned a small subsector of data 
over each volcano for the warmest IR band 3 (3.5-3.9 micrometers) radiant temperature. This 
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Initial thermal anomaly event detection in AVHRR or MODIS data triggers the ASTER 
ground systems, scheduling, and eventual data acquisition. The methods used to detect 
anomalous events include a detailed set of screening algorithms designed to minimize false 
positives prior to tasking ASTER. Once ASTER is tasked, a series of procedures are used to 
determine timing, scheduling support, and the eventual distribution of ASTER data. This 
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The ASTER Mission 
 
ASTER is a joint endeavor involving NASA, Japan’s Ministry of Economy, Trade and 
Industry, and other organizations. The ASTER sensor was launched in 1999 on the 
Terra spacecraft as part of NASA’s Earth Observing System with the goal of 
conducting a global land mapping mission. ASTER has been accomplishing this goal 
very successfully, having already acquired over 1.5 million scenes. Though the 
instrument design life has been exceeded, ASTER continues to acquire approximately 
450 new 60 by 60 km images of Earth’s land surfaces daily, providing Earth land 
surface information useful for a wide variety of applications. 
 
Terra orbits Earth once every 98.88 minutes at an elevation of 705 km in a sun-
synchronous orbit at an inclination of 98.3 degrees. The descending orbit has a 10:30 
AM equatorial crossing time and the revisit time is 16 days at the equator (less at 
higher latitudes or when off-nadir pointing is used). ASTER is tasked through 
scheduled observations at an 8% duty cycle, and has three imaging subsystems: VNIR, 
SWIR and TIR. Ground resolution is 15m for VNIR, 30m for SWIR, and 90m for TIR. 
ASTER has 14 spectral bands ranging from 0.52 micrometers to 11.65 micrometers, 
including a back-looking VNIR band 3 that enables the generation of digital elevation 
models. Data are distributed in the HDF-EOS format by the LP DAAC in the USA and 
by ERSDAC in Japan. More information is contained in Yamaguchi et al. (1998). 
 
Level-1A reconstructed unprocessed instrument data are archived, and other products 
are generated from these data at the request of customers. Additional products include 
registered radiance at the sensor, surface reflectance, brightness temperature, surface 
kinetic temperature, surface emissivity, decorrelation stretch, polar surface and cloud 
classification, orthorectified, and digital elevation model (Abrams, 2000). The file size 
of the registered radiance product is approximately 118 MB, and contains data from 
each subsystem that are geometrically co-registered and radiometrically calibrated. 
 

 
 
The Earth’s atmospheric windows with the spectral coverage of various instruments 
shown. ASTER (shown in red), Landsat ETM+ (shown in blue), and SAR (shown in 
black). (Kaab, 2005) 

 

existing mission protocols.  Approvals to task the sensor occur at each stage of the process to 
ensure the best use of available resources and compliance with mission requirements and 
international agreements. For example, if there are multiple AVHRR alerts over a particular 
volcano in a given day, the system of checks guarantees that the ASTER scheduling system 
is not overloaded. 
 
Following final approvals, and after confirming the absence of scheduling conflicts, the 
ASTER JPL team accesses the ASTER scheduling system at ERSDAC in Japan and the 
tasking request is uploaded. The final schedule is determined at ERSDAC and provided to 
the GSFC Flight Operations Team (FOT) for uplink to the Terra spacecraft. This entire 
process can be as quick as several hours. Once the data are acquired, they are stored in the 
Terra solid state recorder until downlink to receivers at White Sands, New Mexico. Raw 
data are transferred from White Sands via network to GSFC EDOS for initial processing 
from the raw image data format and then sent to the LP DAAC.  
 

 
Fig. 5. AVO Hotspot Viewer Web interface for detection of AVHRR thermal anomalies. The 
AVHRR pixels are reformatted into 1-km grid cells with user-selectable tools for data 
enhancement. This tool is used to screen for actual anomalies and trigger an ASTER 
observation. Shown here are the data collected on April 26, 2007 from AVHRR on NOAA-18 
for Kliuchevskoi volcano. This data viewer is also used by AVO in their routine volcano 
monitoring operations. (http://avo-animate.images.alaska.edu/auto_obs_viewer.php) 
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Fig. 7. AESICS Web-based interface. Users can rapidly access statistics on the number of 
ASTER urgent requests in the last month and year, thumbnail images of the most recent 
acquisitions, and a map-based display of all ASTER tasking requests in the past 30 days. 
Based on the Google Earth application, this interface allows users to see which ASTER tasks 
are new (red dot), approved (yellow dot), and completed (green dot). Each target can also be 
queried for more information. 
 
the TIR is not available so long-term calibration is used. As a result, expedited TIR data 
quality is expected to be somewhat reduced. Inter-telescope registration quality is also 
slightly lower since numerous adjacent scenes are not available as is normally the case. 
Finally, expedited processing uses raw spacecraft ephemeris data, so the geometry is 
slightly different than for the data produced using standard processing, which uses refined 
(post-processed) ephemeris data. Even with these caveats, the image data are still of 
excellent quality and commonly used to report the latest activity and thermal output values.  

 
4.4 ASTER Data Analysis and Alert Status Updates 
 

After ASTER Level-1 data are processed, image analysts and volcanologists at AVO and the 
University of Pittsburgh obtain the images for inspection to gain further insight on the 
current state of the volcano. This may include a visual assessment of the available bands, a 
characterization of temperature conditions, areal extent of the anomaly, time series analysis, 

 

 
Fig. 6. ASTER Overpass Predictor Web page. 
(http://igskmncnwb001.cr.usgs.gov/aster/estimator/reference_info.asp) 

 
4.3 ASTER Data Processing and Distribution 
 

Following standard ASTER mission protocols, raw ASTER data from the Terra spacecraft 
are processed by EDOS to Level-0. Level-0 data are then transferred via network to LP 
DAAC. LP DAAC receives the Level-0 data and processes it to Level-1 using executable 
code and observation schedule information received from ERSDAC.  Upon completion of 
Level-1 processing, data are staged for retrieval via FTP. LP DAAC created a Recent 
Expedited Production Web site for this project to simplify and speed initial data assessment 
and downloading of ASTER expedited data. Data are also made available via AESICS, an 
FTP site, and through the Warehouse Inventory Search Tool (WIST) data search and order 
mechanism.  
 
Employing the ASTER expedited approach greatly assists in the timely availability of image 
data for analysis. ASTER expedited data are typically available within six hours after 
collection, whereas the standard data product availability takes several days after 
acquisition. This lag time was actually several weeks when the URP volcano monitoring 
program was first conceived. 
 
ASTER expedited products are very similar to standard products but there are some minor 
differences. Expedited data do not contain the back-looking band 3, so stereo data are not 
initially available for digital elevation model (DEM) generation. DEMs can be created later 
once the standard Level-1 products become available. In addition, short-term calibration for 
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During the period between 2000 and 2008, Bezymianny volcano, 10 km south of 
Kliuchevskoi, was nearly continuously active with approximately two large eruptions per 
year (Ramsey and Dehn, 2004; Carter et al., 2007). Therefore, this volcano produced 
numerous AVHRR thermal alerts and subsequent ASTER urgent request images (after the 
URP system was active).  When both Bezymianny and Kliuchevskoi are active, the poor 
geolocation accuracy of AVHRR makes it difficult to discern which volcano is responsible 
for producing the thermal anomaly (Dehn et al, 2000). Similarly, both volcanoes commonly 
appear in one ASTER 60-km scene. It is therefore common for ASTER observations targeting 
one volcano to capture activity at the other.  Typically, low-level thermal activity is seen 
long before visual or even AVHRR spaceborne observations detect that activity. The better 
radiometric accuracy, higher spatial resolution, and more precise geolocation of ASTER 
compared to AVHRR makes the TIR data ideal for detection of the very early stages of new 
activity at a volcano.  However, the poorer temporal frequency commonly limits this 
important aspect of ASTER.  Future TIR instruments with a temporal frequency of hours to 
days will provide a critically important new dataset for volcano monitoring and eruption 
prediction. 
 
The detection of renewed activity at Kliuchevskoi first occurred in 2005 in an ASTER TIR 
scene collected to observe the waning stages of an eruption at Bezymianny (Rose and 
Ramsey, 2009). A similar situation occurred nearly two years later when observations of the 
2006 eruptive activity at Bezymianny also showed a very slight increase in thermal output (~ 
5 °C above background) at the summit of Kliuchevskoi as early as November 2, 2006. This 
activity was noted but did not raise concern due to its very low level and no other detectable 
activity from visual or seismic observations.  On November 27, 2006 the activity remained 
unchanged. It was not until the first detection by AVHRR on December 14, 2006 that a rapid 
increase in activity was noted. Two AVHRR pixels between 10 and 30 °C above the average 
background temperature were detected at the summit, which likely meant that very hot 
gases and/or small amounts of lava had reached the surface. By December 22, 2006 the 
activity had further increased enough to trigger an ASTER urgent request image, which was 
scheduled for January 4-5, 2007 (Figure 8). No activity was detected in the subsequent 
ASTER VNIR data although a pixel-integrated brightness temperature of 332 °C was 
extracted from the SWIR data. By January 12, 2007 the color-code for Kliuchevskoi was 
raised from green to yellow indicating that heightened activity was taking place. However, 
this activity was low-grade enough that the first ground-based visible observations of a 
vigorous steam plume and the presence of lava at the summit were not confirmed until 
February 16, 2007.  
 
Commonly, the winter weather in Kamchatka is clear and cold. Minimal to no cloud cover 
can be the norm for long stretches between December and May in this region, thereby 
making optical remote sensing an excellent tool. In the spring and summer months, low-
level thicker clouds typically form after 9am and can persist the entire day. These clouds can 
hinder ground-based visual observations and make visits to the summits of the volcanoes 
difficult. However, the clouds typically do not extend high enough to obscure the summits 
of the taller volcanoes such as Kliuchevskoi. For these periods, it is not uncommon that 
optical remote sensing is the only form of monitoring possible. Higher altitude thin clouds, 
thin volcanic plumes, and jet contrails can also be problematic for optical remote sensing. 
These clouds are visually hard to detect, but can negatively-impact the extraction of accurate 

 

documentation of flow patterns, and plume extent and content. New data are compared 
with historical satellite data and other information to identify trends. If warranted, volcano 
status alerts are updated to notify government authorities and other interested individuals. 
The volcano monitoring plan is also then updated to ensure that continued observations 
occur as needed. 

 
5. The 2007 Eruption of Kliuchevskoi Volcano, Russia  
 

One of the most volcanically active regions in the world is Kamchatka, Russia, which is 
located in the northwestern region of the Pacific Ocean. Several of the more than two dozen 
active volcanoes on this peninsula are commonly erupting at any given time. These 
eruptions can produce hazards for the sparse local population living near the volcanoes. But 
of far more consequence are the eruptions that produce larger ash columns, which are 
carried by the easterly winds into the routes of approximately 200 aircraft and 20,000 people 
overflying the region each day (Miller and Casadevall, 2000).  
 
Kliuchevskoi is the highest (> 4800 m) and one of the most active volcanoes in Kamchatka. 
In the last century, summit eruptions have increased in frequency averaging one every 1–2 
years. These eruptions are commonly caused by lava interaction with melting snow/ice and 
start with increased fumarolic activity within the summit crater. This thermal activity is 
typically followed by Strombolian explosions, the effusion of blocky lava flows, and the 
generation of hot avalanches and lahars. Less common are the paroxysmal eruptions, which 
last occurred in 1994. That eruption included a large convecting column, pyroclastic flows, 
lahars and lava flows. The largest explosive eruption reached 18 km above sea level and 
travelled approximately 1,000 km southeast into the north Pacific air traffic routes (Miller et 
al., 1994).  
 
Ground-based techniques for monitoring the remote volcanoes of Kamchatka include 
seismic and visual observations. In 2007, there were 33 seismic stations deployed in 
Kamchatka (Chebrov, 2008).  Human observations, reports, and a Web-based video camera 
system are also used.  The Web camera has been installed in the town of Klyuchi 30 km 
north of Kliuchevskoi. Using the Web-based system, the height of the eruption column has 
been correlated with the level of seismic activity, thereby allowing seismic signals to predict 
the height of the eruption plume at night or in times of bad weather (McNutt, 1994; Roach et 
al., 2004). In addition to these data, high temporal/low spatial resolution orbital remote 
sensing monitoring of these remote volcanoes has been used for nearly two decades by 
volcanologists in Russia and the United States. ASTER has been an integral part of this 
monitoring since it was launched in 1999. Some of the first scientific images collected by 
ASTER in early 2000 were of the large eruption deposits of Bezymianny volcano (Ramsey 
and Dehn, 2004). Beginning in 2004, the ASTER rapid response/urgent request system has 
been linked to the routine remote sensing monitoring done by AVO and KVERT. The 
ASTER data from this collaborative program have provided the basis for enhanced 
monitoring efforts, new discoveries, and numerous scientific results (Carter et al., 2007, 2008; 
Ramsey et al., 2004; Rose and Ramsey, 2009). 
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documentation of flow patterns, and plume extent and content. New data are compared 
with historical satellite data and other information to identify trends. If warranted, volcano 
status alerts are updated to notify government authorities and other interested individuals. 
The volcano monitoring plan is also then updated to ensure that continued observations 
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5. The 2007 Eruption of Kliuchevskoi Volcano, Russia  
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Fig. 9. Time-temperature plot of the 2007 eruption of Kliuchevskoi volcano showing the 
extracted pixel-integrated brightness temperatures for the three wavelength regions and the 
three phases of eruptive activity.  
 
The plumes also produced proximal airfall deposits easily seen in contrast to the underlying 
snow (Figure 10). The April 26-27, 2007 ASTER image pair was unique in several other 
ways. The data were collected several hours before an AVHRR overpass, which had 
triggered the next ASTER urgent request (later acquired on May 4-5, 2007). However, 
because the AVHRR data are displayed on the AVO Web site (see Figure 5) within minutes 
to hours after collection, this image was seen before the ASTER data and initial descriptions 
of the activity on April 26 were based on the AVHRR data.  The collection of both these 
datasets within hours of each other provided a rare opportunity to compare detailed ground 
data/features at the 15- to 90-m scale to what was imaged by the AVHRR instrument at 1-
km spatial scale. AVHRR had 23 thermally-elevated pixels, five of which were saturated.  
The poor spatial resolution did not allow the discrimination of the two lava flows; however, 
the wide area of hot AVHRR pixels in conjunction with two recovery pixels at the far eastern 
edge of the thermally elevated area indicated that a new active lava flow was likely present, 
which was then later confirmed in the ASTER data. Recovery pixels are defined as areas 
with anomalously low temperatures that commonly occur on the down-scan margin of very 
high temperature thermal features (Higgins and Harris, 1997). This adverse response of the 
detectors to a zone of high radiance is produced by a slight delay during which time the 
previously saturated detector elements equilibrate and no data are collected. 
 

 

 
Fig. 8. ASTER data collected on January 4, 2007 and centered on the summit of Kliuchevskoi 
volcano. The VNIR color composite image (left) shows almost no signs of activity other than 
a small darker spot in the center of the summit crater (indicating snowmelt) and a minor 
amount of steam. The band 9 SWIR image (right) however shows a distinct thermal anomaly 
centered over the dark spot in the summit crater. The maximum integrated brightness 
temperature derived from the SWIR data was 332 °C indicating the presence of hot gases 
and/or magma very close to the summit. 
 
surface composition and temperature. For example, this can be seen in the lower surface 
temperatures derived during periods of thin cloud cover for Kliuchevskoi (Figure 9). From 
mid-January through mid-April, ASTER continued to collect regularly scheduled and urgent 
request data of the volcanic activity at Kliuchevskoi. During this period, ground-based 
observations were hindered at times by the presence of low-level cloud cover. However, 
these clouds were commonly lower than the summit of Kliuchevskoi allowing the activity to 
be observed with ASTER and AVHRR. The summit activity continued to increase during 
this time, producing more thermally elevated pixels and raising the brightness temperature 
enough to saturate the ASTER SWIR data by early April (Figure 9). This was caused by the 
presence of a large amount of non-crusted lava in the summit crater from either a small 
actively overturning lava lake or very vigorous Strombolian eruption activity. On April 9, 
2007 the clouds had diminished and photographs from the ground confirmed the 
Strombolian explosions and the presence of lava that was flowing down the northern slope 
at a location nearly identical to the 2005 flow (Rose and Ramsey, 2009).  
 
ASTER captured another day/night pair of urgent request images on April 26-27, 2007 
(Figure 9). By this time, the active lava flow had been present for over a month and the 
SWIR and TIR data were commonly saturated in many locations due to the high 
temperatures. These lava flows were producing numerous lahars that were emplaced 10-15 
km further down the northern slope from the base of the lava flow. During this period, 
larger Vulcanian-style eruptions were also common at the summit crater. These short-
duration explosions produced ash columns 5-15 km above the summit, which then 
commonly drifted S-SE over the peninsula and into the northern Pacific Ocean. 
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2007 the clouds had diminished and photographs from the ground confirmed the 
Strombolian explosions and the presence of lava that was flowing down the northern slope 
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temperatures. These lava flows were producing numerous lahars that were emplaced 10-15 
km further down the northern slope from the base of the lava flow. During this period, 
larger Vulcanian-style eruptions were also common at the summit crater. These short-
duration explosions produced ash columns 5-15 km above the summit, which then 
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north, in the large volcano shadow because of the low sun angle at this latitude and this 
time of year. Therefore, the solar correction was minimal and the extracted brightness 
temperatures from the VNIR and SWIR data were much more accurate.  
 
This dataset also marked the start of approximately two months of nearly cloud-free ASTER 
data where the locations of the lava flows and their VNIR-derived temperatures were 
tracked and used for detailed monitoring of the eruption (Figures 9-11). The extracted pixel-
integrated brightness temperatures were divided into three phases of activity, which also 
correlated with visible observations and seismic data. In the precursory phase (November 
2006 to February 2007), TIR temperatures began to rise above the average background 
temperature (approximately -40 °C in January) and became hot enough to be detected by the 
SWIR data. This phase was dominated by fumarolic degassing and minor Strombolian 
activity at the summit.  In the explosive phase (February 2007 to March 2007), degassing 
became more intense and Strombolian explosions at the summit were nearly constant. 
However, the amount of lava was not large enough to saturate either the TIR or SWIR data. 
Beginning in mid-March 2007 and continuing until mid-June 2007, the effusive phase was 
ongoing with the emplacement of three large basaltic andesite lava flows. Each of these 
flows contained an active center channel for long periods of time resulting in the saturation 
of both the TIR and SWIR data and allowing temperatures to be extracted from the 15-m 
VNIR data. These pixel-integrated temperatures are slightly lower than similarly derived 
temperatures for Hawaiian lava flows indicating that the actual temperature of the lavas 
were between 1050 and 1100 °C (Ramsey and Wessels, 2007). 
 
From mid-April to mid-June, Kliuchevskoi produced three new lava flows, small-scale 
Strombolian summit activity, and larger explosive eruptions resulting in ash plumes that 
extended to the east hundreds of kilometers. On May 29, 2007 the nighttime ASTER TIR 
image clearly showed the three N-NW lava flows and a weak TIR signal extending 
approximately 400 m to the SE of the summit crater. This linear thermal anomaly was 
predicted to be the start of new lava flow direction but was not confirmed until the next 
ASTER image pair on June 6-7, 2007 (Figure 11). The prediction of this new flow direction 
was initially discounted by most observers/scientists because of the high level of activity 
ongoing to the north and lack of historical lava flows emanating from the summit in this 
direction. The data collected on June 6, 2007, verified that the northern lava flows were no 
longer active. Their temperatures (between 10-20 °C above the background temperature) 
had cooled well below the detection threshold for ASTER VNIR and SWIR but could still be 
discerned in the TIR image. The most obvious change was the presence of two new SE 
trending active lava flows in the exact direction as the linear thermal anomaly seen in the 
May 20, 2007, image. The larger flow was 3.1 km long and was emplaced at an average rate 
of 16 m/hr, which was nearly the same flow rate as the northern flows. However, the flow 
rate increased significantly near the end of the effusive phase of the 2007 eruption. The flow 
rate was calculated by examining changes in the small flow south of the larger SE flow 
(Figure 11B). ASTER collected a nighttime image 13 hours after the data shown in Figure 11 
and the advancement of this flow was easily seen. Using the digital elevation model derived 
from the VNIR image (Figure 11A), the slope in this region was calculated and used to 
derive a flow rate of 26 m/hr. This flow rate continued for the rest of June, after which the 

 

 
Fig. 10. Kliuchevskoi eruption captured April 24-26, 2007. The base figure, an ASTER VNIR 
image collected on April 26, 2007, shows a wider area around the volcano and is displayed 
with North down (opposite to the other ASTER images shown). This allows a similar view 
as the field photographs (A and B) taken from the town of Klyuchi by Y. Demyanchuk. In 
the ASTER image, an ash fall deposit to the SE, numerous lahar deposits to the N, and a 
vigorous steam plume at the summit are all visible. (A) Nighttime photograph of the 
summit taken on April 24, 2007 showing the Strombolian activity and two distinct lava 
flows. (B) Daytime photograph taken one day later (and one day before the ASTER image) 
showing both lava flows and the dendritic patterns of the lahar deposits all of which are 
clearly visible in the ASTER image. (C) Enhanced linear stretch of the ASTER VNIR data of 
the summit region (denoted by the yellow rectangle). The active incandescent lava flows are 
seen and the maximum brightness temperature extract from these data was 852 °C.  
 
A cold plume extending to the NE in the AVHRR image (and not seen in the ASTER image) 
indicated the volcano was continuing to produce larger eruptions every few hours during 
the lava flow emplacement phase. These plumes were carried in different directions (SE in 
ASTER, NE in AVHRR) depending on the local wind at the time. Once the ASTER data were 
available, it was confirmed that lava was now being emplaced in a new direction and that 
the previous lava flow was beginning to cool. This new lava flow was active and large 
enough to be seen in the 15m VNIR data (Figure 10C). At that point the open channel was 
15-30 m wide, 3 km long and had a pixel-integrated brightness temperature of 852 °C. To 
extract brightness temperatures in daytime VNIR or SWIR data, the solar reflected 
contribution in each pixel had to be removed. This was done by calculating that amount in 
each wavelength band using non-thermally-elevated pixels from a nearby region under 
similar lighting conditions (Rose and Ramsey, 2009). The flow was being emplaced to the 
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north, in the large volcano shadow because of the low sun angle at this latitude and this 
time of year. Therefore, the solar correction was minimal and the extracted brightness 
temperatures from the VNIR and SWIR data were much more accurate.  
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The numerous datasets provided by ASTER as part of the collaborative rapid-response 
program in conjunction with the relatively clear weather and the summit elevation and high 
latitude of Kliuchevskoi resulted in the largest and most comprehensive 
multispectral/multispatial high resolution dataset of a volcanic eruption. These data 
provide another means to monitor and characterize eruptive activity of this region of the 
globe. Precursors of eruption onset and new behavior can be better recognized using high 
resolution image data across the wavelength region and thus minimize future risks. 

 
6. Conclusions 
 

The value of using remote sensing assets in geoscience applications has been demonstrated 
by many authors and detailed here for the north Pacific volcano monitoring program. 
Numerous successes have been realized using this programmatic approach for capturing 
higher temporal frequency data, and a more rapid dissemination of critical information has 
been established for integration with future higher resolution datasets. The work described 
enabled the incorporation of higher spatial resolution ASTER data into an existing coarser 
resolution volcano monitoring initiative. New techniques were developed for event 
detection, satellite tasking, data distribution, and data analysis. These resulted in more rapid 
data availability, more detailed information, greater scientific insight on geologic processes, 
and more reliable alerts to the communities involved.  
 
Specifically for Kamchatka, several beneficial factors have combined resulting in nearly 
1,400 ASTER images of the five most thermally active Kamchatka volcanoes (Bezymianny, 
Karimsky, Kliuchevskoi, Sheveluch and Tolbachik). These factors include the orbital 
alignment of Terra, the high latitude of the peninsula, and the persistent activity in this 
region. From the inception of the automated rapid response program in 2004, an additional 
350 scenes have been acquired over these volcanoes, many soon after larger eruptions. These 
data have produced valuable quantitative information on the small-scale activity and larger 
eruptions. A detailed example of the 2007 eruption of Kliuchevskoi described here enabled 
fundamental lava flow parameters to be determined. Numerous eruptions have been 
observed in Kamchatka by ASTER, which have displayed varying volcanic styles including 
basaltic lava flow emplacement, silicic lava dome growth, pyroclastic flow emplacement, 
volcanic ash plume production, fumarolic activity, and geothermal emission. The high 
spatial resolution and moderate spectral resolution of the data are ideal for deriving the 
energy flux from both high and low temperature systems, mapping chemical and textural 
changes of the volcanic products, and for imaging and understanding recent volcanic 
deposits.  
 
The international collaboration developed for this work created professional relationships 
and infrastructure that will prove valuable in future work. The focus of further research will 
be on specific eruptions of the Kamchatka and Alaska volcanoes, the science results 
stemming from those data, expansion plans for global ASTER urgent request data and 
support for other types of events. The current ASTER rapid response program in Kamchatka 
and Alaska has produced a large archive of data, which has only been sampled to a small 
degree. These data offer a source for both the timely completion of current studies and new 
scientific analysis. It has also improved the timeliness and reliability of resulting hazard 

 

effusive phase ended. The lava flows continued to cool over the next several months and no 
new explosive activity was observed. The eruption was officially declared over in July 2007.  
 
During the six month long 2007 eruption of Kliuchevskoi, ASTER provided unprecedented 
views of the summit activity. The eruption began in the winter, making ground or helicopter 
observations nearly impossible because of the harsh conditions. As the weather warmed, 
cloud cover further limited ground views of the summit. Thirty-two ASTER images were 
acquired during the day and night over this time period, which was an average of one scene 
every six days,  although many images were day/night pairs collected 13 hours apart. Of 
this total, three day/night pairs (January 4-5, March 17-18, May 4-5) were collected as a 
result of the automatic triggering of the ASTER urgent request system. An additional seven 
image pairs were also acquired using the manual tasking of this urgent request system. The 
manual tasking was used during cloudy periods where AVHRR data were limited or to 
augment the volume of automatically tasked images. The ASTER URP program therefore 
produced a 63% increase in the data volume during the eruption of Kliuchevskoi, making it 
an invaluable tool for monitoring. The twelve additional ASTER images collected during 
this time period were part of the routine volcano monitoring performed by ASTER for all 
active volcanoes around the world (Pieri and Abrams, 2004). 
 

Fig. 11. ASTER urgent request data collected on June 6, 2007 over the summit region of 
Kliuchevskoi volcano. (A) VNIR image now showing the lack of snow on the upper flanks of 
the volcano and an ash-rich plume from the summit crater and extending southward. Note 
the low level cloud deck surrounding the volcano at ~2500 m. Such clouds are common 
starting in the spring and completely obscure ground observations. ASTER provided the 
only detailed record of eruptive activity during this period. (B) SWIR band 4 image covering 
the same area. The summit crater and SE trending lava flow are clearly visible, as is a 
secondary breakout flow to the south of the larger flow. Using the ASTER-derived DEM of 
the summit and the difference in the flow lengths between the day and nighttime images 
(∆T = 13 hours), the flow velocity was calculated to be 26 m/hour. This was significantly 
faster than the previous lava flows to the N and NW. (C) TIR band 10 image showing the 
active lava flow, the colder plume, and the two previous lava flows (N and NW) that were  
still cooling but no longer visible in the VNIR or SWIR data.  
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acquired during the day and night over this time period, which was an average of one scene 
every six days,  although many images were day/night pairs collected 13 hours apart. Of 
this total, three day/night pairs (January 4-5, March 17-18, May 4-5) were collected as a 
result of the automatic triggering of the ASTER urgent request system. An additional seven 
image pairs were also acquired using the manual tasking of this urgent request system. The 
manual tasking was used during cloudy periods where AVHRR data were limited or to 
augment the volume of automatically tasked images. The ASTER URP program therefore 
produced a 63% increase in the data volume during the eruption of Kliuchevskoi, making it 
an invaluable tool for monitoring. The twelve additional ASTER images collected during 
this time period were part of the routine volcano monitoring performed by ASTER for all 
active volcanoes around the world (Pieri and Abrams, 2004). 
 

Fig. 11. ASTER urgent request data collected on June 6, 2007 over the summit region of 
Kliuchevskoi volcano. (A) VNIR image now showing the lack of snow on the upper flanks of 
the volcano and an ash-rich plume from the summit crater and extending southward. Note 
the low level cloud deck surrounding the volcano at ~2500 m. Such clouds are common 
starting in the spring and completely obscure ground observations. ASTER provided the 
only detailed record of eruptive activity during this period. (B) SWIR band 4 image covering 
the same area. The summit crater and SE trending lava flow are clearly visible, as is a 
secondary breakout flow to the south of the larger flow. Using the ASTER-derived DEM of 
the summit and the difference in the flow lengths between the day and nighttime images 
(∆T = 13 hours), the flow velocity was calculated to be 26 m/hour. This was significantly 
faster than the previous lava flows to the N and NW. (C) TIR band 10 image showing the 
active lava flow, the colder plume, and the two previous lava flows (N and NW) that were  
still cooling but no longer visible in the VNIR or SWIR data.  
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notifications to responsible authorities and affected communities. However, it should be 
noted that the ASTER instrument has long exceeded its initial design life. The SWIR 
subsystem has now failed and the sensor could suffer further catastrophic losses at any time. 
Therefore, there is a critical need for a continuing series of sensors with similar 
characteristics to ASTER in order to support such geoscience applications. 
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1. Introduction

Remote sensing of terrain and ocean surfaces is circumscribed in the physical domain of elec-
tromagnetic scattering by rough surfaces. The development of accurate models has gathered
a great deal of efforts since the 80’s. Until that moment there were two classical approaches
to be applied to two different asymptotic cases: the surfaces with small roughness and those
having long correlation length. The first situation was dealt successfully via the small pertur-
bation method (SPM)) whereas the second one was the target of the Kirchhoff approximation
(KA). In effect, the abundance of models in the last two decades has made it very difficult for
the Earth Observation practitioner to properly classify them and choose between them. The
most important effort to that purpose was made by Tanos Elfouhaily in Elfouhaily & Guerin
(2004), and we refer to his work for those interested in having a comprehensive account of the
available methods for the problem. We focus here on the model that has arguably awakened
the largest share of interest within the remote sensing community, that is, the Integral Equa-
tion Model (IEM) presented by Fung and Pan in Fung & Pan (1986) and later corrected in a
long series of amendments by the same authors Fung (1994); Hsieh et al. (1997); Chen et al.
(2000); Fung et al. (2002); Chen et al. (2003); Fung & Chen (2004); Wu & Chen (2004); Wu et al.
(2008). In effect, there has been a number of issues that made the model theoretically incon-
sistent, even if each amendment was accompanied by properly suiting numerically simulated
results. In 2001 the author of this chapter carried out a complete revision of Fung’s work and
proposed a corrected IEM that successfully achieved one of the objectives of the rough surface
scattering models developed so far: to unify in a single equation both the SPM and the KA in
the most general case of bistatic scattering. This corrected IEM was named IEM with proper
inclusion of multiple scattering at second order or IEM2M.
This chapter aim is twofold: on the one had a quick summary of the IEM2M is given and on
the other an extension of it is proposed to include those surfaces comprising both a zero-mean
height, random component and a deterministic component that we call here “topographical”.

2. Summary of the IEM2M for surfaces with zero height mean

The rationale of the IEM and therefore of the IEM2M is to perform a second iteration in the
integral equations describing the rough surface electromagnetic scattering problem, as given
in Poggio and Miller Poggio & Miller (1973). The first iteration corresponds to the KA, where
each point on the surface is locally surrounded by neighbouring points lying on a flat surface,
which is equivalent to the assumption of a low curvature. As a matter of fact, the proper in-
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The symbols in equation (1) are:�ki = (kx,ky,kz) represents the incident wave vector upon the
scattering surface, �ks = (ksx,ksy,ksz) is the scattering wave vector, k1 is the wave number of
the incident medium (above the surface), k2 is the wave number of the scattering medium
(below the surface), σ is the standard deviation of the surface height and ρ is the correlation
function of the surface height. The Fqp coefficients are given in Alvarez-Perez (2001). They, in

turn, depend on some coefficients named as Ci(�ki,�ks,�l(r)
m ); i = 1, . . . ,4, where�l(r)

m represents the
effective interaction vector of a second-order scattering event, with r representing its upwards
(+1) or downwards (-1) character and m the medium through which the second-order interac-

tion takes place. For the first-order reduction IEM2M this vector�l(r)
m reduces to a few possible

values, as explained in Alvarez-Perez (2001). These C coefficients are provided in Alvarez-
Perez (2001) in a very formal way that may pose a difficulty for those not familiar with surface
geometry. Therefore, a more user-friendly version is given in Appendix A at the end of this
chapter. Also some remarks on its implementation by other authors are given.

3. IE2M Scattering Coefficient for Topographical Surfaces

3.1 Average Coherent Power
The average coherent power density over an ensemble of statistically equivalent surfaces is
the modulus of the Poynting vector for the coherently scattered field

Sc
qp =

1
2

Re{1/η1}
〈
�Es

qp
〉〈

�Es∗
qp

〉
(6)

where η1 is the impedance of the incident medium. It is common to assume far-zone fields to
have a plane wave front. Although this is a valid approximation for incoherent scattering, it
is now more convenient to replace the usual approximation
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e j r′2
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in the derivation of the Stratton-Chu-Silver integral. The reason to include the second order
term in r′2 in the phase of the spherical wave function is the higher sensitivity of a coherent
interference to the wave front shape. Likewise, it is appropriate to assume a spherical incident
front from the source of the incident field

e jk1|�rs−�r ′ |

|�rs −�r ′ | � e jk1rs

rs
e−jk1 r̂s ·�r ′

e j r′2
2rs (9)

where�rs is the position vector of the source. We will assume that the incident field is Gaussian
modulated along the direction given by�rs, according to the window

wG(x,y) = e−g2
0(x2 cos2 θ+y2)

g0 =
1

rsβ0
(10)

clusion of this second or complementary term coming from a second iteration bridges the gap
between SPM and KA since it includes the local effects due to these neighbouring points to
the extent which is necessary to meet the SPM limit. Second order effects describe the inter-
action of points on the surface, considered in pairs, just like third order effects would include
interactions among sets of points taken in triads. This second-order contribution happens to
contribute to the first-order, KA term with a non-zero addend when the limit of two points
approaching to each other is taken. Even if full detail of IEM2M is given in Alvarez-Perez
(2001), we summarize here the results regarding the complete first-order model that includes
the KA term plus aforementioned correction coming from the limit of the second-order where
pairs of point approach to one another. Unlike in Alvarez-Perez (2001), this first-order IEM2M
is spelled out in a completely explicit form that easies its direct implementation in a computer
code. Thus, we have for the first-order scattering coefficient the following formula, which
contains new terms over the KA owing to the limit phenomena explained above
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Sc
qp =

1
2

Re{1/η1}
〈
�Es

qp
〉〈

�Es∗
qp

〉
(6)

where η1 is the impedance of the incident medium. It is common to assume far-zone fields to
have a plane wave front. Although this is a valid approximation for incoherent scattering, it
is now more convenient to replace the usual approximation

e jk1|�r−�r ′ |

|�r −�r ′ | � e jk1r

r
e−jk1 r̂·�r ′

(7)

by
e jk1|�r−�r ′ |

|�r −�r ′ | � e jk1r

r
e−jk1 r̂·�r ′

e j r′2
2r (8)

in the derivation of the Stratton-Chu-Silver integral. The reason to include the second order
term in r′2 in the phase of the spherical wave function is the higher sensitivity of a coherent
interference to the wave front shape. Likewise, it is appropriate to assume a spherical incident
front from the source of the incident field

e jk1|�rs−�r ′ |

|�rs −�r ′ | � e jk1rs

rs
e−jk1 r̂s ·�r ′

e j r′2
2rs (9)

where�rs is the position vector of the source. We will assume that the incident field is Gaussian
modulated along the direction given by�rs, according to the window

wG(x,y) = e−g2
0(x2 cos2 θ+y2)

g0 =
1

rsβ0
(10)

clusion of this second or complementary term coming from a second iteration bridges the gap
between SPM and KA since it includes the local effects due to these neighbouring points to
the extent which is necessary to meet the SPM limit. Second order effects describe the inter-
action of points on the surface, considered in pairs, just like third order effects would include
interactions among sets of points taken in triads. This second-order contribution happens to
contribute to the first-order, KA term with a non-zero addend when the limit of two points
approaching to each other is taken. Even if full detail of IEM2M is given in Alvarez-Perez
(2001), we summarize here the results regarding the complete first-order model that includes
the KA term plus aforementioned correction coming from the limit of the second-order where
pairs of point approach to one another. Unlike in Alvarez-Perez (2001), this first-order IEM2M
is spelled out in a completely explicit form that easies its direct implementation in a computer
code. Thus, we have for the first-order scattering coefficient the following formula, which
contains new terms over the KA owing to the limit phenomena explained above

σo
qp =

1
2

k2
1 e−σ2(ksz−kz)2

×
∞

∑
n=1

σ2n

n!

∣∣∣I(n)
qp

∣∣∣
2

W(n)
1 (ksx − kx,ksy − ky) (1)

where

I(n)
qp = (ksz − kz)n fqp +

1
4
[i1 + i2 + i1′ + i2′ + i3′ + i4′ ] (2)

with

i1 = (ksz + kz)n−1 F1
qp(kx,ky,−kz) e−σ2(ksz+kz)2

i2 = [−(ksz + kz)]n−1 F1
qp(ksx,ksy,−ksz) e−σ2(ksz+kz)2

i1′ = (ksz − k(2)
z )n−1 F2

qp(kx,ky,k(2)
z )

× e−σ2[k(2)2
z −(ksz+kz)k(2)

z ] e−σ2kszkz

i2′ = (ksz + k(2)
z )n−1 F2

qp(kx,ky,−k(2)
z )

× e−σ2[k(2)2
z +(ksz+kz)k(2)

z ] e−σ2kszkz

i3′ = (k(2)
sz − kz)n−1 F2
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× e−σ2[k(2)2
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sz ] e−σ2kszkz
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sz )

× e−σ2[k(2)2
sz +(ksz+kz)k(2)

sz ] e−σ2kszkz (3)

and

W(n)
1 (ksx − kx,ksy − ky) =

1
2π

∫
dξ dη ρn(ξ,η) e−j[(ksx−kx)ξ+(ksy−ky)η] (4)

k(2)
z = (k2

2 − k2
x − k2

y)
1/2

k(2)
sz = (k2

2 − k2
sx − k2

sy)
1/2 (5)
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3.2 Average Incoherent Power
The average incoherent power density over an ensemble of statistically equivalent surfaces is
the modulus of the Poynting vector for the diffuse field

Sd
qp =

1
2

Re{1/η}
(〈

�Es
qp �Es∗

qp
〉
−

〈
�Es

qp
〉〈

�Es∗
qp

〉)
(18)

where Re{1/η1} is the real part of the inverse of the magnetic permeability in the incidence
medium and ∗ is the symbol for complex conjugate. Separating the scattered field into the
Kirchhoff and complementary terms, we obtain

Sd
qp =

1
2

Re{1/η}
{〈

Es k
qpEs k∗

qp
〉
−

〈
Es k

qp
〉〈

Es k∗
qp

〉

+ 2Re
{〈

Es c
qpEs k∗

qp
〉
−

〈
Es c

qp
〉〈

Es k∗
qp

〉}

+
〈

Es c
qpEs c∗

qp
〉
−

〈
Es c

qp
〉〈

Es c∗
qp

〉}
(19)

The analysis of (19) will be carried out by considering separately three terms, namely, the
Kirchhoff term, the complementary term and the “interference” term between both, which
will be named the cross term.
To perform the averages in (19), we need to know the statistics of the ensemble of surfaces.
We select the ensemble of surfaces such that it follows a joint Gaussian distribution with a
constant variance across the surface. This assumption greatly simplifies the computation of
the averaging. However, the random surfaces included in the aforementioned ensemble will
be allowed to have nonzero means at each point.

3.2.1 Kirchhoff Incoherent Power
Once the shadowing effects are included, the Kirchhoff diffuse power density can be written
as

Sdk
qp =

1
2

Re{1/η1}
{〈

Es k
qpEs k∗

qp
〉
−

〈
Es k

qp
〉〈

Es k∗
qp

〉}

=

∣∣K Eo f̂qp
∣∣2

2
Re{1/η1}

(〈∫

S
e−j(k̂s−k̂i)·(�r ′−�r ′′) dx′dy′dx′′dy′′

〉

−
∣∣∣
〈∫

S
e−j(k̂s−k̂i)·�r ′

dx′dy′
〉∣∣∣

2
)

(20)

The averages in (20) are readily evaluated

〈
e−jpzz′〉 = e−jpz z̄(x′ ,y′) e−p2

z(σ2/2) (21a)
〈
e−jpz(z′−z′′)〉 = e−jpz(z̄(x′ ,y′)−z̄(x′′ ,y′′)) e−p2

z σ2[1−ρ(x′−x′′ ,y′−y′′)] (21b)

pz = ksz − kz

Substituting now (21a) and (21b) into (20) and using the integration variables ξ = x′ − x′′ and
η = y′ − y′′ instead of x′ and y′′, we have

Sdk
qp =

∣∣K Eo f̂qp
∣∣2

2
Re{1/η1} e−p2

z σ2
∫∫

dξdη (e p2
z σ2ρ(ξ,η) − 1) D1(ξ,η; pz) e−j(pxξ+pyη) (22)

where β0 is the one-sided beamwidth of the transmitter. By placing the origin of coordinates
on the plane to which the average rough surface belongs but far from the illuminated area, the
following approximation can be made both in (8) and (9)

r′2 = x′2 + y′2 + h′2(x′,y′) � x′2 + y′2 (11)

With the inclusion of these changes plus the introduction of a shadowing function (see next
section) and assuming rs = r, the Kirchhoff far-zone scattered field can be written as

(Es
qp)k =

jk1Eo

4π

e jk1r

r2

∫

S
f̂qp ej k1(x′2+y′2)

2r e−g2
0(x′2 cos2 θ+y′2) e−j[(�ks−�ki)·�r ′ ] dx′dy′ (12)

where we have “dressed” the factor fqp to include the shadowing function

f̂qp = S(k̂i, k̂s) fqp (13)

Then, the coherently scattered power takes the form

Sc
qp =

1
2

Re{1/η1}
(

k1Eo f̂qp
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∣∣∣∣
∫
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∣∣∣∣
2

(14)

To calculate the averages comprised in the integrand of (14), we compute

〈
e−j(ksz−kz)z′〉 = e−j(ksz−kz)z̄(x′ ,y′) e−(ksz−kz)2(σ2/2) (15)

Hence,
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1
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(

k1Eo f̂qp

πr2

)2

e−(ksz−kz)2σ2 ∣∣W0(ksx − kx,ksy − ky)
∣∣2 (16)

where

W0(ksx − kx,ksy − ky)

=
∫

e−j2[(ksx−kx)x′+(ksy−ky)y′ ] e x′2(jk1/2r−g2
0 cos2 θ)+y′2(jk1/2r−g2

0)

e−j(ksz−kz)z̄(x′ ,y′) dx′ dy′ (17)

Integral W0 has the shape of a Gabor transform, that is, of a Fourier transform with a Gaussian
window included in the integrand.
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3.2 Average Incoherent Power
The average incoherent power density over an ensemble of statistically equivalent surfaces is
the modulus of the Poynting vector for the diffuse field
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qp
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where Re{1/η1} is the real part of the inverse of the magnetic permeability in the incidence
medium and ∗ is the symbol for complex conjugate. Separating the scattered field into the
Kirchhoff and complementary terms, we obtain
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The analysis of (19) will be carried out by considering separately three terms, namely, the
Kirchhoff term, the complementary term and the “interference” term between both, which
will be named the cross term.
To perform the averages in (19), we need to know the statistics of the ensemble of surfaces.
We select the ensemble of surfaces such that it follows a joint Gaussian distribution with a
constant variance across the surface. This assumption greatly simplifies the computation of
the averaging. However, the random surfaces included in the aforementioned ensemble will
be allowed to have nonzero means at each point.

3.2.1 Kirchhoff Incoherent Power
Once the shadowing effects are included, the Kirchhoff diffuse power density can be written
as
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The averages in (20) are readily evaluated

〈
e−jpzz′〉 = e−jpz z̄(x′ ,y′) e−p2

z(σ2/2) (21a)
〈
e−jpz(z′−z′′)〉 = e−jpz(z̄(x′ ,y′)−z̄(x′′ ,y′′)) e−p2

z σ2[1−ρ(x′−x′′ ,y′−y′′)] (21b)

pz = ksz − kz

Substituting now (21a) and (21b) into (20) and using the integration variables ξ = x′ − x′′ and
η = y′ − y′′ instead of x′ and y′′, we have
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z σ2
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dξdη (e p2
z σ2ρ(ξ,η) − 1) D1(ξ,η; pz) e−j(pxξ+pyη) (22)

where β0 is the one-sided beamwidth of the transmitter. By placing the origin of coordinates
on the plane to which the average rough surface belongs but far from the illuminated area, the
following approximation can be made both in (8) and (9)

r′2 = x′2 + y′2 + h′2(x′,y′) � x′2 + y′2 (11)

With the inclusion of these changes plus the introduction of a shadowing function (see next
section) and assuming rs = r, the Kirchhoff far-zone scattered field can be written as

(Es
qp)k =

jk1Eo

4π

e jk1r

r2

∫

S
f̂qp ej k1(x′2+y′2)

2r e−g2
0(x′2 cos2 θ+y′2) e−j[(�ks−�ki)·�r ′ ] dx′dy′ (12)

where we have “dressed” the factor fqp to include the shadowing function

f̂qp = S(k̂i, k̂s) fqp (13)

Then, the coherently scattered power takes the form
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To calculate the averages comprised in the integrand of (14), we compute

〈
e−j(ksz−kz)z′〉 = e−j(ksz−kz)z̄(x′ ,y′) e−(ksz−kz)2(σ2/2) (15)

Hence,
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where
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=
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0 cos2 θ)+y′2(jk1/2r−g2

0)
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Integral W0 has the shape of a Gabor transform, that is, of a Fourier transform with a Gaussian
window included in the integrand.
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This symmetry permits the calculation of (24) by using

〈
ψ(qm)

〉
=

1
2

(〈
ψ(qm)

〉
+

〈
ψ(−qm)

〉)

where ψ is any of the functions in (24) to be averaged. Thus, there are two averages to be
computed, namely,

〈
e−jksz(z′−z′′′)e jkz(z′′−z′′′) F̂m

qp(�k
i,�ks,�gm) e jqm |z′−z′′ |

〉

=
〈

e−jksz(z′−z′′′)e jkz(z′′−z′′′) 1
2

[
F̂m

qp(�k
i,�ks,u,v,Φz′z′′ qm) e jqm |z′−z′′ |

+ F̂m
qp(�k

i,�ks,u,v,−Φz′z′′ qm) e−jqm |z′−z′′ |
]〉

(29)

and
〈

e−jkszz′ e jkzz′′ F̂m
qp(�k

i,�ks,�gm) e jqm |z′−z′′ |
〉

=
〈

e−jkszz′ e jkzz′′ 1
2

[
F̂m

qp(�k
i,�ks,u,v,Φz′z′′ qm) e jqm |z′−z′′ |

+ F̂m
qp(�k

i,�ks,u,v,−Φz′z′′ qm) e−jqm |z′−z′′ |
]〉

(30)

There are two types of addends in these averages: terms dependent on Φz′z′′′ qm and terms
dependent on q2

m or completely independent of qm. Only the former are functions of the space
coordinates through Φz′z′′ . Therefore, we have to compute the following quantities

〈
e−j[ksz(z′−z′′′)−kz(z′′−z′′′)] e jqm |z′−z′′ |〉

=
〈
e−j[ksz(z′−z′′′)−kz(z′′−z′′′)] cos(qm|z′ − z′′ |)

〉

=
1
2

(〈
e−j[ksz(z′−z′′′)−kz(z′′−z′′′)] e jqm(z′−z′′)〉

+
〈
e−j[ksz(z′−z′′′)−kz(z′′−z′′′)] e−jqm(z′−z′′)〉) (31a)

and similarly

〈
e−j(kszz′−kzz′′) e jqm |z′−z′′ |〉 =

1
2

(〈
e−j(kszz′−kzz′′) e jqm(z′−z′′)〉

+
〈
e−j(kszz′−kzz′′) e−jqm(z′−z′′)〉) (31b)

〈
e−j[ksz(z′−z′′′)−kz(z′′−z′′′)] e jqm |z′−z′′ | Φz′z′′ qm

〉

=
qm

2

(〈
e−j[ksz(z′−z′′′)−kz(z′′−z′′′)] e jqm(z′−z′′)〉

−
〈
e−j[ksz(z′−z′′′)−kz(z′′−z′′′)] e−jqm(z′−z′′)〉)

(31c)

where px = ksx − kx, py = ksy − ky and D1(ξ,η; pz) is

D1(ξ,η; pz) =
∫∫

dx′′dy′′e−jpz [z̄(x′′+ξ,y′′+η)−z̄(x′′ ,y′′)] (23)

and represents the autocorrelation of the phase e−jpz z̄(x′′ ,y′′) over the surface.

3.2.2 Cross Incoherent Power
The incoherently scattered power for the cross term is given by

Sdkc
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e j[u(x′−x′′)+v(y′−y′′)] e−j[ksx(x′−x′′′)+ksy(y′−y′′′)] e j[kx(x′′−x′′′)+ky(y′′−y′′′)]

·
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e−jksz(z′−z′′′)e jkz(z′′−z′′′)e jqm |z′−z′′ | F̂m
qp(�k

i,�ks,�gm)
〉

−
〈

e−jkszz′ e jkzz′′ e jqm |z′−z′′ | F̂m
qp(�k

i,�ks,�gm)
〉

·
〈

e j(ksz−kz)z′′′
〉]}

(24)

where factors Fm
qp have been “dressed” to include the shadowing function

F̂m
qp(�k

i,�ks,�gm) = Sm(�ki,�gm,�ks) Fm
qp(�k

i,�ks,�gm) (25)

On the other hand, factors F̂m
qp have been included within the averages since they depend

on (z′ − z′′)/|z′ − z′′ |. To compute these averages we will make use of the invariance of the
formalism under the change

Gm(�r ′,�r ′′) = Gretarded
m (�r ′,�r ′′) −→ G∗

m(�r ′,�r ′′) = Gadvanced
m (�r ′,�r ′′) (26)

The Weyl representation of the retarded Green’s function is given by

Gretarded
m (�r ′,�r ′′) =

j
2π

∫∫

R2
e j[u(x′−x′′)+v(y′−y′′)] e−j qm |z′−z′′ |

qm
du dv

qm =

{
(k2

m − u2 − v2)1/2 if k2
m ≥ u2 + v2

−j (u2 + v2 − k2
m)1/2 if k2

m ≤ u2 + v2 (27)

Therefore, the invariance under the change (26) is equivalent to

qm −→
{

−qm if qm ∈ R

qm if qm ∈ I
(28)

or, more formally, qm → −q∗m. However, the damped cylindrical waves given by imaginary
values of qm have been neglected and therefore the invariance holds under the transformation

qm →−qm
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dependent on q2
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coordinates through Φz′z′′ . Therefore, we have to compute the following quantities
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−
〈
e−j[ksz(z′−z′′′)−kz(z′′−z′′′)] e−jqm(z′−z′′)〉)

(31c)

where px = ksx − kx, py = ksy − ky and D1(ξ,η; pz) is

D1(ξ,η; pz) =
∫∫

dx′′dy′′e−jpz [z̄(x′′+ξ,y′′+η)−z̄(x′′ ,y′′)] (23)

and represents the autocorrelation of the phase e−jpz z̄(x′′ ,y′′) over the surface.

3.2.2 Cross Incoherent Power
The incoherently scattered power for the cross term is given by

Sdkc
qp = Re{1/η1}Re

{〈
Es c

qpEs k∗
qp

〉
−

〈
Es c

qp
〉〈

Es k∗
qp

〉}

=

∣∣KEo
∣∣2

8π2 Re{1/η1} ∑
m=1,2

Re
{

f̂ ∗qp

∫

R2
du dv

∫

S3
dx′dy′dx′′dy′′dx′′′dy′′′

e j[u(x′−x′′)+v(y′−y′′)] e−j[ksx(x′−x′′′)+ksy(y′−y′′′)] e j[kx(x′′−x′′′)+ky(y′′−y′′′)]

·
[〈

e−jksz(z′−z′′′)e jkz(z′′−z′′′)e jqm |z′−z′′ | F̂m
qp(�k

i,�ks,�gm)
〉

−
〈

e−jkszz′ e jkzz′′ e jqm |z′−z′′ | F̂m
qp(�k

i,�ks,�gm)
〉

·
〈

e j(ksz−kz)z′′′
〉]}

(24)

where factors Fm
qp have been “dressed” to include the shadowing function

F̂m
qp(�k

i,�ks,�gm) = Sm(�ki,�gm,�ks) Fm
qp(�k

i,�ks,�gm) (25)

On the other hand, factors F̂m
qp have been included within the averages since they depend

on (z′ − z′′)/|z′ − z′′ |. To compute these averages we will make use of the invariance of the
formalism under the change

Gm(�r ′,�r ′′) = Gretarded
m (�r ′,�r ′′) −→ G∗

m(�r ′,�r ′′) = Gadvanced
m (�r ′,�r ′′) (26)

The Weyl representation of the retarded Green’s function is given by

Gretarded
m (�r ′,�r ′′) =

j
2π

∫∫

R2
e j[u(x′−x′′)+v(y′−y′′)] e−j qm |z′−z′′ |

qm
du dv

qm =

{
(k2

m − u2 − v2)1/2 if k2
m ≥ u2 + v2

−j (u2 + v2 − k2
m)1/2 if k2

m ≤ u2 + v2 (27)

Therefore, the invariance under the change (26) is equivalent to

qm −→
{

−qm if qm ∈ R

qm if qm ∈ I
(28)

or, more formally, qm → −q∗m. However, the damped cylindrical waves given by imaginary
values of qm have been neglected and therefore the invariance holds under the transformation

qm →−qm
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y′′′, ξ ′ = x′′ − x′′′ and η′ = y′′ − y′′′, we can rewrite (24) as follows

Sdkc
qp =

∣∣KEo
∣∣2

16π2 Re{1/η1} ∑
m=1,2

∑
r=−1,1

Re
{

f̂ ∗qp

∫

R2
du dv

∫
dξ dη dξ ′dη′

· e j[u(ξ−ξ ′)+v(η−η′)] e−j[ksxξ+ksyη] e j[kxξ ′+kyη′ ]

· D2(ξ,η,ξ ′,η′;ksz,kz,r qm)F̂m
qp(�k

i,�ks,�lr
m)

· e−σ2[k2
sz+k2

z+q2
m−(ksz+kz)r qm−kszkz−(ksz−r qm)(kz−r qm)ρ12]

·
(

e−σ2[(ksz−r qm)(kz−ksz)ρ13−(kz−r qm)(kz−ksz)ρ23] − 1
)}

(35)

with
D2(ξ,η,ξ ′,η′;ksz,kz,r qm) =

∫
dx′′′dy′′′ e−j[(ksz−r qm)z̄′−(kz−r qm)z̄′′−(ksz−kz)z̄′′′ ] (36)

and

z′ = z(x′′′ + ξ,y′′′ + η) ρ12 = ρ(ξ − ξ ′,η − η′)

z′′ = z(x′′′ + ξ ′,y′′′ + η′) ρ13 = ρ(ξ,η)

z′′′ = z(x′′′,y′′′) ρ23 = ρ(ξ ′,η′)

3.2.3 Complementary Incoherent Power
Finally, the diffuse scattered power for the complementary term is

Sdc
qp =

1
2

Re{1/η1}
{〈

Es c
qpEs c∗

qp
〉
−

〈
Es c

qp
〉〈

Es c∗
qp

〉}

=
|KEo|2
27π4 Re{1/η1} ∑

m,n=1,2

{∫

R4
du dv du′ dv′

∫

S4
dx′dy′dx′′dy′′dx′′′dy′′′dx′νdy′ν

· e j[u(x′−x′′)−u′(x′′′−x′ν)+v(y′−y′′)−v′(y′′′−y′ν)] e−j[ksx(x′−x′′′)+ksy(y′−y′′′)]

· e j[kx(x′′−x′ν)+ky(y′′−y′ν)]
[〈

e−jksz(z′−z′′′) e jkz(z′′−z′ν) e jqm |z′−z′′ |

· e−jq′n |z′′′−z′ν | F̂m
qp(�k

i,�ks,�gm) F̂n∗
qp (�ki,�ks,�g ′

n)
〉

−
〈

e−j(kszz′+kzz′′) e jqm |z′−z′′ | F̂m
qp(�k

i,�ks,�gm)
〉

〈
e j(kszz′′′−kzz′ν)e−jq′n |z′′′−z′ν | F̂n∗

qp (�ki,�ks,�g ′
n)

〉]}

(37)

Applying the same arguments used to calculate the averages relevant for the cross term power,
we obtain the following relations

〈
e−jksz(z′−z′′′) e jkz(z′′−z′ν) e jqm |z′−z′′ | e−jq′n |z′′′−z′ν |(Φz′z′′ qm)α(Φz′′′z′ν q′n)β

〉

=
qα

mqβ
n

4

(
e j�1 e−σ�1 + (−1)αe j�2 e−σ�2 + (−1)βe j�3 e−σ�3 + (−1)α+βe j�4 e−σ�4

)
(38)

〈
e−j(kszz′−kzz′′) e jqm |z′−z′′ | Φz′z′′ qm

〉
=

〈
e−j(kszz′−kzz′′) Φz′z′′ jqm sin(qm|z′ − z′′ |)

〉

−
〈
e−j(kszz′−kzz′′) e−jqm(z′−z′′)〉)

(31d)

Hence, we compute again the averages

〈
e−j[ksz(z′−z′′′)−kz(z′′−z′′′)] e jqm |z′−z′′ |〉 =

1
2

(
e jw1 e−σ2

w1 + e jw2 e−σ2
w2

)
(32a)

〈
e−j(kszz′−kzz′′) e jqm |z′−z′′ |〉 =

1
2

(
e jw3 e−σ2

w3 + e jw4 e−σ2
w4

)
(32b)

〈
e−j[ksz(z′−z′′′)−kz(z′′−z′′′)] e jqm |z′−z′′ | Φz′z′′ qm

〉
=

qm

2

(
e jw1 e−σ2

w1 − e jw2 e−σ2
w2

)
(32c)

〈
e−j(kszz′−kzz′′) e jqm |z′−z′′ | Φz′z′′ qm

〉
=

qm

2

(
e jw3 e−σ2

w3 − e jw4 e−σ2
w4

)
(32d)

where

w1 = ω1(ksz,kz,qm)
w2 = ω1(ksz,kz,−qm)
w3 = ω2(ksz,kz,qm)
w4 = ω2(ksz,kz,−qm)

ω1(ksz,kz,qm) = −(ksz − qm)z̄ ′ + (kz − qm)z̄ ′′ + (ksz − kz)z̄ ′′′

ω2(ksz,kz,qm) = −(ksz − qm)z̄ ′ + (kz − qm)z̄ ′′ (33)

and

σw1 = σω1 (ksz,kz,qm)
σw2 = σω1 (ksz,kz,−qm)
σw3 = σω2 (ksz,kz,qm)
σw4 = σω2 (ksz,kz,−qm)
σω1 (ksz,kz,qm)= σ[k2

sz + k2
z + q2

m − (ksz + kz)qm − kzksz

−(ksz − qm)(kz − qm)ρ(z′,z′′)
+(ksz − qm)(kz − ksz)ρ(z′,z′′′)
−(kz − qm)(kz − ksz)ρ(z′′,z′′′)]

σω2 (ksz,kz,qm)= σ[k2
sz + k2

z + 2q2
m − 2(ksz + kz)qm

−2(ksz − qm)(kz − qm)ρ(z′,z′′)]/2 (34)

Putting all these results together and defining new spatial coordinates ξ = x′ − x′′′, η = y′ −
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y′′′, ξ ′ = x′′ − x′′′ and η′ = y′′ − y′′′, we can rewrite (24) as follows

Sdkc
qp =

∣∣KEo
∣∣2

16π2 Re{1/η1} ∑
m=1,2

∑
r=−1,1

Re
{

f̂ ∗qp

∫

R2
du dv

∫
dξ dη dξ ′dη′

· e j[u(ξ−ξ ′)+v(η−η′)] e−j[ksxξ+ksyη] e j[kxξ ′+kyη′ ]

· D2(ξ,η,ξ ′,η′;ksz,kz,r qm)F̂m
qp(�k

i,�ks,�lr
m)

· e−σ2[k2
sz+k2

z+q2
m−(ksz+kz)r qm−kszkz−(ksz−r qm)(kz−r qm)ρ12]

·
(

e−σ2[(ksz−r qm)(kz−ksz)ρ13−(kz−r qm)(kz−ksz)ρ23] − 1
)}

(35)

with
D2(ξ,η,ξ ′,η′;ksz,kz,r qm) =

∫
dx′′′dy′′′ e−j[(ksz−r qm)z̄′−(kz−r qm)z̄′′−(ksz−kz)z̄′′′ ] (36)

and

z′ = z(x′′′ + ξ,y′′′ + η) ρ12 = ρ(ξ − ξ ′,η − η′)

z′′ = z(x′′′ + ξ ′,y′′′ + η′) ρ13 = ρ(ξ,η)

z′′′ = z(x′′′,y′′′) ρ23 = ρ(ξ ′,η′)

3.2.3 Complementary Incoherent Power
Finally, the diffuse scattered power for the complementary term is

Sdc
qp =

1
2

Re{1/η1}
{〈

Es c
qpEs c∗

qp
〉
−

〈
Es c

qp
〉〈

Es c∗
qp

〉}

=
|KEo|2
27π4 Re{1/η1} ∑

m,n=1,2

{∫

R4
du dv du′ dv′

∫

S4
dx′dy′dx′′dy′′dx′′′dy′′′dx′νdy′ν

· e j[u(x′−x′′)−u′(x′′′−x′ν)+v(y′−y′′)−v′(y′′′−y′ν)] e−j[ksx(x′−x′′′)+ksy(y′−y′′′)]

· e j[kx(x′′−x′ν)+ky(y′′−y′ν)]
[〈

e−jksz(z′−z′′′) e jkz(z′′−z′ν) e jqm |z′−z′′ |

· e−jq′n |z′′′−z′ν | F̂m
qp(�k

i,�ks,�gm) F̂n∗
qp (�ki,�ks,�g ′

n)
〉

−
〈

e−j(kszz′+kzz′′) e jqm |z′−z′′ | F̂m
qp(�k

i,�ks,�gm)
〉

〈
e j(kszz′′′−kzz′ν)e−jq′n |z′′′−z′ν | F̂n∗

qp (�ki,�ks,�g ′
n)

〉]}

(37)

Applying the same arguments used to calculate the averages relevant for the cross term power,
we obtain the following relations

〈
e−jksz(z′−z′′′) e jkz(z′′−z′ν) e jqm |z′−z′′ | e−jq′n |z′′′−z′ν |(Φz′z′′ qm)α(Φz′′′z′ν q′n)β

〉

=
qα

mqβ
n

4

(
e j�1 e−σ�1 + (−1)αe j�2 e−σ�2 + (−1)βe j�3 e−σ�3 + (−1)α+βe j�4 e−σ�4

)
(38)

〈
e−j(kszz′−kzz′′) e jqm |z′−z′′ | Φz′z′′ qm

〉
=

〈
e−j(kszz′−kzz′′) Φz′z′′ jqm sin(qm|z′ − z′′ |)

〉

−
〈
e−j(kszz′−kzz′′) e−jqm(z′−z′′)〉)

(31d)

Hence, we compute again the averages

〈
e−j[ksz(z′−z′′′)−kz(z′′−z′′′)] e jqm |z′−z′′ |〉 =

1
2

(
e jw1 e−σ2

w1 + e jw2 e−σ2
w2

)
(32a)

〈
e−j(kszz′−kzz′′) e jqm |z′−z′′ |〉 =

1
2

(
e jw3 e−σ2

w3 + e jw4 e−σ2
w4

)
(32b)

〈
e−j[ksz(z′−z′′′)−kz(z′′−z′′′)] e jqm |z′−z′′ | Φz′z′′ qm

〉
=

qm

2

(
e jw1 e−σ2

w1 − e jw2 e−σ2
w2

)
(32c)

〈
e−j(kszz′−kzz′′) e jqm |z′−z′′ | Φz′z′′ qm

〉
=

qm

2

(
e jw3 e−σ2

w3 − e jw4 e−σ2
w4

)
(32d)

where

w1 = ω1(ksz,kz,qm)
w2 = ω1(ksz,kz,−qm)
w3 = ω2(ksz,kz,qm)
w4 = ω2(ksz,kz,−qm)

ω1(ksz,kz,qm) = −(ksz − qm)z̄ ′ + (kz − qm)z̄ ′′ + (ksz − kz)z̄ ′′′

ω2(ksz,kz,qm) = −(ksz − qm)z̄ ′ + (kz − qm)z̄ ′′ (33)

and

σw1 = σω1 (ksz,kz,qm)
σw2 = σω1 (ksz,kz,−qm)
σw3 = σω2 (ksz,kz,qm)
σw4 = σω2 (ksz,kz,−qm)
σω1 (ksz,kz,qm)= σ[k2

sz + k2
z + q2

m − (ksz + kz)qm − kzksz

−(ksz − qm)(kz − qm)ρ(z′,z′′)
+(ksz − qm)(kz − ksz)ρ(z′,z′′′)
−(kz − qm)(kz − ksz)ρ(z′′,z′′′)]

σω2 (ksz,kz,qm)= σ[k2
sz + k2

z + 2q2
m − 2(ksz + kz)qm

−2(ksz − qm)(kz − qm)ρ(z′,z′′)]/2 (34)

Putting all these results together and defining new spatial coordinates ξ = x′ − x′′′, η = y′ −
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and

z′ = z(x′ν + ξ + τ,y′ν + η + κ) ρ12 = ρ(ξ + τ − ξ ′,η + κ − η′)

z′′ = z(x′ν + ξ ′,y′ν + η′) ρ13 = ρ(ξ,η)

z′′′ = z(x′ν + τ,y′ν + κ) ρ14 = ρ(ξ + τ,η + κ)

z′ν = z(x′ν,y′ν) ρ23 = ρ(ξ ′ − τ,η′ − κ)

ρ24 = ρ(ξ ′,η′)
ρ34 = ρ(τ,κ)

3.3 Bistatic Scattering Coefficient for the Scattered Field
The radar cross section of a particle producing isotropic scattering is defined as the ratio be-
tween the scattered and incident power densities, Sscat and Sinc multiplied by the area of the
spherical surface centred at the particle and with a radius R equal to the distance between the
particle and the observation point

σ ≡ 4πR2 Sscat

Sinc (43)

Next, we define the radar scattering cross section of a finite scatterer in a given direction as the
cross section of a particle which would scatter isotropically the same power density in any
direction, should it be illuminated by the same incident power density.
For the case of a scattering surface, it is adequate to define the differential scattering coefficient
as the average value of the scattering cross section per unit area, namely,

σo ≡ 4πR2 Sscat

ASinc (44)

where A denotes the area of the surface. Usually, the term “radar scattering cross section” is
shortened to “radar cross section”, whereas “differential scattering coefficient” is referred to
as “scattering coefficient”.
Both radar cross section and scattering coefficient can be either monostatic or bistatic, when
the observation point is located at the site from where the incident field is transmitted or
elsewhere, respectively. Thus, the bistatic scattering coefficient associated to the coherent and
diffuse fields scattered by a random rough surface are given by

(σo)c
qp =

8πR2

ARe{1/η1}E2
o

Sc
qp (45a)

(σo)d
qp =

8πR2

ARe{1/η1}E2
o

(
Sdk

qp + Sdkc
qp + Sdc

qp
)

(45b)

where the power densities Sc
qp, Sdk

qp, Sdkc
qp and Sdc

qp have been calculated in previous sections.

4. Formulation of the IEM2M Model for Topographical Surfaces

The scattering coefficient in (45) is described in terms of the integrals included in Sc
qp, Sdk

qp,
Sdkc

qp and Sdc
qp. The coherently scattered power calculated in (3.1) is the final form proposed

here. However, the integrals corresponding to the diffuse power can be manipulated further.
A distinction is drawn then between surfaces with small or moderate rms height normalized

where α, β = 0,1 and the other coefficients are compactly given by

�1 = π(ksz,kz,qm,q′n)

�2 = π(ksz,kz,−qm,q′n)

�3 = π(ksz,kz,qm,−q′n)

�4 = π(ksz,kz,−qm,−q′n)

σ�1 = σπ(ksz,kz,qm,q′n)

σ�2 = σπ(ksz,kz,−qm,q′n)

σ�3 = σπ(ksz,kz,qm,−q′n)

σ�4 = σπ(ksz,kz,−qm,−q′n) (39)

by including the general functions π and σπ in the form

π(ksz,kz,qm,q′n) = −(ksz − qm)z̄′ + (kz − qm)z̄′′ + (ksz − q′n)z̄′′′ − (kz − q′n)z̄′ν

σπ(ksz,kz,qm,q′n) = σ2[k2
sz + k2

z + q2
m + q′2n − (ksz + kz)(qm + q′n)

− (ksz − qm)(kz − qm)ρ(z′,z′′) − (ksz − qm)(ksz − q′n)ρ(z′,z′′′)

+ (ksz − qm)(kz − q′n)ρ(z′,z′ν) + (kz − qm)(ksz − q′n)ρ(z′′,z′′′)

− (kz − qm)(kz − q′n)ρ(z′′,z′ν) − (ksz − q′n)(kz − q′n)ρ(z′′′,z′ν)] (40)

Upon substituting (38) into (37) we find that

Sdc
qp =

|KEo|2
29π4 Re{1/η1} ∑

m,n=1,2
∑

r,r′=−1,1

{∫

R4
du dv du′ dv′

∫
dξ dη dξ ′dη′dτ dκ

e j[u(ξ+τ−ξ ′)−u′τ+v(η+κ−η′)−v′κ] e−j(ksxξ+ksyη) e j(kxξ ′+kyη′)

D3(ξ,η,ξ ′,η′,τ,κ;ksz,kz,rqm,r′q′n)

F̂m
qp(�k

i,�ks,�lr
m)F̂n∗

qp (�ki,�ks,�l ′ r
′

n )

e−σ2[k2
sz+k2

z+q2
m+q′2n −(ksz+kz)(r qm+r′ q′n)]

e−σ2[(ksz−r qm)(r qm−kz)ρ12+(ksz−r′ q′n)(r′ q′n−kz)ρ34]

(
e−σ2[(ksz−r qm)(r′ q′n−ksz)ρ13+(ksz−r qm)(kz−r′ q′n)ρ14]

e−σ2[(kz−r qm)(ksz−r′ q′n)ρ23+(kz−r qm)(r′ q′n−kz)ρ24] − 1
)}

(41)

where ξ = x′ − x′′′, η = y′ − y′′′, ξ ′ = x′′ − x′ν, η′ = y′′ − y′ν, τ = x′′′ − x′ν and κ = y′′′ − y′ν,
the function D3

D3(ξ,η,ξ ′,η′,τ,κ;ksz,kz,rqm,r′q′n)

=
∫

dx′νdy′νe−j[(ksz−qm)z̄′−(kz−qm)z̄′′−(ksz−q′n)z̄′′′+(kz−q′n)z̄′ν ] (42)
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and

z′ = z(x′ν + ξ + τ,y′ν + η + κ) ρ12 = ρ(ξ + τ − ξ ′,η + κ − η′)

z′′ = z(x′ν + ξ ′,y′ν + η′) ρ13 = ρ(ξ,η)

z′′′ = z(x′ν + τ,y′ν + κ) ρ14 = ρ(ξ + τ,η + κ)

z′ν = z(x′ν,y′ν) ρ23 = ρ(ξ ′ − τ,η′ − κ)

ρ24 = ρ(ξ ′,η′)
ρ34 = ρ(τ,κ)

3.3 Bistatic Scattering Coefficient for the Scattered Field
The radar cross section of a particle producing isotropic scattering is defined as the ratio be-
tween the scattered and incident power densities, Sscat and Sinc multiplied by the area of the
spherical surface centred at the particle and with a radius R equal to the distance between the
particle and the observation point

σ ≡ 4πR2 Sscat

Sinc (43)

Next, we define the radar scattering cross section of a finite scatterer in a given direction as the
cross section of a particle which would scatter isotropically the same power density in any
direction, should it be illuminated by the same incident power density.
For the case of a scattering surface, it is adequate to define the differential scattering coefficient
as the average value of the scattering cross section per unit area, namely,

σo ≡ 4πR2 Sscat

ASinc (44)

where A denotes the area of the surface. Usually, the term “radar scattering cross section” is
shortened to “radar cross section”, whereas “differential scattering coefficient” is referred to
as “scattering coefficient”.
Both radar cross section and scattering coefficient can be either monostatic or bistatic, when
the observation point is located at the site from where the incident field is transmitted or
elsewhere, respectively. Thus, the bistatic scattering coefficient associated to the coherent and
diffuse fields scattered by a random rough surface are given by

(σo)c
qp =

8πR2

ARe{1/η1}E2
o

Sc
qp (45a)

(σo)d
qp =

8πR2

ARe{1/η1}E2
o

(
Sdk

qp + Sdkc
qp + Sdc

qp
)

(45b)

where the power densities Sc
qp, Sdk

qp, Sdkc
qp and Sdc

qp have been calculated in previous sections.

4. Formulation of the IEM2M Model for Topographical Surfaces

The scattering coefficient in (45) is described in terms of the integrals included in Sc
qp, Sdk

qp,
Sdkc

qp and Sdc
qp. The coherently scattered power calculated in (3.1) is the final form proposed

here. However, the integrals corresponding to the diffuse power can be manipulated further.
A distinction is drawn then between surfaces with small or moderate rms height normalized

where α, β = 0,1 and the other coefficients are compactly given by

�1 = π(ksz,kz,qm,q′n)

�2 = π(ksz,kz,−qm,q′n)

�3 = π(ksz,kz,qm,−q′n)

�4 = π(ksz,kz,−qm,−q′n)

σ�1 = σπ(ksz,kz,qm,q′n)

σ�2 = σπ(ksz,kz,−qm,q′n)

σ�3 = σπ(ksz,kz,qm,−q′n)

σ�4 = σπ(ksz,kz,−qm,−q′n) (39)

by including the general functions π and σπ in the form

π(ksz,kz,qm,q′n) = −(ksz − qm)z̄′ + (kz − qm)z̄′′ + (ksz − q′n)z̄′′′ − (kz − q′n)z̄′ν

σπ(ksz,kz,qm,q′n) = σ2[k2
sz + k2

z + q2
m + q′2n − (ksz + kz)(qm + q′n)

− (ksz − qm)(kz − qm)ρ(z′,z′′) − (ksz − qm)(ksz − q′n)ρ(z′,z′′′)

+ (ksz − qm)(kz − q′n)ρ(z′,z′ν) + (kz − qm)(ksz − q′n)ρ(z′′,z′′′)

− (kz − qm)(kz − q′n)ρ(z′′,z′ν) − (ksz − q′n)(kz − q′n)ρ(z′′′,z′ν)] (40)

Upon substituting (38) into (37) we find that

Sdc
qp =

|KEo|2
29π4 Re{1/η1} ∑

m,n=1,2
∑

r,r′=−1,1

{∫

R4
du dv du′ dv′

∫
dξ dη dξ ′dη′dτ dκ

e j[u(ξ+τ−ξ ′)−u′τ+v(η+κ−η′)−v′κ] e−j(ksxξ+ksyη) e j(kxξ ′+kyη′)

D3(ξ,η,ξ ′,η′,τ,κ;ksz,kz,rqm,r′q′n)

F̂m
qp(�k

i,�ks,�lr
m)F̂n∗

qp (�ki,�ks,�l ′ r
′

n )

e−σ2[k2
sz+k2

z+q2
m+q′2n −(ksz+kz)(r qm+r′ q′n)]

e−σ2[(ksz−r qm)(r qm−kz)ρ12+(ksz−r′ q′n)(r′ q′n−kz)ρ34]

(
e−σ2[(ksz−r qm)(r′ q′n−ksz)ρ13+(ksz−r qm)(kz−r′ q′n)ρ14]

e−σ2[(kz−r qm)(ksz−r′ q′n)ρ23+(kz−r qm)(r′ q′n−kz)ρ24] − 1
)}

(41)

where ξ = x′ − x′′′, η = y′ − y′′′, ξ ′ = x′′ − x′ν, η′ = y′′ − y′ν, τ = x′′′ − x′ν and κ = y′′′ − y′ν,
the function D3

D3(ξ,η,ξ ′,η′,τ,κ;ksz,kz,rqm,r′q′n)

=
∫

dx′νdy′νe−j[(ksz−qm)z̄′−(kz−qm)z̄′′−(ksz−q′n)z̄′′′+(kz−q′n)z̄′ν ] (42)



Geoscience and Remote Sensing508

summation in (49) can be approximated by unity for surfaces with small or moderate rms
height

eσ2[(ksz−r qm)(kz−r qm)ρ(z′ ,z′′)] � 1 (50)

and hence

eσ2[(ksz−r qm)(kz−r qm)ρ(z′ ,z′′)]
(

e−σ2[(ksz−r qm)(kz−ksz)ρ(z′ ,z′′′)]

· eσ2[(kz−r qm)(kz−ksz)ρ(z′′ ,z′′′)] − 1
)

�
∞

∑
n=1

[−σ2(ksz − r qm)(kz − ksz)ρ(z′,z′′′)]n

n!

+
∞

∑
l=1

[σ2(kz − r qm)(kz − ksz)ρ(z′′,z′′′)]l

l!

+
∞

∑
n=1

[−σ2(ksz − r qm)(kz − ksz)ρ(z′,z′′′)]n

n!

·
∞

∑
l=1

[σ2(kz − r qm)(kz − ksz)ρ(z′′,z′′′)]l

l!
(51)

This yields

(σo)dkc
qp =

k2
1

8π ∑
m=1,2

∑
r=−1,1

Re
{

f̂ ∗qpe−σ2[k2
sz+k2

z−kszkz ]

∫

R2
du dv F̂m

qp(�k
i,�ks,�lr

m) e−σ2[q2
m−(ksz+kz)r qm ]

·
[ ∞

∑
n=1

[−σ2(ksz − r qm)(kz − ksz)]n

n!
Wn,0

2 (�lr
m;�ks,�ki)

+
∞

∑
l=1

[σ2(kz − r qm)(kz − ksz)]l

l!
W0,l

2 (�lr
m;�ks,�ki)

+
∞

∑
n=1

[−σ2(ksz − r qm)(kz − ksz)]n

n!
∞

∑
l=1

[σ2(kz − r qm)(kz − ksz)]l

l!
Wn,l

2 (�lr
m;�ks,�ki)

]}
(52)

where

W(α,β)
2 (u,v,w;�ks,�ki) =

1
(2π)2 A

∫
dξ dη dξ ′dη′e j[(u−ksx)ξ+(v−ksy)η−(u−kx)ξ ′−(v−ky)η′ ]

· D2(ξ,η,ξ ′,η′,ksz,kz,w)ρα(ξ,η)ρβ(ξ ′,η′) (53)

to wave number, kσ, and surfaces with larger values for kσ. Thus, a forward scattering model
is defined by Taylor expansion of the exponentials in the corresponding integrands. This is
done for each scattering coefficient term in the next subsections.

4.1 Scattering Model for Surfaces with Small or Moderate Heights
When the product of the rms height of the surface by the wave number has a small or mod-
erate value, the argument of the exponential functions in (22), (35) and (41) will also have a
small value. It is then useful to write the exponential functions in the form of a Taylor series.

4.1.1 Kirchhoff Term
The exponential function in (22) involving the correlation between the heights of the two scat-
tering centres�r ′ and�r ′′ can be expanded as

e p2
z σ2ρ(ξ,η) =

∞

∑
n=0

[σ2 p2
zρ(ξ,η)]n

n!
(46)

Consequently, the Kirchhoff term (22) of the scattering coefficient takes on the form

(σo)dk
qp =

1
2

k2
1| f̂qp|2e−σ2(ksz−kz)2

∞

∑
n=1

(σ2(ksz − kz)2)n

n!
W(n)

1 (ksx − kx,ksy − ky) (47)

where

W(n)
1 (ksx−kx,ksy−ky)

=
1

2πA

∫
dξ dη ρn(ξ,η) e−j[(ksx−kx)ξ+(ksy−ky)η]D1(ξ,η,ksz − kz) (48)

4.1.2 Cross Term
The exponential functions in (24) can be expanded in the form

eσ2[(ksz−r qm)(kz−r qm)ρ(z′ ,z′′)]
(

e−σ2[(ksz−r qm)(kz−ksz)ρ(z′ ,z′′′)]

· eσ2[(kz−r qm)(kz−ksz)ρ(z′′ ,z′′′)] − 1
)

=
∞

∑
i=0

[σ2(ksz − r qm)(kz − r qm)ρ(z′,z′′)]i

i!
[ ∞

∑
n=0

[−σ2(ksz − r qm)(kz − ksz)ρ(z′,z′′′)]n

n!
∞

∑
l=0

[σ2(kz − r qm)(kz − ksz)ρ(z′′,z′′′)]l

l!
− 1

]
(49)

The interactions of second order can be described as specular reflections and Snell’s refrac-
tions. Second-order scattering events can occur connecting points within the correlation
length or distant from each other. When the interacting point sources are within the corre-
lation length, we will have either ksz � qm, for r = 1, or kz � −qm, for r = −1, and the first
exponential function in (49) will have a negligible argument, provided that σ is not large.
When those points are distant, the correlation function ρ will be very small. Thus, the first
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summation in (49) can be approximated by unity for surfaces with small or moderate rms
height

eσ2[(ksz−r qm)(kz−r qm)ρ(z′ ,z′′)] � 1 (50)

and hence

eσ2[(ksz−r qm)(kz−r qm)ρ(z′ ,z′′)]
(

e−σ2[(ksz−r qm)(kz−ksz)ρ(z′ ,z′′′)]

· eσ2[(kz−r qm)(kz−ksz)ρ(z′′ ,z′′′)] − 1
)

�
∞

∑
n=1

[−σ2(ksz − r qm)(kz − ksz)ρ(z′,z′′′)]n

n!

+
∞

∑
l=1

[σ2(kz − r qm)(kz − ksz)ρ(z′′,z′′′)]l

l!

+
∞

∑
n=1

[−σ2(ksz − r qm)(kz − ksz)ρ(z′,z′′′)]n

n!

·
∞

∑
l=1

[σ2(kz − r qm)(kz − ksz)ρ(z′′,z′′′)]l

l!
(51)

This yields

(σo)dkc
qp =

k2
1

8π ∑
m=1,2

∑
r=−1,1

Re
{

f̂ ∗qpe−σ2[k2
sz+k2

z−kszkz ]

∫

R2
du dv F̂m

qp(�k
i,�ks,�lr

m) e−σ2[q2
m−(ksz+kz)r qm ]

·
[ ∞

∑
n=1

[−σ2(ksz − r qm)(kz − ksz)]n

n!
Wn,0

2 (�lr
m;�ks,�ki)

+
∞

∑
l=1

[σ2(kz − r qm)(kz − ksz)]l

l!
W0,l

2 (�lr
m;�ks,�ki)

+
∞

∑
n=1

[−σ2(ksz − r qm)(kz − ksz)]n

n!
∞

∑
l=1

[σ2(kz − r qm)(kz − ksz)]l

l!
Wn,l

2 (�lr
m;�ks,�ki)

]}
(52)

where

W(α,β)
2 (u,v,w;�ks,�ki) =

1
(2π)2 A

∫
dξ dη dξ ′dη′e j[(u−ksx)ξ+(v−ksy)η−(u−kx)ξ ′−(v−ky)η′ ]

· D2(ξ,η,ξ ′,η′,ksz,kz,w)ρα(ξ,η)ρβ(ξ ′,η′) (53)

to wave number, kσ, and surfaces with larger values for kσ. Thus, a forward scattering model
is defined by Taylor expansion of the exponentials in the corresponding integrands. This is
done for each scattering coefficient term in the next subsections.

4.1 Scattering Model for Surfaces with Small or Moderate Heights
When the product of the rms height of the surface by the wave number has a small or mod-
erate value, the argument of the exponential functions in (22), (35) and (41) will also have a
small value. It is then useful to write the exponential functions in the form of a Taylor series.

4.1.1 Kirchhoff Term
The exponential function in (22) involving the correlation between the heights of the two scat-
tering centres�r ′ and�r ′′ can be expanded as

e p2
z σ2ρ(ξ,η) =

∞

∑
n=0

[σ2 p2
zρ(ξ,η)]n

n!
(46)

Consequently, the Kirchhoff term (22) of the scattering coefficient takes on the form

(σo)dk
qp =

1
2

k2
1| f̂qp|2e−σ2(ksz−kz)2

∞

∑
n=1

(σ2(ksz − kz)2)n

n!
W(n)

1 (ksx − kx,ksy − ky) (47)

where

W(n)
1 (ksx−kx,ksy−ky)

=
1

2πA

∫
dξ dη ρn(ξ,η) e−j[(ksx−kx)ξ+(ksy−ky)η]D1(ξ,η,ksz − kz) (48)

4.1.2 Cross Term
The exponential functions in (24) can be expanded in the form

eσ2[(ksz−r qm)(kz−r qm)ρ(z′ ,z′′)]
(

e−σ2[(ksz−r qm)(kz−ksz)ρ(z′ ,z′′′)]

· eσ2[(kz−r qm)(kz−ksz)ρ(z′′ ,z′′′)] − 1
)

=
∞

∑
i=0

[σ2(ksz − r qm)(kz − r qm)ρ(z′,z′′)]i

i!
[ ∞

∑
n=0

[−σ2(ksz − r qm)(kz − ksz)ρ(z′,z′′′)]n

n!
∞

∑
l=0

[σ2(kz − r qm)(kz − ksz)ρ(z′′,z′′′)]l

l!
− 1

]
(49)

The interactions of second order can be described as specular reflections and Snell’s refrac-
tions. Second-order scattering events can occur connecting points within the correlation
length or distant from each other. When the interacting point sources are within the corre-
lation length, we will have either ksz � qm, for r = 1, or kz � −qm, for r = −1, and the first
exponential function in (49) will have a negligible argument, provided that σ is not large.
When those points are distant, the correlation function ρ will be very small. Thus, the first
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Introducing this approximation, (41) becomes

(σo)dc
qp =

k2
1

27π2 ∑
m,n=1,2

∑
r,r′=−1,1

{
e−σ2(k2

sz+k2
z)

∫

R4
du dv du′ dv′

F̂m
qp(�k

i,�ks,�lr
m) F̂n∗

qp (�ki,�ks,�l ′ r
′

n )

e−σ2[q2
m+q′2n −(ksz+kz)(r qm+r′ q′n)]

[ ∞

∑
h=1

[−σ2(ksz − r qm)(r′ q′n − ksz)]h

h!
Wh,0,0,0

3 (�lr
m,�l ′ r

′
n ;�ks,�ki)

+
∞

∑
l=1

[−σ2(ksz − r qm)(kz − r′ q′n)]l

l!
W0,m,0,0

3 (�lr
m,�l ′ r

′
n ;�ks,�ki)

+
∞

∑
n=1

[−σ2(kz − r qm)(ksz − r′ q′n)]n

n!
W0,0,n,0

3 (�lr
m,�l ′ r

′
n ;�ks,�ki)

+
∞

∑
t=1

[−σ2(kz − r qm)(r′ q′n − kz)]t

t!
W0,0,0,t

3 (�lr
m,�l ′ r

′
n ;�ks,�ki)

+
∞

∑
h=1

[−σ2(ksz − r qm)(r′ q′n − ksz)]h

h!
∞

∑
t=1

[−σ2(kz − r qm)(r′ q′n − kz)]t

t!
Wh,0,0,t

3 (�lr
m,�l ′ r

′
n ;�ks,�ki)

+
∞

∑
l=1

[−σ2(ksz − r qm)(kz − r′ q′n)]l

l!
∞

∑
n=1

[−σ2(kz − r qm)(ksz − r′ q′n)]n

n!
W0,m,n,0

3 (�lr
m,�l ′ r

′
n ;�ks,�ki)

]}
(56)

where

W(h,l,n,t)
3 (u,v,w,u′,v′,w′;�ks,�ki)

=
1

(2π)3 A

∫
dξ dη dξ ′dη′dτ dκ e j[(u−ksx)ξ−(u−kx)ξ ′+(v−ksy)η−(v−ky)η′ ]

e j[(u−u′)τ+(v−v′)κ] D3(ξ,η,ξ ′,η′,τ,κ;ksz,kz,w,w′)ρh(ξ,η)

ρl(ξ + τ,η + κ)ρn(ξ ′ − τ,η′ − κ)ρt(ξ ′,η′) (57)

4.2 Scattering Model for Surfaces with Large Heights
Although a series of the type given in (47) is convergent for any value of the argument, it is
only practical to compute it when the argument is not large. Thus, the summations describ-
ing the scattering coefficient for the diffuse field in the previous section are not practical for
large rms height. Besides, it was assumed that, on the whole, the correlation between points
producing second-order scattering was negligible and, as will be shown below, this is not the
case for surfaces with large rms height.

4.1.3 Complementary Term
The complementary term of the scattering coefficient involves the evaluation of an integral
containing the following expression

e−σ2[(ksz−r qm)(r qm−kz)ρ12+(ksz−r′ q′n)(r′ q′n−kz)ρ34]
(

e−σ2[(ksz−r qm)(r′ q′n−ksz)ρ13]

e−σ2[(ksz−r qm)(kz−r′ q′n)ρ14+(kz−r qm)(ksz−r′ q′n)ρ23+(kz−r qm)(r′ q′n−kz)ρ24] − 1
)

=
∞

∑
i=0

[−σ2(ksz − r qm)(r qm − kz)ρ12]i

i!

∞

∑
j=0

[−σ2(ksz − r′ q′n)(r′ q′n − kz)ρ34]j

j!
[ ∞

∑
h=0

[−σ2(ksz − r qm)(r′ q′n − ksz)ρ13]h

h!

∞

∑
l=0

[−σ2(ksz − r qm)(kz − r′ q′n)ρ14]l

l!
∞

∑
n=0

[−σ2(kz − r qm)(ksz − r′ q′n)ρ23]n

n!

∞

∑
t=0

[−σ2(kz − r qm)(r′ q′n − kz)ρ24]t

t!
− 1

]
(54)

As explained in the previous subsection, the correlation between points producing effective
second-order scattering is negligible. These points are represented in the summation above
by the pairs 1 and 2 on the one hand and by 3 and 4 on the other. Thus, the first two summa-
tions containing ρ12 and ρ34 can be approximated by unity. Further, all the products between
summations of the form ∑∞

1 containing ρ13 and ρ14 are negligible. This is so because signifi-
cant correlation between points 1 and both points 3 and 4 would generally imply a significant
correlation between 3 and 4. The same reasoning applies to products with ρ13 and ρ23, ρ23 and
ρ24 or ρ14 and ρ24. Thereby,

e−σ2[(ksz−r qm)(r qm−kz)ρ12+(ksz−r′ q′n)(r′ q′n−kz)ρ34]
(

e−σ2[(ksz−r qm)(r′ q′n−ksz)ρ13]

e−σ2[(ksz−r qm)(kz−r′ q′n)ρ14+(kz−r qm)(ksz−r′ q′n)ρ23+(kz−r qm)(r′ q′n−kz)ρ24] − 1
)

�
∞

∑
h=1

[−σ2(ksz − r qm)(r′ q′n − ksz)ρ13]h

h!
+

∞

∑
l=1

[−σ2(ksz − r qm)(kz − r′ q′n)ρ14]l

l!

+
∞

∑
n=1

[−σ2(kz − r qm)(ksz − r′ q′n)ρ23]n

n!
+

∞

∑
t=1

[−σ2(kz − r qm)(r′ q′n − kz)ρ24]t

t!

+
∞

∑
h=1

[−σ2(ksz − r qm)(r′ q′n − ksz)ρ13]h

h!

∞

∑
t=1

[−σ2(kz − r qm)(r′ q′n − kz)ρ24]t

t!

+
∞

∑
l=1

[−σ2(ksz − r qm)(kz − r′ q′n)ρ14]l

l!

∞

∑
n=1

[−σ2(kz − r qm)(ksz − r′ q′n)ρ23]n

n!
(55)
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Introducing this approximation, (41) becomes

(σo)dc
qp =

k2
1

27π2 ∑
m,n=1,2

∑
r,r′=−1,1

{
e−σ2(k2

sz+k2
z)

∫

R4
du dv du′ dv′

F̂m
qp(�k

i,�ks,�lr
m) F̂n∗

qp (�ki,�ks,�l ′ r
′

n )

e−σ2[q2
m+q′2n −(ksz+kz)(r qm+r′ q′n)]

[ ∞

∑
h=1

[−σ2(ksz − r qm)(r′ q′n − ksz)]h

h!
Wh,0,0,0

3 (�lr
m,�l ′ r

′
n ;�ks,�ki)

+
∞

∑
l=1

[−σ2(ksz − r qm)(kz − r′ q′n)]l

l!
W0,m,0,0

3 (�lr
m,�l ′ r

′
n ;�ks,�ki)

+
∞

∑
n=1

[−σ2(kz − r qm)(ksz − r′ q′n)]n

n!
W0,0,n,0

3 (�lr
m,�l ′ r

′
n ;�ks,�ki)

+
∞

∑
t=1

[−σ2(kz − r qm)(r′ q′n − kz)]t

t!
W0,0,0,t

3 (�lr
m,�l ′ r

′
n ;�ks,�ki)

+
∞

∑
h=1

[−σ2(ksz − r qm)(r′ q′n − ksz)]h

h!
∞

∑
t=1

[−σ2(kz − r qm)(r′ q′n − kz)]t

t!
Wh,0,0,t

3 (�lr
m,�l ′ r

′
n ;�ks,�ki)

+
∞

∑
l=1

[−σ2(ksz − r qm)(kz − r′ q′n)]l

l!
∞

∑
n=1

[−σ2(kz − r qm)(ksz − r′ q′n)]n

n!
W0,m,n,0

3 (�lr
m,�l ′ r

′
n ;�ks,�ki)

]}
(56)

where

W(h,l,n,t)
3 (u,v,w,u′,v′,w′;�ks,�ki)

=
1

(2π)3 A

∫
dξ dη dξ ′dη′dτ dκ e j[(u−ksx)ξ−(u−kx)ξ ′+(v−ksy)η−(v−ky)η′ ]

e j[(u−u′)τ+(v−v′)κ] D3(ξ,η,ξ ′,η′,τ,κ;ksz,kz,w,w′)ρh(ξ,η)

ρl(ξ + τ,η + κ)ρn(ξ ′ − τ,η′ − κ)ρt(ξ ′,η′) (57)

4.2 Scattering Model for Surfaces with Large Heights
Although a series of the type given in (47) is convergent for any value of the argument, it is
only practical to compute it when the argument is not large. Thus, the summations describ-
ing the scattering coefficient for the diffuse field in the previous section are not practical for
large rms height. Besides, it was assumed that, on the whole, the correlation between points
producing second-order scattering was negligible and, as will be shown below, this is not the
case for surfaces with large rms height.

4.1.3 Complementary Term
The complementary term of the scattering coefficient involves the evaluation of an integral
containing the following expression

e−σ2[(ksz−r qm)(r qm−kz)ρ12+(ksz−r′ q′n)(r′ q′n−kz)ρ34]
(

e−σ2[(ksz−r qm)(r′ q′n−ksz)ρ13]

e−σ2[(ksz−r qm)(kz−r′ q′n)ρ14+(kz−r qm)(ksz−r′ q′n)ρ23+(kz−r qm)(r′ q′n−kz)ρ24] − 1
)

=
∞

∑
i=0

[−σ2(ksz − r qm)(r qm − kz)ρ12]i

i!

∞

∑
j=0

[−σ2(ksz − r′ q′n)(r′ q′n − kz)ρ34]j

j!
[ ∞

∑
h=0

[−σ2(ksz − r qm)(r′ q′n − ksz)ρ13]h

h!

∞

∑
l=0

[−σ2(ksz − r qm)(kz − r′ q′n)ρ14]l

l!
∞

∑
n=0

[−σ2(kz − r qm)(ksz − r′ q′n)ρ23]n

n!

∞

∑
t=0

[−σ2(kz − r qm)(r′ q′n − kz)ρ24]t

t!
− 1

]
(54)

As explained in the previous subsection, the correlation between points producing effective
second-order scattering is negligible. These points are represented in the summation above
by the pairs 1 and 2 on the one hand and by 3 and 4 on the other. Thus, the first two summa-
tions containing ρ12 and ρ34 can be approximated by unity. Further, all the products between
summations of the form ∑∞

1 containing ρ13 and ρ14 are negligible. This is so because signifi-
cant correlation between points 1 and both points 3 and 4 would generally imply a significant
correlation between 3 and 4. The same reasoning applies to products with ρ13 and ρ23, ρ23 and
ρ24 or ρ14 and ρ24. Thereby,
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�
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∑
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+

∞

∑
l=1

[−σ2(ksz − r qm)(kz − r′ q′n)ρ14]l

l!

+
∞
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+

∞
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∞
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+
∞

∑
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l!
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(55)



Geoscience and Remote Sensing512

where

αA(a,b, c) = 4 (ab − c2)2

αB(a,b, c,kx,ky) = −2 j (ab − c2)(bkx − cky)

αC(a,b, c,kx,ky) = 2b (ab − c2) − (bkx − cky)2

αD(a,b, c,kx,ky) = −2 j (ab − c2)(aky − ckx)

αE(a,b, c,kx,ky) = 2 a (ab − c2) − (aky − ckx)2

αF(a,b, c,kx,ky) = −2 c (ab − c2) + (ckx − aky)(bkx − cky) (63)

Therefore, (61) results in

(σo)dk
qp =

2k2
1 f̂ 2

qp Ik(�p )

p10
z σ10[|ρo

ξ,ξ ||ρ
o
η,η | − |ρo

ξ,η |2]5/2 A
exp

{
−

p2
x|ρo

η,η | − 2px py|ρo
ξ,η | + p2

y|ρo
ξ,ξ |

2 p2
zσ2(|ρo

ξ,ξ ||ρ
o
η,η | − |ρo

ξ,η |2)

}
(64)

where

Ik(�p ) =Do
1(pz) α̃A + Do

1,ξ(pz) α̃B +
1
2

Do
1,ξ,ξ(pz) α̃C

+ Do
1,η(pz) α̃D +

1
2

Do
1,η,η(pz) α̃E + Do

1,η,ξ(pz) α̃F

(65)

with �p =�ks −�ki, and

α̃A = αA(κ1|ρo
ξ,ξ |,κ1|ρo

η,η |,κ1|ρo
ξ,η |)

α̃ζ = αζ(κ1|ρo
ξ,ξ |,κ1|ρo

η,η |,κ1|ρo
ξ,η |, px, py) ζ = B,C, D, E, F

κ1 = p2
zσ2/2 (66)

The expression obtained in (61) is the result obtained from classic geometric optics, multiplied
by a factor of correction due to the deterministic component of the surface.

4.2.2 Cross Term
From Subsection 3.2.2 we get

(σo)dkc
qp =

k2
1

25π3 A ∑
m=1,2

∑
r=−1,1

Re
{

f̂ ∗qp

∫

R2
du dv

∫
dξ dη dξ ′dη′

· e j[u(ξ−ξ ′)+v(η−η′)] e−j[ksxξ+ksyη] e j[kxξ ′+kyη′ ]

· D2(ξ,η,ξ ′,η′;ksz,kz,r qm)F̂m
qp(�k

i,�ks,�lr
m)

· e−σ2[(ksz−r qm)(kz−r qm)(1−ρ12)]
[
e−σ2[(ksz−r qm)(ksz−kz)(1−ρ13)]

· e−σ2[(r qm−kz)(ksz−kz)(1−ρ23)] − e−σ2(ksz−kz)2
]}

(67)

Some simplifications are applicable but, before introducing them, some remarks are in order.
As in Paragraph4.1.2, the approach is seeing the interactions of second order as specular re-
flections and Snell’s refractionsAlso, surface integration is taken over two regions for each

4.2.1 Kirchhoff Term
Let us reconsider first the Kirchhoff term in the form given in Subsection 3.2.1

Sdk
qp =

1
4πA

k2
1 f̂ 2

qp

∫∫
dξdη e−j[(ksx−kx)ξ+(ksy−ky)η]

(e−(ksz−kz)2σ2(1−ρ(ξ,η)) − e−(ksz−kz)2σ2
) D1(ξ,η;ksz − kz) (58)

Large values for k1σ give rise to very negative arguments in the exponentials of (58). As
a matter of fact the coherent term subtracted in this equation is negligible and the additive
exponential is significant only when the correlation function is near unity. It is then possible
to perform a Taylor expansion of the correlation function about the origin to obtain

1 − ρ(ξ,η) � 1
2
|ρξξ(0)| ξ2 +

1
2
|ρηη(0)|η2 + |ρξη(0)| ξ η

≡ 1
2
|ρo

ξξ | ξ
2 +

1
2
|ρo

ηη |η2 + |ρo
ξη | ξ η

(59)

were the subscripts in ρ denote partial derivatives and the superscript o denotes that the cor-
relation function is evaluated at the origin. Likewise, we expand the function D1(ξ,η;k) about
the origin

D1(ξ,η;k) � D1(0,0;k) + D1,ξ(0,0;k)ξ + D1,η(0,0;k)η

+
1
2

D1,ξ,ξ(0,0;k)ξ2 +
1
2

D1,η,η(0,0;k)η2 + D1,η,ξ(0,0;k)ηξ

≡ Do
1(k) + Do

1,ξ(k)ξ + Do
1,η(k)η

+
1
2

Do
1,ξ,ξ(k)ξ2 +

1
2

Do
1,η,η(k)η2 + Do

1,η,ξ(k)ηξ

(60)

Upon replacing (59) and (60) in (58), we arrive at

(σo)dk
qp =

1
4πA

k2
1 f̂ 2

qp

∫∫
dξdη e−j[(ksx−kx)ξ+(ksy−ky)η]

exp
[
−(ksz − kz)2σ2(

1
2
|ρo

ξξ |ξ
2 +

1
2
|ρo

ηη |η2 + |ρo
ξη |ξη)

]

[Do
1(ksz − kz) + Do

1,ξ(ksz − kz) ξ + Do
1,η(ksz − kz)η

+
1
2

Do
1,ξ,ξ(ksz − kz) ξ2 +

1
2

Do
1,η,η(ksz − kz)η2 + Do

1,η,ξ(ksz − kz)ηξ]

(61)

where the subtraction of the coherent term has been disregarded.
The following integral identity will be used

∫∫ ∞

−∞
dx dy e−(ax2+by2+2cxy) (A + Bx + Cx2 + Dy + Ey2 + Fxy) e−j(kx x+kyy)

=
π

4(ab − c2)(5/2)
exp

{
−

k2
xb − 2ckxky + k2

ya

4(ab − c2)

}

[A αA(a,b, c) + B αB(a,b, c,kx,ky) + C αC(a,b, c,kx,ky)
+ D αD(a,b, c,kx,ky) + E αE(a,b, c,kx,ky) + F αF(a,b, c,kx,ky)] (62)
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where
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αC(a,b, c,kx,ky) = 2b (ab − c2) − (bkx − cky)2
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Therefore, (61) results in
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with �p =�ks −�ki, and

α̃A = αA(κ1|ρo
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η,η |,κ1|ρo
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ξ,ξ |,κ1|ρo

η,η |,κ1|ρo
ξ,η |, px, py) ζ = B,C, D, E, F
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zσ2/2 (66)

The expression obtained in (61) is the result obtained from classic geometric optics, multiplied
by a factor of correction due to the deterministic component of the surface.

4.2.2 Cross Term
From Subsection 3.2.2 we get

(σo)dkc
qp =

k2
1

25π3 A ∑
m=1,2

∑
r=−1,1

Re
{

f̂ ∗qp

∫

R2
du dv

∫
dξ dη dξ ′dη′

· e j[u(ξ−ξ ′)+v(η−η′)] e−j[ksxξ+ksyη] e j[kxξ ′+kyη′ ]
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(67)

Some simplifications are applicable but, before introducing them, some remarks are in order.
As in Paragraph4.1.2, the approach is seeing the interactions of second order as specular re-
flections and Snell’s refractionsAlso, surface integration is taken over two regions for each

4.2.1 Kirchhoff Term
Let us reconsider first the Kirchhoff term in the form given in Subsection 3.2.1

Sdk
qp =

1
4πA

k2
1 f̂ 2

qp

∫∫
dξdη e−j[(ksx−kx)ξ+(ksy−ky)η]

(e−(ksz−kz)2σ2(1−ρ(ξ,η)) − e−(ksz−kz)2σ2
) D1(ξ,η;ksz − kz) (58)

Large values for k1σ give rise to very negative arguments in the exponentials of (58). As
a matter of fact the coherent term subtracted in this equation is negligible and the additive
exponential is significant only when the correlation function is near unity. It is then possible
to perform a Taylor expansion of the correlation function about the origin to obtain

1 − ρ(ξ,η) � 1
2
|ρξξ(0)| ξ2 +

1
2
|ρηη(0)|η2 + |ρξη(0)| ξ η

≡ 1
2
|ρo
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2 +
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ηη |η2 + |ρo
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(59)

were the subscripts in ρ denote partial derivatives and the superscript o denotes that the cor-
relation function is evaluated at the origin. Likewise, we expand the function D1(ξ,η;k) about
the origin

D1(ξ,η;k) � D1(0,0;k) + D1,ξ(0,0;k)ξ + D1,η(0,0;k)η

+
1
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Upon replacing (59) and (60) in (58), we arrive at
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where the subtraction of the coherent term has been disregarded.
The following integral identity will be used
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dx dy e−(ax2+by2+2cxy) (A + Bx + Cx2 + Dy + Ey2 + Fxy) e−j(kx x+kyy)

=
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−
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(c) The region of the integration domain where two correlation functions are close
to unity and the other is negligible can be regarded as having measure zero. For
example, if ρ12 � 1 and ρ13 � 1, we expect ρ23 � 1, that is, if the pair of points
(1,2) and (1,3) are highly correlated, then the pair (2,3) is generally expected to
be highly correlated, too.

(d) When the three correlation functions are all close to unity, the exponentials can
have moderate or small arguments and therefore they do contribute to the in-
tegral. Thereupon, the most significant region of the integration domain cor-
responds to small values of ξ, η, ξ ′ and η′ and ρ12, ρ13 and ρ23 can be Taylor
expanded about the origin. To see the order of approximation to be taken for
each correlation function we investigate their physical meaning. The exponential
function containing ρ12 represents the interference between the sources located
at points 1 and 2, which are the secondary wave sources involved in a second-
order scattering event. On the other hand, ρ13 and ρ23 represent the interference
between one of those second-order sources on the surface and the source located
at point 3, which is a first-order - or Kirchhoff - secondary wave source. As the
Kirchhoff field is expected to be of a higher magnitude than the complementary
field, we expand ρ13 and ρ23 about the origin up to second order and ρ12 only up
to first order.

According to these remarks, the product of exponential functions in (67) can be replaced by

e−σ2[(ksz−r qm)(kz−r qm)(1−ρ12)]

[
e−σ2[(ksz−r qm)(ksz−kz)(1−ρ13)] e−σ2[(r qm−kz)(ksz−kz)(1−ρ23)] − e−σ2(ksz−kz)2

]

� e−
1
2 σ2(ksz−r qm)(ksz−kz)[|ρo

ξξ | ξ2+|ρo
ηη |η2+2|ρo

ξη | ξη]

e−
1
2 σ2(r qm−kz)(ksz−kz)[|ρo

ξξ | ξ ′2+|ρo
ηη |η′2+2|ρo

ξη | ξ ′η′ ]

(71)

However, it is important to note that this replacement is only possible when the arguments of
the exponential functions at the r.s. of (71) are negative. Therefore, if (ksz − r qm) or (r qm − kz)
are not positive, the substitution is not possible and exp{−σ2[(ksz − r qm)(kz − r qm)(1− ρ12)]}
cannot be discarded. The assumption here is to consider that the reflections and refractions
involved in second-order scattering are unlikely to produce first deviations where the modu-
lus of the z-component of the wave vector increases, such that r qm < kz, or second deviations
where it decreases, such that ksz < r qm. Thus the integration domain in u and v, Γr, will be
constrained to the following conditions

Γr :

{
qm < |kz| if r = −1
qm < ksz if r = 1

(72)

We expand also D2 in (36) about the origin

D2(ξ,η,ξ ′,η′;k,k′,k′′) =Do
2(k,k′,k′′) + ∑

β=ξ,η,ξ ′ ,η′
Do

2,β(k,k′,k′′)β

+
1
2 ∑

β,γ=ξ,η,ξ ′ ,η′
Do

2,β,γ(k,k′,k′′)βγ
(73)

correlation function, the region where points are close in terms of the correlation length and
the region where points are distant from each other. The correlation function ρ12 links the
points that are connected by second-order scattering events, and the functions ρ13 and ρ23 re-
late a point acting as a secondary wave source of second order and a point with a first-order
scattering role. The second type of functions are present due to the fact that the cross term de-
scribed by (67) is an interference between first and second-order scattering in the calculation
of the scattered power.
The situation is more complicated now than in (58) as the sign of the arguments in the expo-
nential functions depends on the value of ksz − r qm and kz − r qm. We observe the following

1. The coherent component in (67) can be written as

e−σ2[(ksz−r qm)(kz−r qm)(1−ρ12)] e−σ2(ksz−kz)2

= e−σ2[k2
sz+k2

z+q2
m−(ksz+kz)r qm−kszkz−(ksz−r qm)(kz−r qm)ρ12] (68)

The second exponential at the l.s. of (68) has a large negative argument for large kσ
values. Therefore, the coherent term will be very small except, perhaps, when the ar-
gument of the first exponential at the l.s. of (68) has a positive argument. For this to
happen, we need either ksz − qm > 0 when r = 1 or kz + qm < 0 when r = −1. In both
cases, according to the argument of the exponential at the r.s. of (68), the product of the
two exponential functions with different signs in their argument is negligible. Thereby,
the coherent component subtracted in (67) is not significant, as we should expect from
a surface with large rms height.

2. For the incoherent term, and according to the aforementioned distinction between the
two areas of integration for each correlation function, we note that

(a) If the three correlation functions ρ12, ρ13 and ρ23 are all very small, the exponential
functions yield

e−σ2(ksz−r qm)(kz−r qm) e−σ2(ksz−r qm)(ksz−kz) e−σ2(r qm−kz)(ksz−kz)

= e−σ2(ksz−r qm)2
e−σ2(r qm−kz)(ksz−kz)

= e−σ2(kz−r qm)2
e−σ2(ksz−r qm)(ksz−kz)

= e−σ2(ksz−kz)2
e−σ2(ksz−r qm)(kz−r qm) (69)

From (69), it is clear that the product of the three exponential functions is negligi-
ble no matter the sign of ksz − r qm and kz − r qm.

(b) If two correlation functions are very small and the other one is close to unity, then
we obtain similar identities to (69). For instance, provided that ρ12 � 1, the product
of exponentials is written as

e−σ2(ksz−kz)2
e−σ2(ksz−r qm)(kz−r qm)(1−ρ12) � e−σ2(ksz−kz)2

(70)

and can be neglected. The same holds for either of the other two correlation func-
tions.
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lus of the z-component of the wave vector increases, such that r qm < kz, or second deviations
where it decreases, such that ksz < r qm. Thus the integration domain in u and v, Γr, will be
constrained to the following conditions

Γr :

{
qm < |kz| if r = −1
qm < ksz if r = 1

(72)

We expand also D2 in (36) about the origin

D2(ξ,η,ξ ′,η′;k,k′,k′′) =Do
2(k,k′,k′′) + ∑

β=ξ,η,ξ ′ ,η′
Do

2,β(k,k′,k′′)β

+
1
2 ∑

β,γ=ξ,η,ξ ′ ,η′
Do

2,β,γ(k,k′,k′′)βγ
(73)

correlation function, the region where points are close in terms of the correlation length and
the region where points are distant from each other. The correlation function ρ12 links the
points that are connected by second-order scattering events, and the functions ρ13 and ρ23 re-
late a point acting as a secondary wave source of second order and a point with a first-order
scattering role. The second type of functions are present due to the fact that the cross term de-
scribed by (67) is an interference between first and second-order scattering in the calculation
of the scattered power.
The situation is more complicated now than in (58) as the sign of the arguments in the expo-
nential functions depends on the value of ksz − r qm and kz − r qm. We observe the following

1. The coherent component in (67) can be written as

e−σ2[(ksz−r qm)(kz−r qm)(1−ρ12)] e−σ2(ksz−kz)2

= e−σ2[k2
sz+k2

z+q2
m−(ksz+kz)r qm−kszkz−(ksz−r qm)(kz−r qm)ρ12] (68)

The second exponential at the l.s. of (68) has a large negative argument for large kσ
values. Therefore, the coherent term will be very small except, perhaps, when the ar-
gument of the first exponential at the l.s. of (68) has a positive argument. For this to
happen, we need either ksz − qm > 0 when r = 1 or kz + qm < 0 when r = −1. In both
cases, according to the argument of the exponential at the r.s. of (68), the product of the
two exponential functions with different signs in their argument is negligible. Thereby,
the coherent component subtracted in (67) is not significant, as we should expect from
a surface with large rms height.

2. For the incoherent term, and according to the aforementioned distinction between the
two areas of integration for each correlation function, we note that

(a) If the three correlation functions ρ12, ρ13 and ρ23 are all very small, the exponential
functions yield

e−σ2(ksz−r qm)(kz−r qm) e−σ2(ksz−r qm)(ksz−kz) e−σ2(r qm−kz)(ksz−kz)

= e−σ2(ksz−r qm)2
e−σ2(r qm−kz)(ksz−kz)

= e−σ2(kz−r qm)2
e−σ2(ksz−r qm)(ksz−kz)

= e−σ2(ksz−kz)2
e−σ2(ksz−r qm)(kz−r qm) (69)

From (69), it is clear that the product of the three exponential functions is negligi-
ble no matter the sign of ksz − r qm and kz − r qm.

(b) If two correlation functions are very small and the other one is close to unity, then
we obtain similar identities to (69). For instance, provided that ρ12 � 1, the product
of exponentials is written as

e−σ2(ksz−kz)2
e−σ2(ksz−r qm)(kz−r qm)(1−ρ12) � e−σ2(ksz−kz)2

(70)

and can be neglected. The same holds for either of the other two correlation func-
tions.
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psx = ksx − u psy = ksy − v p(r)
sz = ksz − r qm

pix = u − kx piy = v − ky p(r)
iz = r qm − kz

�p =�ks −�ki (78)

The notation has been simplified for the matrix D, where all the elements are evaluated at
(ksz,kz,r qm). The modulation due to the topography of the surface is contained in the function
Ikc(�ks,�ki,u,v,r qm).

4.2.3 Complementary Term
Recalling the results of Subsection 3.2.3 for the complementary term of the diffuse scattered
power, we can write

Sdc
qp =

k2
1

210π3 A ∑
m,n=1,2

∑
r,r′=−1,1

{∫

R4
du dv du′ dv′

∫
dξ dη dξ ′dη′dτ dκ

e j[u(ξ+τ−ξ ′)−u′τ+v(η+κ−η′)−v′κ] e−j(ksxξ+ksyη) e j(kxξ ′+kyη′)

D3(ξ,η,ξ ′,η′,τ,κ;ksz,kz,rqm,r′q′n)

F̂m
qp(�k

i,�ks,�lr
m) F̂n∗

qp (�ki,�ks,�l ′ r
′

n )

e−σ2[(ksz−r qm)(kz−r qm)(1−ρ12)+(ksz−r′ q′n)(kz−r′ q′n)(1−ρ34)]

[
e−σ2[(ksz−r qm)(ksz−r′ q′n)(1−ρ13)+(ksz−r qm)(r′ q′n−kz)(1−ρ14)]

e−σ2[(kz−r qm)(r′ q′n−ksz)(1−ρ23)+(kz−r qm)(kz−r′ q′n)(1−ρ24)]

− e−σ2(k2
sz+k2

z)
]}

(79)

Although the higher dimensionality in (79) makes this integral more complex than (67) the
same principles used to simplify the exponential functions apply in both cases. Yet, instead
of repeating the same reasoning as in the previous paragraph, we will try to make use of
the physics already found there. In (67) we had the interference between the first-order com-
ponent and the second-order components of the incoherently scattered field. We found that
the most meaningful contribution comes from the interference between the first-order sec-
ondary sources located near the second-order secondary sources, which are in turn close to
one another. This means that the waves transmitted by these secondary sources interfere more
constructively when the sources are near each other, as we might expect from a rough surface
with high rms height and small or moderate correlation length. Furthermore, the coherently
scattered power for such a surface is negligible. Assuming that this is also the case for the
complementary term of the scattered power, where the interference occurs between second-
order secondary waves only, we will get significant contribution for the integral over small
values of ξ,η,ξ ′,η′,τ and κ. As we did for the cross term, the order of the Taylor series for
the correlation functions is different for each function. We assume that the most significant
interferences occur between the secondary sources which do not belong to the same second-
order scattering event. Thus, ρ14, ρ23 and ρ24 are approximated at second order, whereas ρ12
and ρ34 are approximated at first order. The correlation function ρ13 describes the interference
between the secondary sources of the outgoing field and are also approximated only at first

where the subscripts denote partial derivatives and the superscript o in D2 means that this
function or its derivatives have been evaluated at the origin.
By making use of (62), we obtain that (67) can be written as

(σo)dkc
qp =

2k2
1

σ20π A ∑
m=1,2

∑
r=−1,1

Re

{
f̂ ∗qp

∫

Γr

du dv

1

p(r)5
sz p(r)5

iz p10
z (|ρo

ξ,ξ ||ρ
o
η,η | − |ρo

ξ,η |2)5
Ikc(�ki,�ks,�lr

m)

F̂m
qp(�k

i,�ks,�lr
m)

· exp


−

p2
sx|ρo

η,η | − 2psx psy|ρo
ξ,η | + p2

sy|ρo
ξ,ξ |

2σ2 p(r)
sz pz(|ρo

ξ,ξ ||ρ
o
η,η | − |ρo

ξ,η |2)




· exp


−

p2
ix|ρ

o
η,η | − 2pix piy|ρo

ξ,η | + p2
iy|ρ

o
ξ,ξ |

2σ2 p(r)
iz pz(|ρo

ξ,ξ ||ρ
o
η,η | − |ρo

ξ,η |2)




}

(74)

where
Ikc(�ks,�ki,u,v,r qm) = α̂t D2 α̂′ (75)

with

α̂ =




α̂A
α̂B
α̂C
α̂D
α̂E
α̂F




α̂′ =




α̂′A
α̂′B
α̂′C
α̂′D
α̂′E
α̂′F




D =




Do
2 Do

2,ξ ′ Do
2,ξ ′ ,ξ ′/2 Do

2,η′ Do
2,η′ ,η′/2 Do

2,ξ ′ ,η′

Do
2,ξ Do

2,ξ,ξ ′ 0 Do
2,ξ,η′ 0 0

Do
2,ξ,ξ /2 0 0 0 0 0
Do

2,η Do
2,ξ ′ ,η 0 Do

2,η,η′ 0 0
Do

2,η,η/2 0 0 0 0 0
Do

2,ξ,η 0 0 0 0 0




(76)

and

α̂A = αA(κ
(r)
2 |ρo

ξ,ξ |,κ
(r)
2 |ρo

η,η |,κ
(r)
2 |ρo

ξ,η |)

α̂′A = αA(κ
(r)
3 |ρo

ξ,ξ |,κ
(r)
3 |ρo

η,η |,κ
(r)
3 |ρo

ξ,η |)

α̂ζ = αζ(κ
(r)
2 |ρo

ξ,ξ |,κ
(r)
2 |ρo

η,η |,κ
(r)
2 |ρo

ξ,η |, psx, psy)

α̂′ζ = αζ(κ
(r)
3 |ρo

ξ,ξ |,κ
(r)
3 |ρo

η,η |,κ
(r)
3 |ρo

ξ,η |, pix, piy)

ζ = B,C, D, E, F

κ
(r)
2 = p(r)

sz pzσ2/2

κ
(r)
3 = p(r)

iz pzσ2/2 (77)
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The notation has been simplified for the matrix D, where all the elements are evaluated at
(ksz,kz,r qm). The modulation due to the topography of the surface is contained in the function
Ikc(�ks,�ki,u,v,r qm).

4.2.3 Complementary Term
Recalling the results of Subsection 3.2.3 for the complementary term of the diffuse scattered
power, we can write
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n )
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Although the higher dimensionality in (79) makes this integral more complex than (67) the
same principles used to simplify the exponential functions apply in both cases. Yet, instead
of repeating the same reasoning as in the previous paragraph, we will try to make use of
the physics already found there. In (67) we had the interference between the first-order com-
ponent and the second-order components of the incoherently scattered field. We found that
the most meaningful contribution comes from the interference between the first-order sec-
ondary sources located near the second-order secondary sources, which are in turn close to
one another. This means that the waves transmitted by these secondary sources interfere more
constructively when the sources are near each other, as we might expect from a rough surface
with high rms height and small or moderate correlation length. Furthermore, the coherently
scattered power for such a surface is negligible. Assuming that this is also the case for the
complementary term of the scattered power, where the interference occurs between second-
order secondary waves only, we will get significant contribution for the integral over small
values of ξ,η,ξ ′,η′,τ and κ. As we did for the cross term, the order of the Taylor series for
the correlation functions is different for each function. We assume that the most significant
interferences occur between the secondary sources which do not belong to the same second-
order scattering event. Thus, ρ14, ρ23 and ρ24 are approximated at second order, whereas ρ12
and ρ34 are approximated at first order. The correlation function ρ13 describes the interference
between the secondary sources of the outgoing field and are also approximated only at first

where the subscripts denote partial derivatives and the superscript o in D2 means that this
function or its derivatives have been evaluated at the origin.
By making use of (62), we obtain that (67) can be written as

(σo)dkc
qp =

2k2
1

σ20π A ∑
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∑
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z (|ρo

ξ,ξ ||ρ
o
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Ikc(�ki,�ks,�lr

m)

F̂m
qp(�k

i,�ks,�lr
m)
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−

p2
sx|ρo

η,η | − 2psx psy|ρo
ξ,η | + p2

sy|ρo
ξ,ξ |

2σ2 p(r)
sz pz(|ρo

ξ,ξ ||ρ
o
η,η | − |ρo

ξ,η |2)




· exp


−
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ix|ρ

o
η,η | − 2pix piy|ρo
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iy|ρ

o
ξ,ξ |

2σ2 p(r)
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ξ,ξ ||ρ
o
η,η | − |ρo

ξ,η |2)
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2,η Do
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2,η,η/2 0 0 0 0 0
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and

α̂A = αA(κ
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ξ,η |)

α̂′A = αA(κ
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α̂′ζ = αζ(κ
(r)
3 |ρo

ξ,ξ |,κ
(r)
3 |ρo

η,η |,κ
(r)
3 |ρo
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ζ = B,C, D, E, F

κ
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κ
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The spatial coordinates can be integrated in (79) with the help of (62) to produce

(σo)dc
qp =

k2
1

2σ30 A ∑
m,n=1,2

∑
r,r′=−1,1

{∫

R4
du dv du′ dv′

1

p(r)5
sz p′ (r)5

sz p(r)10
iz p′ (r)10

iz (|ρo
ξ,ξ ||ρ

o
η,η | − |ρo

ξ,η |2)15/2

I c(�ks,�ki,�lr
m,�l ′ r

′
n )

F̂m
qp(�k

i,�ks,�lr
m) F̂n∗

qp (�ki,�ks,�l ′ r
′

n )

·exp

{
−

(p′ix − psx)2|ρo
η,η | − 2(p′ix − psx) (p′iy − psy)|ρo

ξ,η | + (p′iy − psy)2|ρo
ξ,ξ |

2σ2 p(r)
iz p′ (r)

iz (|ρo
ξ,ξ ||ρ

o
η,η | − |ρo

ξ,η |2)

}

· exp


−

p2
sx|ρo

η,η | − 2psx psy|ρo
ξ,η | + p2

sy|ρo
ξ,ξ |

2σ2 p(r)
sz p′ (r)

iz (|ρo
ξ,ξ ||ρ

o
η,η | − |ρo

ξ,η |2)




· exp


−

p′2sx|ρo
η,η | − 2p′sx p′sy|ρo

ξ,η | + p′2sy|ρo
ξ,ξ |

2σ2 p(r)
iz p′ (r)

sz (|ρo
ξ,ξ ||ρ

o
η,η | − |ρo

ξ,η |2)




}
(85)

where

psx = ksx − u psy = ksy − v p(r)
sz = ksz − r qm

pix = u − kx piy = v − ky p(r)
iz = r qm − kz

p′sx = ksx − u′ p′sy = ksy − v′ p′ (r)
sz = ksz − r′ q′n

p′ix = u′ − kx p′iy = v′ − ky p′ (r)
iz = r′ q′n − kz (86)

and I c is the modulation factor due to the topography. It is given in terms of a tensorial
product

I c(�ks,�ki,u,v,rqm,u′,v′,r′q′n) =
6

∑
i,j,k=1

D̂i,j,k
3 ᾰi ᾰ′j ᾰ′′k (87)

where the tensor D̂i,j,k
3 is defined by the partial derivatives of D3 on ξ ′,η′,ξ ′′,η′′,ξ ′′′ and η′′′ in

the following manner: a) the first superscript denotes the degree of derivation on the pair of
variables (ξ ′,η′); thus, 1 refers to no derivation, 2 and 3 refer to the first and second derivative
on ξ ′, 4 and 5 to the first and second derivative on η′, and 6 to the cross derivative on ξ ′ and
η′; b) the second and third superscripts have equivalent meanings for the pairs of variables
(ξ ′′,η′′) and (ξ ′′′,η′′′), respectively; c) all the tensor elements corresponding to derivatives of
order higher than 2 are set to zero. The vectors ᾰ, ᾰ′ and ᾰ′′ are given by

ᾰ =




ᾰA
ᾰB
ᾰC
ᾰD
ᾰE
ᾰF




ᾰ′ =




ᾰ′A
ᾰ′B
ᾰ′C
ᾰ′D
ᾰ′E
ᾰ′F




ᾰ′′ =




ᾰ′′A
ᾰ′′B
ᾰ′′C
ᾰ′′D
ᾰ′′E
ᾰ′′F




order. Then, we obtain the following approximation

e−σ2[(ksz−r qm)(kz−r qm)(1−ρ12)+(ksz−r′ q′n)(kz−r′ q′n)(1−ρ34)]

[
e−σ2[(ksz−r qm)(ksz−r′ q′n)(1−ρ13)+(ksz−r qm)(r′ q′n−kz)(1−ρ14)]

e−σ2[(kz−r qm)(r′ q′n−ksz)(1−ρ23)+(kz−r qm)(kz−r′ q′n)(1−ρ24)]

− e−σ2(k2
sz+k2

z)
]

� e−
1
2 σ2(ksz−r qm)(r′ q′n−kz)[|ρo

ξξ | (ξ+τ)2+|ρo
ηη | (η+κ)2+2|ρo

ξη | (ξ+τ)(η+κ)]

e−
1
2 σ2(kz−r qm)(r′ q′n−ksz)[|ρo

ξξ | (ξ ′−τ)2+|ρo
ηη | (η′−κ)2+2|ρo

ξη | (ξ ′−τ)(η′−κ)]

e−
1
2 σ2(kz−r qm)(kz−r′ q′n)[|ρo

ξξ | ξ ′2+|ρo
ηη |η′2+2|ρo

ξη | ξ ′η′ ]

(80)

Similar comments to those made after (71) are in order. Thus, (80) is to be used under the
constrains of (ksz − r qm) > 0, (r qm − kz) > 0, (ksz − r′ q′n) > 0, and (r′ q′n − kz) > 0. The substi-
tution (80) is then introduced into (79) with the domain of integration for (u,v,u′,v′) restricted
to Γr × Γ′

r′

Γr :

{
qm < |kz| if r = −1
qm < ksz if r = 1

Γ′
r′ :

{
q′n < |kz| if r = −1
q′n < ksz if r = 1

(81)

It is now convenient to redefine the integration coordinates as follows

ξ ′′ = ξ + τ η′′ = η + κ

ξ ′′′ = ξ ′ − τ η′′′ = η′ − κ (82)

Accordingly, the modulation function D3 is reformulated as D̂3

D̂3(ξ ′,η′,ξ ′′,η′′,ξ ′′′,η′′′;ksz,kz,rqm,r′q′n)

≡ D3(ξ ′′ + ξ ′′′ − ξ ′,η′′ + η′′′ − η′,ξ ′,η′,ξ ′ − ξ ′′′,η′ − η′′′;ksz,kz,rqm,r′q′n) (83)

and then the following Taylor series is carried out as

D̂3(ξ ′,η′,ξ ′′,η′′,ξ ′′′,η′′′;ksz,kz,rqm,r′q′n) = D̂o
3(k,k′,k′′,k′′′)

+ ∑
β=ξ ′ ,η′ ,ξ ′′ ,η′′ ,ξ ′′′ ,η′′′

D̂o
3,β(k,k′,k′′,k′′′) β

+
1
2 ∑

β,γ=ξ ′ ,η′ ,ξ ′′ ,η′′ ,ξ ′′′ ,η′′′
D̂o

3,β,γ(k,k′,k′′,k′′′) β γ

(84)
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The spatial coordinates can be integrated in (79) with the help of (62) to produce
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the following manner: a) the first superscript denotes the degree of derivation on the pair of
variables (ξ ′,η′); thus, 1 refers to no derivation, 2 and 3 refer to the first and second derivative
on ξ ′, 4 and 5 to the first and second derivative on η′, and 6 to the cross derivative on ξ ′ and
η′; b) the second and third superscripts have equivalent meanings for the pairs of variables
(ξ ′′,η′′) and (ξ ′′′,η′′′), respectively; c) all the tensor elements corresponding to derivatives of
order higher than 2 are set to zero. The vectors ᾰ, ᾰ′ and ᾰ′′ are given by

ᾰ =




ᾰA
ᾰB
ᾰC
ᾰD
ᾰE
ᾰF




ᾰ′ =




ᾰ′A
ᾰ′B
ᾰ′C
ᾰ′D
ᾰ′E
ᾰ′F




ᾰ′′ =




ᾰ′′A
ᾰ′′B
ᾰ′′C
ᾰ′′D
ᾰ′′E
ᾰ′′F




order. Then, we obtain the following approximation

e−σ2[(ksz−r qm)(kz−r qm)(1−ρ12)+(ksz−r′ q′n)(kz−r′ q′n)(1−ρ34)]

[
e−σ2[(ksz−r qm)(ksz−r′ q′n)(1−ρ13)+(ksz−r qm)(r′ q′n−kz)(1−ρ14)]

e−σ2[(kz−r qm)(r′ q′n−ksz)(1−ρ23)+(kz−r qm)(kz−r′ q′n)(1−ρ24)]

− e−σ2(k2
sz+k2

z)
]

� e−
1
2 σ2(ksz−r qm)(r′ q′n−kz)[|ρo

ξξ | (ξ+τ)2+|ρo
ηη | (η+κ)2+2|ρo

ξη | (ξ+τ)(η+κ)]

e−
1
2 σ2(kz−r qm)(r′ q′n−ksz)[|ρo

ξξ | (ξ ′−τ)2+|ρo
ηη | (η′−κ)2+2|ρo

ξη | (ξ ′−τ)(η′−κ)]

e−
1
2 σ2(kz−r qm)(kz−r′ q′n)[|ρo

ξξ | ξ ′2+|ρo
ηη |η′2+2|ρo

ξη | ξ ′η′ ]

(80)

Similar comments to those made after (71) are in order. Thus, (80) is to be used under the
constrains of (ksz − r qm) > 0, (r qm − kz) > 0, (ksz − r′ q′n) > 0, and (r′ q′n − kz) > 0. The substi-
tution (80) is then introduced into (79) with the domain of integration for (u,v,u′,v′) restricted
to Γr × Γ′

r′

Γr :

{
qm < |kz| if r = −1
qm < ksz if r = 1

Γ′
r′ :

{
q′n < |kz| if r = −1
q′n < ksz if r = 1

(81)

It is now convenient to redefine the integration coordinates as follows

ξ ′′ = ξ + τ η′′ = η + κ

ξ ′′′ = ξ ′ − τ η′′′ = η′ − κ (82)

Accordingly, the modulation function D3 is reformulated as D̂3

D̂3(ξ ′,η′,ξ ′′,η′′,ξ ′′′,η′′′;ksz,kz,rqm,r′q′n)

≡ D3(ξ ′′ + ξ ′′′ − ξ ′,η′′ + η′′′ − η′,ξ ′,η′,ξ ′ − ξ ′′′,η′ − η′′′;ksz,kz,rqm,r′q′n) (83)

and then the following Taylor series is carried out as

D̂3(ξ ′,η′,ξ ′′,η′′,ξ ′′′,η′′′;ksz,kz,rqm,r′q′n) = D̂o
3(k,k′,k′′,k′′′)

+ ∑
β=ξ ′ ,η′ ,ξ ′′ ,η′′ ,ξ ′′′ ,η′′′

D̂o
3,β(k,k′,k′′,k′′′) β

+
1
2 ∑

β,γ=ξ ′ ,η′ ,ξ ′′ ,η′′ ,ξ ′′′ ,η′′′
D̂o

3,β,γ(k,k′,k′′,k′′′) β γ

(84)
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(x1,y1), (x2,y2), . . . , (xn,yn), the joint pdf fz1,z2,...,zn of the points zi = z(xi,yi) on the surface is
given by

fz1,z2,...,zn (z1,z2, . . . ,zn)

=
1

(2π)
n
2 σn D

n
2

exp

{
− 1

2Dσ2

n

∑
i,k=1

Dik(zi − z̄i)(zk − z̄k)

}
(89)

where
D = det(ρik) , ρik = σ−2E{zi zk}

and Dik is the cofactor of the element ρik in the determinant D. Each point on the surface is
assumed to have a distinct mean value but all are described by a single variance σ2.
Let S be a ray impinging upon the surface at point�r0 = (x0,y0,z0) given by

{
zS = z0 + a(x − x0)
yS = y0

(90)

with an angle θ = arccot a over the normal, where the ray is chosen to lie in the y = y0 plane
for convenience. The z coordinate of the ray will be written as zS(�r0, x) in what follows. We
define g(ζ,S, x; x0,y0|z0)dx dy0 as the probability that ζ will cross the incoming ray S in the
interval (x, x + dx)× (y0,y0 + dy0) but not in the segment (x0, x)× (y0,y0 + dy0), with x>x0,
given that the height at (x0,y0) is z0. The function g(ζ,S, x; x0,y0|ζ(x0,y0)=z0) can be written
as

g(ζ,S, x; x0,y0|ζ(x0,y0)= z0)dx dy0 = Pr[ζ crosses S from below in

(x, x + dx) × (y0,y0 + dy0)|ζ(x0,y0)= z0]

−
∫ x

x0

dx1 Pr[ζ crosses S from below in

(x, x + dx) × (y0,y0 + dy0)and in

(x1, x1 + dx1) × (y0,y0 + dy0)]

but not inx′ : x′ ∈ (x, x1)|ζ(x0,y0)= z0]

(91)

Thereby, g(ζ,S, x|ζ(x0,y0)= z0) can be found by iterating (91) to obtain the following infinite
series

g(ζ,S, x; x0,y0|z0) = w1(x; x0,y0|ζ(x0,y0)= z0)

−
∫ x

x0

dx1 w2(x, x1; x0,y0|ζ(x0,y0)= z0)

+
∫ x

x0

dx1

∫ x1

x0

dx2 w3(x, x1, x2; x0,y0|ζ(x0,y0)= z0) − . . .

+ (−1)n
∫ x

x0

dx1

∫ x1

x0

dx2 · · ·
∫ xn−1

x0

dxn

wn+1(x, x1, . . . , xn; x0,y0|ζ(x0,y0)= z0)
+ . . . (92)

where wi(x, x1, . . . , xi−1; x0,y0|ζ(x0,y0)= z0)dx dx1 · · ·dxi−1 dy0 is the joint probability that the
ray ζ crosses S i times from below (“up-crossing”), specifically in the intervals (x, x + dx) ×

ᾰA = αA(κ
(r)
4 |ρo

ξ,ξ |,κ
(r)
4 |ρo

η,η |,κ
(r)
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(r)
5 |ρo

ξ,η |)
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(r)
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ᾰ′′ζ = αζ(κ
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ξ,ξ |,κ
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6 |ρo

η,η |,κ
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ξ,η |, p′sx, p′sy)

ζ = B,C, D, E, F

κ
(r)
4 = p(r)

iz p′ (r)
iz σ2/2

κ
(r)
5 = p(r)

sz p′ (r)
iz σ2/2

κ
(r)
6 = p(r)

iz p′ (r)
sz σ2/2 (88)

Effect of Geometrical Shadowing in Random Rough Surfaces The derivation of the far-zone
scattered field with IEM2M is a second-order approach based on the Kirchhoff surface fields.
As already mentioned, this causes the field components of the model to be approximations to
the exact first and second-order scattered field components. One of the corrections that can be
made to improve these approximations is to include the shadowing effects that are not con-
sidered in the Kirchhoff surface fields, on which the whole derivation is based. The Kirchhoff
approximation fails to take account of the different states of illumination under the incident
field. These states range from full illumination to complete shadowing by other parts of the
surface, as well as regimes of semishadowing caused by diffraction. The replacement of sem-
ishadowed regions by sharply edged illuminated and shadowed regions is made by assuming
ray paths instead of waves. This approximation is referred to as geometrical shadowing and
is the type of shadowing that will be considered here.
The first well known attempt to include geometrical shadowing effects in rough surfaces was
made by Beckmann Beckmann (1965). However, Brockelman and Hagfors’ results Brockel-
man & Hagfors (1966) obtained by Monte-Carlo simulation proved to be in great disagree-
ment with Beckmann’s predictions. Two different shadowing functions were introduced by
Wagner Wagner (1966) and shortly afterwards by Smith Smith (1967). Hardin Hardin (1971)
extended the theory to allow the source to be at a finite height above the surface, making a
special case of Wagner’s theory when the source is at an infinite height. Bass and Fuks also in-
vestigated rough surface shadowing in Bass & Fuks (1979). We will follow the recent study by
Kapp and Brown Kapp & Brown (1994), based on Ricciardi and Sato’s work on first passage
time problems for Gaussian processes Ricciardi & Sato (1983; 1986), which shows how Wag-
ner’s shadowing function can be obtained in a more rigourous way than in Wagner (1966). The
theory is extended here to include topographical surfaces. Bass and Fuks’ considerations Bass
& Fuks (1979) regarding the shadowing phenomenon in the framework of perturbation series
are also considered.

5. Shadowing: Formulation for First Crossing Problems

The random rough surface z = ζ(x,y) which serves as the target of our scattering experi-
ment is assumed to be represented by a Gaussian distribution. Thus, for any set of n pairs
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and Dik is the cofactor of the element ρik in the determinant D. Each point on the surface is
assumed to have a distinct mean value but all are described by a single variance σ2.
Let S be a ray impinging upon the surface at point�r0 = (x0,y0,z0) given by

{
zS = z0 + a(x − x0)
yS = y0

(90)

with an angle θ = arccot a over the normal, where the ray is chosen to lie in the y = y0 plane
for convenience. The z coordinate of the ray will be written as zS(�r0, x) in what follows. We
define g(ζ,S, x; x0,y0|z0)dx dy0 as the probability that ζ will cross the incoming ray S in the
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−
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dx1 Pr[ζ crosses S from below in

(x, x + dx) × (y0,y0 + dy0)and in

(x1, x1 + dx1) × (y0,y0 + dy0)]

but not inx′ : x′ ∈ (x, x1)|ζ(x0,y0)= z0]

(91)

Thereby, g(ζ,S, x|ζ(x0,y0)= z0) can be found by iterating (91) to obtain the following infinite
series
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where wi(x, x1, . . . , xi−1; x0,y0|ζ(x0,y0)= z0)dx dx1 · · ·dxi−1 dy0 is the joint probability that the
ray ζ crosses S i times from below (“up-crossing”), specifically in the intervals (x, x + dx) ×
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Effect of Geometrical Shadowing in Random Rough Surfaces The derivation of the far-zone
scattered field with IEM2M is a second-order approach based on the Kirchhoff surface fields.
As already mentioned, this causes the field components of the model to be approximations to
the exact first and second-order scattered field components. One of the corrections that can be
made to improve these approximations is to include the shadowing effects that are not con-
sidered in the Kirchhoff surface fields, on which the whole derivation is based. The Kirchhoff
approximation fails to take account of the different states of illumination under the incident
field. These states range from full illumination to complete shadowing by other parts of the
surface, as well as regimes of semishadowing caused by diffraction. The replacement of sem-
ishadowed regions by sharply edged illuminated and shadowed regions is made by assuming
ray paths instead of waves. This approximation is referred to as geometrical shadowing and
is the type of shadowing that will be considered here.
The first well known attempt to include geometrical shadowing effects in rough surfaces was
made by Beckmann Beckmann (1965). However, Brockelman and Hagfors’ results Brockel-
man & Hagfors (1966) obtained by Monte-Carlo simulation proved to be in great disagree-
ment with Beckmann’s predictions. Two different shadowing functions were introduced by
Wagner Wagner (1966) and shortly afterwards by Smith Smith (1967). Hardin Hardin (1971)
extended the theory to allow the source to be at a finite height above the surface, making a
special case of Wagner’s theory when the source is at an infinite height. Bass and Fuks also in-
vestigated rough surface shadowing in Bass & Fuks (1979). We will follow the recent study by
Kapp and Brown Kapp & Brown (1994), based on Ricciardi and Sato’s work on first passage
time problems for Gaussian processes Ricciardi & Sato (1983; 1986), which shows how Wag-
ner’s shadowing function can be obtained in a more rigourous way than in Wagner (1966). The
theory is extended here to include topographical surfaces. Bass and Fuks’ considerations Bass
& Fuks (1979) regarding the shadowing phenomenon in the framework of perturbation series
are also considered.

5. Shadowing: Formulation for First Crossing Problems

The random rough surface z = ζ(x,y) which serves as the target of our scattering experi-
ment is assumed to be represented by a Gaussian distribution. Thus, for any set of n pairs
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where
〈 〉

z0
denotes an average over z0 values. Obtaining a 3-D shadowing function

from (99) is immediate. Thus,

S(k̂i) = W(k̂) ≡
〈
e−G∞(x0,y0;z0;k̂)〉

(x0,y0;z0)
(100)

where
〈 〉

(x0,y0;z0)
denotes an average over z0 as well as x0 and y0. The pdf for the variables

x0 and y0 is a uniform distribution over a finite, topographical surface. Yet, it is important
to note that we have assumed a surface with infinite dimensions in (96) and hence also in
obtaining (97). However, it is possible to assume that the border effects due to a finite surface
are negligible so (100) can be derived from (99) in order to compute the shadowing.

7. Bistatic Shadowing

The problem of shadowing is present both in the directions of incidence and scattering. Ex-
pressions for the relevant shadowing functions in first and second-order scattering events are
derived in this section.

7.1 Single Scattering
To introduce a bistatic shadowing function for first-order scattering, let us first consider an
incident ray Si and a reflected or scattered ray Ss crossing a point (x0,y0,z0) on the surface
with angles θi and θs over the normal and slopes ai = cotθi and as = cotθs. Likewise, ki and
ks represent the propagation vectors of the plane waves along the incident and reflected ray
directions. The probability W(A, B) that the surface will not cross either Si (event A) or Ss
(event B) anywhere equals the product of the probability that it will not cross Si, WA, and the
conditional probability that it will not cross Ss given that it does not cross Si, W(B|A). Within
a solid angle “pencil” or neighbourhood around the ray S1 and up to some distance or radius
from (x0,y0,z0), the event B is correlated to event A and W(B|A) �= W(B) in general.
Both this radius and the width of the pencil are proportional to the correlation length of the
surface. In the surfaces we are considering there are two correlation lengths, namely, the one
corresponding to the deterministic component which shapes the surface as topographical and
the one corresponding to the random component. The former is larger than the latter. The
correlation between the statistical events A and B is only due to the random component of
the correlation. Therefore, the scope of the statistical interference of A and B is small at the
scale of the whole surface. Hence, we can approximate W(B|A) = W(B) for cases other than
backscattering and write

W(k̂i, k̂s; x0,y0|ζ(x0,y0)= z0)

= W(k̂i; x0,y0|ζ(x0,y0)= z0)W(k̂s; x0,y0|ζ(x0,y0)= z0)
(101)

where W(k̂i, k̂s; x0,y0|ζ(x0,y0)= z0) is a more rigorous notation for W(A, B). Hence, the fol-
lowing bistatic shadowing function is found

S(k̂i, k̂s) =
〈
e−[G∞(x0,y0;z0;k̂i)+G∞(x0,y0;z0;k̂s)]〉

(z0;x0,y0)
(102)

For the case of backscattering, W(B|A) = 1 and

S(k̂i, k̂s) = S(k̂i) (103)

(y0,y0 + dy0), (x1, x1 + dx1) × (y0,y0 + dy0), . . . , (xi−1, xi−1 + dxi−1) × (y0,y0 + dy0), given
ζ(x0,y0)= z0. These pdf’s can be written as

wi(x1, . . . ,xi; x0,y0|ζ(x0,y0)= z0) =
∫ ∞

a
dz′1 · · ·

∫ ∞

a
dz′i

i

∏
j=1

(z′j − a)

fi,i[zS(�r0, x1), . . . ,zS(�r0, xi);z′1, . . . ,z′i |ζ(x0,y0)= z0]

(93)

with fi,i[zS(�r0, x1),zS(�r0, x2), . . . ,zS(�r0, xi);z′1,z′2, . . . ,z′i |ζ(x0,y0) = z0] being the joint pdf of
ζ(xk,y0) = zS(�r0, xk) for k = 1, . . . , i , conditional upon ζ(x0,y0) = z0. Ricciardi and Sato ob-
tained a similar infinite series for g(ζ,S, x; x0,y0|ζ(x0,y0)=z0) in Ricciardi & Sato (1983; 1986).

6. Shadowing Function

We will introduce two assumptions:

i. the heights and slopes at the shadowing points are uncorrelated with the height of the
shadowed points, and

ii. the shadowing points are uncorrelated with each other.

Under these approximations, the joint pdf in (93) satisfies

fi,i[zS(�r0, x1),zS(�r0, x2), . . . ,zS(�r0, xi);z′1,z′2, . . . ,z′i |ζ(x0,y0)= z0]

=
(

1
2πσσ′

)i i

∏
k=1

e−
(zS (�r0,xk )−z̄(xk ,y0))2

2σ2 e−
(z′k−z̄′ (xk ,y0))2

2σ′2

= f1,1[zS(�r0, x1);z′1] f1,1[zS(�r0, x2);z′2] · · · f1,1[zS(�r0, xi);z′i ] (94)

The probability density function that a point on the surface at (x0,y0) will not be shadowed
when the surface is illuminated by a plane wave of propagation vector k̂ is

W(k̂; x0,y0) =
∫ ∞

−∞
dz0 W(k̂; x0,y0|ζ(x0,y0)= z0) p(ζ(x0,y0) = z0) (95)

where
W(k̂; x0,y0|ζ(x0,y0)= z0) = 1 −

∫ ∞

x0

dx g(ζ,S, x; x0,y0|ζ(x0,y0)= z0) (96)

Combining (92), (93) and (94) with (96), we obtain

W(k̂; x0,y0|ζ(x0,y0)= z0) = e−G∞(x0,y0;z0;k̂) (97)

with

G∞(x0,y0;z0; k̂) =
1

2
√

2
√

πσ

∫ ∞

0
dx e−

(zS (z0,x)−z̄(x,y0))2

2σ2

[
σ′

√
2
π

e−
(a−z̄′ (x,y0))

2σ′2 − (a − z̄′(x,y0))erfc
(

a − z̄′(x,y0)√
2σ′

)]
(98)

where z̄(x,y) represents the mean height at (x,y), z̄(x,y) is the mean slope at this point and
σ′2 is the variance of the slope. Therefore,

W(k̂; x0,y0) =
∫ ∞

−∞
dz0 p(ζ(x0,y0) = z0) e−G∞(x0,y0;z0;k̂) =

〈
e−G∞(x0,y0;z0;k̂)〉

z0
(99)
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where
〈 〉

z0
denotes an average over z0 values. Obtaining a 3-D shadowing function

from (99) is immediate. Thus,

S(k̂i) = W(k̂) ≡
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e−G∞(x0,y0;z0;k̂)〉

(x0,y0;z0)
(100)

where
〈 〉

(x0,y0;z0)
denotes an average over z0 as well as x0 and y0. The pdf for the variables

x0 and y0 is a uniform distribution over a finite, topographical surface. Yet, it is important
to note that we have assumed a surface with infinite dimensions in (96) and hence also in
obtaining (97). However, it is possible to assume that the border effects due to a finite surface
are negligible so (100) can be derived from (99) in order to compute the shadowing.

7. Bistatic Shadowing

The problem of shadowing is present both in the directions of incidence and scattering. Ex-
pressions for the relevant shadowing functions in first and second-order scattering events are
derived in this section.

7.1 Single Scattering
To introduce a bistatic shadowing function for first-order scattering, let us first consider an
incident ray Si and a reflected or scattered ray Ss crossing a point (x0,y0,z0) on the surface
with angles θi and θs over the normal and slopes ai = cotθi and as = cotθs. Likewise, ki and
ks represent the propagation vectors of the plane waves along the incident and reflected ray
directions. The probability W(A, B) that the surface will not cross either Si (event A) or Ss
(event B) anywhere equals the product of the probability that it will not cross Si, WA, and the
conditional probability that it will not cross Ss given that it does not cross Si, W(B|A). Within
a solid angle “pencil” or neighbourhood around the ray S1 and up to some distance or radius
from (x0,y0,z0), the event B is correlated to event A and W(B|A) �= W(B) in general.
Both this radius and the width of the pencil are proportional to the correlation length of the
surface. In the surfaces we are considering there are two correlation lengths, namely, the one
corresponding to the deterministic component which shapes the surface as topographical and
the one corresponding to the random component. The former is larger than the latter. The
correlation between the statistical events A and B is only due to the random component of
the correlation. Therefore, the scope of the statistical interference of A and B is small at the
scale of the whole surface. Hence, we can approximate W(B|A) = W(B) for cases other than
backscattering and write

W(k̂i, k̂s; x0,y0|ζ(x0,y0)= z0)

= W(k̂i; x0,y0|ζ(x0,y0)= z0)W(k̂s; x0,y0|ζ(x0,y0)= z0)
(101)

where W(k̂i, k̂s; x0,y0|ζ(x0,y0)= z0) is a more rigorous notation for W(A, B). Hence, the fol-
lowing bistatic shadowing function is found

S(k̂i, k̂s) =
〈
e−[G∞(x0,y0;z0;k̂i)+G∞(x0,y0;z0;k̂s)]〉

(z0;x0,y0)
(102)

For the case of backscattering, W(B|A) = 1 and

S(k̂i, k̂s) = S(k̂i) (103)

(y0,y0 + dy0), (x1, x1 + dx1) × (y0,y0 + dy0), . . . , (xi−1, xi−1 + dxi−1) × (y0,y0 + dy0), given
ζ(x0,y0)= z0. These pdf’s can be written as

wi(x1, . . . ,xi; x0,y0|ζ(x0,y0)= z0) =
∫ ∞

a
dz′1 · · ·

∫ ∞

a
dz′i

i

∏
j=1

(z′j − a)

fi,i[zS(�r0, x1), . . . ,zS(�r0, xi);z′1, . . . ,z′i |ζ(x0,y0)= z0]

(93)

with fi,i[zS(�r0, x1),zS(�r0, x2), . . . ,zS(�r0, xi);z′1,z′2, . . . ,z′i |ζ(x0,y0) = z0] being the joint pdf of
ζ(xk,y0) = zS(�r0, xk) for k = 1, . . . , i , conditional upon ζ(x0,y0) = z0. Ricciardi and Sato ob-
tained a similar infinite series for g(ζ,S, x; x0,y0|ζ(x0,y0)=z0) in Ricciardi & Sato (1983; 1986).

6. Shadowing Function

We will introduce two assumptions:

i. the heights and slopes at the shadowing points are uncorrelated with the height of the
shadowed points, and

ii. the shadowing points are uncorrelated with each other.

Under these approximations, the joint pdf in (93) satisfies

fi,i[zS(�r0, x1),zS(�r0, x2), . . . ,zS(�r0, xi);z′1,z′2, . . . ,z′i |ζ(x0,y0)= z0]

=
(

1
2πσσ′

)i i

∏
k=1

e−
(zS (�r0,xk )−z̄(xk ,y0))2

2σ2 e−
(z′k−z̄′ (xk ,y0))2

2σ′2

= f1,1[zS(�r0, x1);z′1] f1,1[zS(�r0, x2);z′2] · · · f1,1[zS(�r0, xi);z′i ] (94)

The probability density function that a point on the surface at (x0,y0) will not be shadowed
when the surface is illuminated by a plane wave of propagation vector k̂ is

W(k̂; x0,y0) =
∫ ∞

−∞
dz0 W(k̂; x0,y0|ζ(x0,y0)= z0) p(ζ(x0,y0) = z0) (95)

where
W(k̂; x0,y0|ζ(x0,y0)= z0) = 1 −

∫ ∞

x0

dx g(ζ,S, x; x0,y0|ζ(x0,y0)= z0) (96)

Combining (92), (93) and (94) with (96), we obtain

W(k̂; x0,y0|ζ(x0,y0)= z0) = e−G∞(x0,y0;z0;k̂) (97)

with

G∞(x0,y0;z0; k̂) =
1

2
√

2
√

πσ

∫ ∞

0
dx e−

(zS (z0,x)−z̄(x,y0))2

2σ2

[
σ′

√
2
π

e−
(a−z̄′ (x,y0))

2σ′2 − (a − z̄′(x,y0))erfc
(

a − z̄′(x,y0)√
2σ′

)]
(98)

where z̄(x,y) represents the mean height at (x,y), z̄(x,y) is the mean slope at this point and
σ′2 is the variance of the slope. Therefore,

W(k̂; x0,y0) =
∫ ∞

−∞
dz0 p(ζ(x0,y0) = z0) e−G∞(x0,y0;z0;k̂) =

〈
e−G∞(x0,y0;z0;k̂)〉

z0
(99)
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first power of the ±(ksz + kz), (ksz ∓ k(2)
z ) and (±k(2)

sz − kz) included in the in’s.
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k2

2 − k2
1 sin2 θ)
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sz ) = cosφs(k1 cosθ ±

√
k2
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1 sin2 θs)
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1 cosθ(cosφs − cosφs cosθ cosθs − sinθ sinθs)
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1 cosθs(cosφs − cosφs cosθ cosθs − sinθ sinθs)

C2(kx,ky,±k(2)
z ) = cosθ [cosφs(k2

2 ∓ k1 cosθs

√
k2

2 − k2
1 sin2 θ) − k2

1 sinθ sinθs]

C2(ksx,ksy,±k(2)
sz ) = ±k1 sinθ sinθs

√
k2

2 − k2
1 sin2 θs

− cosφs[cosθ(k2
2 − k2

1 sin2 θs) ± k1

√
k2

2 − k2
1 sin2 θs]

C3(kx,ky,−kz) = −k2
1 sinθ(cosφs cosθs sinθ − cosθ sinθs)

C3(ksx,ksy,−ksz) = −k2
1 sinθs(cosφs cosθ sinθs − cosθs sinθ)

C3(kx,ky,±k(2)
z ) = −k1 sinθ(k1 cosφs cosθs sinθ ∓

√
k2

2 − k2
1 sin2 θ sinθs)

C3(ksx,ksy,±k(2)
sz ) = −k1 sinθs(k1 cosφs cosθ sinθs ±

√
k2

2 − k2
1 sin2 θs sinθ)

C4(kx,ky,−kz) = −k1 cosθ[cosφs(cosθ cosθs − 1) + sinθ sinθs]
C4(ksx,ksy,−ksz) = −k1 cosθs[cosφs(cosθ cosθs − 1) + sinθ sinθs]

C4(kx,ky,±k(2)
z ) = cosθ[cosφs cosθs(k1 cosθs ∓

√
k2

2 − k2
1 sin2 θ)

− k1 sinθs(sinθ − cosφs sinθs)]

C4(ksx,ksy,±k(2)
sz ) = cosθs[cosφs(k1 ± cosθ

√
k2

2 − k2
1 sin2 θs) − k1 sinθ sinθs]

C5(kx,ky,−kz) = C2(kx,ky,−kz)
C5(ksx,ksy,−ksz) = C2(ksx,ksy,−ksz)

C5(kx,ky,±k(2)
z ) = ±

√
k2

2 − k2
1 sin2 θ[cosφs cosθs(k1 cosθs ∓

√
k2

2 − k2
1 sin2 θ)

− k1 sinθs(sinθ − cosφs sinθs)]

C5(ksx,ksy,±k(2)
sz ) = cosθs[cosφs(k2

2 ± k1 cosθ
√

k2
2 − k2

1 sin2 θs) − k2
1 sinθ sinθs]

C6(kx,ky,−kz) = C6(ksx,ksy,−ksz) = C6(kx,ky,±k(2)
z ) = C6(ksx,ksy,±k(2)

sz ) = 0

7.2 Second Order Scattering
For the case of second-order scattering we will apply, in a reiterative fashion, the result given
in (102) for bistatic shadowing. However, there are some remarks to be made. First, we dif-
ferentiate between those intermediate plane waves propagating through the medium below
the surface,

∣∣�l2
〉
, and those propagating through the incidence medium,

∣∣�l1
〉
. Then it is neces-

sary to consider that the intermediate plane waves travel both upwards and downwards. We
present shadowing functions for all these four combined cases.
Let us consider the scattering event of a second-order deflection where the intermediate plane
wave propagates upwards within the incidence medium. The bistatic shadowing function
S(k̂i, l̂+1 ) defined in (102) represents the fraction of the surface which scatters the incident
power outwards. Therefore, 1 − S(k̂i, l̂+1 ) is the fraction of the scattered power that is once
more intercepted by the surface. In the same fashion, only the fraction S(l̂+1 , k̂s) of the surface
rescatters the power into the k̂s direction. Hence, the second order shadowing function for
“reflected” intermediate waves can be written as

S1(k̂i, l̂+1 , k̂s) = [1 − S(k̂i, l̂+1 )]S(l̂+1 , k̂s) (104)

Likewise, we obtain
S1(k̂i, l̂−1 , k̂s) = S(k̂i, l̂−1 )S(l̂−1 , k̂s) (105)

as S(k̂i, l̂−1 ) is the fraction of the first-order scattered power that will impinge again upon the
surface.
When the intermediate wave planes propagate through the medium below the surface, the
same principles as above apply. The only difference is that the computation of the bistatic
shadowing functions have to be made with the surface equation z = ζ(x,y) replaced by z =
−ζ(x,y). If we denote such shadowing functions as S′(k̂i, l̂+2 ) and S′(l̂+2 , k̂s), the second-order
shadowing for “refracted” intermediate waves is given by

S2(k̂i, l̂+2 , k̂s) = S′(k̂i, l̂+2 )S′(l̂+2 , k̂s) (106)

S2(k̂i, l̂−2 , k̂s) = [1 − S′(k̂i, l̂−2 )]S′(l̂−2 , k̂s) (107)
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As stated before, all the expressions for fqp and Fqp are given in Alvarez-Perez (2001), namely,
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However, the C coefficients are written there in a very general manner which requires a great
deal of work by the implementer. Here these coefficients are worked out and incorporate the
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With these expression it is straightforward to prove that the SPM limit for the most general
case of bistatic scattering is reached when we take (1) to first order in σ2. Probably the formal
character of the C’s as given in Alvarez-Perez (2001) has precluded other authors to properly
implement the model, as it is the case in Fung et al. (2002) or Du (2008), where incorrect IEM2M
results were provided. A Mathematica version of the code is available from the author upon
request.
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1. Introduction    
 

Soil moisture, defined as the water content in the upper layer of soil, is the hydrologic 
variable that controls the interactions (and feedbacks) between land surface and 
atmospheric processes (Hossain and Anagnostou, 2005). Soil moisture is important in the 
distribution of precipitation between runoff and infiltration (Baghdadi et al., 2006). Soil 
moisture monitoring and characterization of the spatial and temporal variability of soil 
moisture at scales from small catchments to large river basins is important in the 
understanding of subsurface – land surface – atmospheric interactions as well as, drought 
analysis, crop yield forecasting, irrigation planning, flood protection, and forest fire 
prevention (Georgakakos and Baumer, 1996; Robock et al., 2003). Surface soil moisture 
distribution information is a critical forcing variable in many Soil Vegetation Atmosphere 
Transfer (SVAT) models to estimate profile soil moisture at daily time steps. Soil moisture 
distribution also plays a key role in the prediction of erosion and sediment loads in 
watershed streams and ponds. In arid and semi-arid watersheds soil moisture content has 
been used as a surrogate indicator of general plant health (Moran et al., 2004).  
 
Research in the extraction of soil surface moisture information from remotely sensed 
imagery has been an important research topic in the last decade. Optical remote sensing 
data have been used successfully for mapping and monitoring relative variations in soil 
moisture when reflective data are combined with thermal data from the same sensors (e.g., 
Carlson et al., 1995; Lambin and Ehrlich, 1996; Gillies et al., 1997; Hossain and Easson, 2008 
& 2006). Microwave remote sensing techniques provide a direct measurement of the surface 
soil moisture for a range of vegetation cover conditions within reasonable error bounds 
(Jackson, 2002). Passive microwave remote sensing uses radiometers that detect and 
measure the natural thermal microwave emissions of a particular frequency, within a 
narrow band. This measurement provides the brightness temperature, which includes 
contributions from the atmosphere, reflected sky radiation, and the land surface. The 
Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) sensor on 
NASA's Aqua satellite and the Soil Moisture and Ocean Salinity (SMOS) mission of 
European Space Agency (ESA) are the two major currently operating passive microwave 
sensors dedicated to soil moisture mapping. Active microwave sensors produce energy and 
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of the spacecraft to synthesize a large antenna, enabling high azimuthal resolution in the 
resulting image using a physically small antenna and longer radar wavelength.  
 
Active Microwave Region in EMS 
The microwave portion of the Electromagnetic Spectrum (EMS) is large, relative to the 
visible, and there are several wavelength ranges or bands used in radar imaging. Imaging 
radar systems operate at specific wavelengths or frequencies in the EMS. The active 
microwave regions include X, C, L and K band, which refers to specific segments of the 
microwave portion of the EMS. For example, an X band system would be radar that 
operates at a single wavelength within this band (e.g., 3.2 cm) (Henderson and Lewis, 1998). 
Most of the spaceborne radar systems operate in C (5.7 cm) and L (24 cm) bands.  
 
Radar Imaging Geometry  
Interpretation of SAR imagery for information extraction requires an understanding of radar 
imaging geometry, the nature of interaction between radar energy and surface features, and 
the parameters used to characterize the performance of different SAR systems. Figure 1 is a 
schematic diagram that illustrates the geometry of radar imaging and related radar 
terminology. In radar imaging systems, the platform (a) travels forward in the flight 
direction (b) with the nadir point (c) directly beneath the platform. The microwave beam (k) 
is transmitted obliquely at right angles to the direction of flight, illuminating a swath 
(usually the width of the imaging area) (f), which is offset from nadir. Range (e) refers to the 
across-track dimension perpendicular to the flight direction (b), while azimuth (d) refers to 
the along-track dimension parallel to the flight direction (b). Near range (h) is the portion of 
the imaging swath closest to the nadir track and far range (g) is the portion of the imaging 
swath farthest from the nadir track. Depression angle (α) is the angle between the horizontal 
and a radar ray path. Slant range distance (i) is the radial line of sight distance between the 
radar and each target on the surface. Ground range distance is the true horizontal distance 
along the ground corresponding to each point measured in slant range. Incidence angle (θ) 
is the angle between the radar beam and the perpendicular to the ground surface. Look 
angle (β) is the angle at which the radar looks at the surface, or the angle between vertical 
and the ray path.  
 

 
Fig. 1. Radar imaging geometry (adopted from Henderson and Lewis, 1998). 

 

measure the amount of energy returned from the target to yield a variable called the 
backscattering coefficient (σo or βo). The backscattering coefficient is related to the surface 
reflectivity, which is used to determine surface soil moisture (Ulaby et al., 1986). Radarsat 2 
Synthetic Aperture Radar (SAR), ENVISAT Advance Synthetic Aperture Radar (ASAR) and 
Advanced Land Observing Satellite (ALOS) Phased Array Type L-band Synthetic Aperture 
Radar (PALSAR) are the most widely used currently operating spaceborne active 
microwave sensors.  
 
This chapter provides a brief overview of active microwave soil moisture remote sensing 
and presents a case study of soil moisture mapping in a semi-arid environment. The 
overview of active microwave soil moisture remote sensing includes a discussion of the 
basic principles of microwave remote sensing emphasizing soil surface moisture 
information extraction and different methods for soil moisture estimation using SAR data 
with emphasis on the existing algorithms for SAR based soil moisture mapping in semi-arid 
environment. The case study presents research in southeastern New Mexico that explored 
the linear and the non-linear relationships between radar reflectivity (backscatter) and soil 
moisture and determined the impact of vegetation in soil moisture estimation.  

 
1.1 Basic Principles of Synthetic Aperture Radar (SAR) 
RADAR (RAdio Detection And Ranging) sensors operate in the microwave portion of the 
electromagnetic spectrum beyond the visible and thermal infrared regions. Imaging radars 
are generally considered to include wavelengths from 1 mm to 1 m. RADAR is an active 
sensor, transmitting a signal of electromagnetic energy, illuminating the terrain, and 
recording or measuring the response returned from the target or surface. Thus, the term 
“active microwave” is often synonymous with radar (Henderson and Lewis, 1998). As an 
active sensor, radars are independent of the sun and sun conditions and can operate day or 
night. Radar can, in effect, collect data on a 24 hour basis. Unlike optical sensors, imaging 
radars are not affected by cloud or haze and operate generally independent of weather 
conditions.  
 
SAR 
Traditionally (before 1978) radar imaging was conducted using Real Aperture Radar (RAR) 
systems. RAR transmits a narrow angle beam of pulse radio wave in the range direction at 
right angles to the flight direction (called the azimuth direction) and receives the backscatter 
from the targets, which is transformed into a radar image from the received signal. Aperture 
is the opening used to collect the reflected energy used to form an image. In the case of radar 
imaging the aperture is the antenna and for RAR systems, only the amplitude of each echo 
return is measured and processed. The spatial resolution of a RAR system is mainly 
determined by the size of the antenna. For any given wavelength, the larger the antenna the 
better the spatial resolution. It is difficult to attach large antenna to aircraft or spaceborne 
sensor systems. For example a 1 km diameter antenna is needed in order to obtain 25 m 
resolution with L band (λ=25 cm) at a distance of 100 km from a target. 
 
In order to overcome this limitation, radar systems with a synthetic aperture have been 
developed, which simulate an artificial (or virtual) antenna. Synthetic Aperture Radar (SAR) 
takes advantage of the Doppler history of the radar echoes generated by the forward motion 
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of the spacecraft to synthesize a large antenna, enabling high azimuthal resolution in the 
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operates at a single wavelength within this band (e.g., 3.2 cm) (Henderson and Lewis, 1998). 
Most of the spaceborne radar systems operate in C (5.7 cm) and L (24 cm) bands.  
 
Radar Imaging Geometry  
Interpretation of SAR imagery for information extraction requires an understanding of radar 
imaging geometry, the nature of interaction between radar energy and surface features, and 
the parameters used to characterize the performance of different SAR systems. Figure 1 is a 
schematic diagram that illustrates the geometry of radar imaging and related radar 
terminology. In radar imaging systems, the platform (a) travels forward in the flight 
direction (b) with the nadir point (c) directly beneath the platform. The microwave beam (k) 
is transmitted obliquely at right angles to the direction of flight, illuminating a swath 
(usually the width of the imaging area) (f), which is offset from nadir. Range (e) refers to the 
across-track dimension perpendicular to the flight direction (b), while azimuth (d) refers to 
the along-track dimension parallel to the flight direction (b). Near range (h) is the portion of 
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swath farthest from the nadir track. Depression angle (α) is the angle between the horizontal 
and a radar ray path. Slant range distance (i) is the radial line of sight distance between the 
radar and each target on the surface. Ground range distance is the true horizontal distance 
along the ground corresponding to each point measured in slant range. Incidence angle (θ) 
is the angle between the radar beam and the perpendicular to the ground surface. Look 
angle (β) is the angle at which the radar looks at the surface, or the angle between vertical 
and the ray path.  
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measure the amount of energy returned from the target to yield a variable called the 
backscattering coefficient (σo or βo). The backscattering coefficient is related to the surface 
reflectivity, which is used to determine surface soil moisture (Ulaby et al., 1986). Radarsat 2 
Synthetic Aperture Radar (SAR), ENVISAT Advance Synthetic Aperture Radar (ASAR) and 
Advanced Land Observing Satellite (ALOS) Phased Array Type L-band Synthetic Aperture 
Radar (PALSAR) are the most widely used currently operating spaceborne active 
microwave sensors.  
 
This chapter provides a brief overview of active microwave soil moisture remote sensing 
and presents a case study of soil moisture mapping in a semi-arid environment. The 
overview of active microwave soil moisture remote sensing includes a discussion of the 
basic principles of microwave remote sensing emphasizing soil surface moisture 
information extraction and different methods for soil moisture estimation using SAR data 
with emphasis on the existing algorithms for SAR based soil moisture mapping in semi-arid 
environment. The case study presents research in southeastern New Mexico that explored 
the linear and the non-linear relationships between radar reflectivity (backscatter) and soil 
moisture and determined the impact of vegetation in soil moisture estimation.  

 
1.1 Basic Principles of Synthetic Aperture Radar (SAR) 
RADAR (RAdio Detection And Ranging) sensors operate in the microwave portion of the 
electromagnetic spectrum beyond the visible and thermal infrared regions. Imaging radars 
are generally considered to include wavelengths from 1 mm to 1 m. RADAR is an active 
sensor, transmitting a signal of electromagnetic energy, illuminating the terrain, and 
recording or measuring the response returned from the target or surface. Thus, the term 
“active microwave” is often synonymous with radar (Henderson and Lewis, 1998). As an 
active sensor, radars are independent of the sun and sun conditions and can operate day or 
night. Radar can, in effect, collect data on a 24 hour basis. Unlike optical sensors, imaging 
radars are not affected by cloud or haze and operate generally independent of weather 
conditions.  
 
SAR 
Traditionally (before 1978) radar imaging was conducted using Real Aperture Radar (RAR) 
systems. RAR transmits a narrow angle beam of pulse radio wave in the range direction at 
right angles to the flight direction (called the azimuth direction) and receives the backscatter 
from the targets, which is transformed into a radar image from the received signal. Aperture 
is the opening used to collect the reflected energy used to form an image. In the case of radar 
imaging the aperture is the antenna and for RAR systems, only the amplitude of each echo 
return is measured and processed. The spatial resolution of a RAR system is mainly 
determined by the size of the antenna. For any given wavelength, the larger the antenna the 
better the spatial resolution. It is difficult to attach large antenna to aircraft or spaceborne 
sensor systems. For example a 1 km diameter antenna is needed in order to obtain 25 m 
resolution with L band (λ=25 cm) at a distance of 100 km from a target. 
 
In order to overcome this limitation, radar systems with a synthetic aperture have been 
developed, which simulate an artificial (or virtual) antenna. Synthetic Aperture Radar (SAR) 
takes advantage of the Doppler history of the radar echoes generated by the forward motion 
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waves through media characterized by certain physical constants, one of which is the 
dielectric constant. The dielectric constant (or the complex permittivity) is the principal 
description of the medium’s response to the presence of an electrical field (Raney, 1998). The 
dielectric constant is measured as the ratio of the permittivity of a substance to the 
permittivity of free space. The material’s dielectric constant depends weakly on frequency, 
but its loss tangent depends strongly on frequency (Raney, 1998).  
 
System Parameters  
Along with wavelength (or frequency), polarization and resolution are the two most 
important system parameters that are used to interpret the performance of an imaging radar 
system. Polarization of the radar signal is the orientation of the electromagnetic field and is a 
significant factor by which the radar signal interacts with objects on the ground, reflecting 
back the resulting energy. Most radar imaging sensors are designed to transmit microwave 
radiation either horizontally polarized (H) or vertically polarized (V), and receive either the 
horizontally or vertically polarized backscattered energy. Polarizing radar has four possible 
combinations of both transmit and receive polarizations: HH - for horizontal transmit and 
horizontal receive, VV - for vertical transmit and vertical receive, HV - for horizontal 
transmit and vertical receive, (cross-polarized), VH - for vertical transmit and horizontal 
receive (cross-polarized). The spatial resolution of a radar system is the ability to distinguish 
between different objects, and it is dependent on the properties of the microwave radiation 
and geometric effects. There are two types of spatial or ground resolution: range resolution 
(across-track resolution) and azimuth resolution (along-track resolution). Range resolution 
requires that the objects be separated by more than half the pulse length. Azimuth 
resolution is dependent on the angular width of the radiated microwave beam and the slant 
range distance. The azimuth resolution becomes more coarse with increasing distance from 
the sensor. More detail discussion on the imaging radar’s system parameters can be found in 
Henderson and Lewis (1998). Table 1. shows the system parameters of commonly used 
radar imaging systems.  
 

System 
parameters 

Radarsat  1/2   
SAR 

ERS   
SAR  

ENVISAT  
ASAR  

ALOS  
PALSAR 

Incidence angle (o) 20-50 23 15-45 10-51 
SAR Band C C C L 
Wavelength (cm) 5.7 5.7 5.7 23 
Polarization HH VV HH, VV, VH, HV HH, VV, VH, HV 
Resolution (m) 3-100 30 10-100 10-100 
Repeat pass 24 35 35 46 
 

 
Table 1 System parameters of different SAR platforms 

 
1.2 Estimation of Soil Moisture Using SAR 
Measuring and mapping soil moisture has been investigated using scatterometers, satellites, 
space shuttles, and airborne synthetic aperture radars (SAR) for many years. SAR data are 
well suited for estimating soil moisture due to the relationship of the dielectric constant and 
soil moisture. According to Ulaby et al. (1987), for a given soil condition (roughness or 
texture) radar backscatter is linearly dependent on volumetric moisture (mv) in the upper 2 
to 5 cm of soil with a correlation R2 ~ 0.8 to 0.9.  
 

 

Target Interaction 
In active microwave system, the energy received by a radar derives from one or more 
individual reflections. In a typical scene, there are many scatterers contributing to the 
energy received from a given region, and the locations of the individual scatterers are 
random (not necessarily maintaining any pattern). Usually the net signal for the scene is 
described by using an average over the region, leading to a distributed or diffuse scatterer 
model (Raney, 1998). In active systems, the brightness or darkness of the image is dependent 
on the amount of the transmitted energy that is returned back to the radar from targets on 
the surface as a measure of reflectivity (backscatter). Bright areas are produced by strong 
radar responses and darker areas are from weaker radar responses. Sigma-naught (σo) is 
commonly used to describe the average reflectivity or scattering co-efficient of a radar scene. 
Beta-naught (βo) interprets the brightness estimates of mean reflectivity. Beta-naught (βo) 
separates the radiometric response and reflectivity dependent on the terrain properties, such 
as local slope. According to Glen and Carr (2004):  
 

)(sinlog10 10 loo += βσ        (1) 

)/(log10 23
2

10 AADNo +=β        (2) 
 
Where,  DN = Digital number, A3 = fixed offset from the radiometric data record, A2 = look-
up table (LUT) value, and l = local incidence angle. 
Beta-naught (βo) is suggested as standard terminology for the output product of most 
imaging radars (Raney, 1998).  
 
Response to radar energy (for a given wavelength and polarization) by the target is 
primarily dependent on three factors: surface roughness, local incident angle and the 
dielectric constant of the target materials (Raney, 1998). Surface Roughness is measured as 
the average height variation in the surface cover (measured in cm). Rayleigh (1945) 
proposed that the criterion for roughness depended on three parameters; incident angle, 
wavelength and surface irregularities. A surface is considered smooth if the height 
variations are smaller than the radar wavelength. Specular reflection is caused by a smooth 
surface where the incident energy is reflected and not backscattered. This results in smooth 
surfaces appearing as darker toned areas on an image. Diffuse reflection is caused by a 
rough surface, which scatters the energy equally in all directions. A significant portion of the 
energy will be backscattered to the radar, such that a rough surface will appear lighter in 
tone on an image. 
 
Corner reflection occurs when the target object reflects most of the energy directly back to 
the antenna resulting in a very bright appearance to the object. This occurs where there are 
buildings, metallic structures (urban environments) and cliff faces, folded rock (natural 
environments).  
 
Image geometry and radiometry are influenced by the angle of the incident illumination 
with respect to the local slope of the scene towards the radar. The image brightness per pixel 
is sensitive to the local incident angle, however, variations in the aspect angle due to the 
component of slope in the azimuth direction has negligible impact on image brightness 
(Guindon, 1990). Maxwell’s formulation considered the propagation of electromagnetic 
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waves through media characterized by certain physical constants, one of which is the 
dielectric constant. The dielectric constant (or the complex permittivity) is the principal 
description of the medium’s response to the presence of an electrical field (Raney, 1998). The 
dielectric constant is measured as the ratio of the permittivity of a substance to the 
permittivity of free space. The material’s dielectric constant depends weakly on frequency, 
but its loss tangent depends strongly on frequency (Raney, 1998).  
 
System Parameters  
Along with wavelength (or frequency), polarization and resolution are the two most 
important system parameters that are used to interpret the performance of an imaging radar 
system. Polarization of the radar signal is the orientation of the electromagnetic field and is a 
significant factor by which the radar signal interacts with objects on the ground, reflecting 
back the resulting energy. Most radar imaging sensors are designed to transmit microwave 
radiation either horizontally polarized (H) or vertically polarized (V), and receive either the 
horizontally or vertically polarized backscattered energy. Polarizing radar has four possible 
combinations of both transmit and receive polarizations: HH - for horizontal transmit and 
horizontal receive, VV - for vertical transmit and vertical receive, HV - for horizontal 
transmit and vertical receive, (cross-polarized), VH - for vertical transmit and horizontal 
receive (cross-polarized). The spatial resolution of a radar system is the ability to distinguish 
between different objects, and it is dependent on the properties of the microwave radiation 
and geometric effects. There are two types of spatial or ground resolution: range resolution 
(across-track resolution) and azimuth resolution (along-track resolution). Range resolution 
requires that the objects be separated by more than half the pulse length. Azimuth 
resolution is dependent on the angular width of the radiated microwave beam and the slant 
range distance. The azimuth resolution becomes more coarse with increasing distance from 
the sensor. More detail discussion on the imaging radar’s system parameters can be found in 
Henderson and Lewis (1998). Table 1. shows the system parameters of commonly used 
radar imaging systems.  
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Target Interaction 
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Beta-naught (βo) interprets the brightness estimates of mean reflectivity. Beta-naught (βo) 
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Where,  DN = Digital number, A3 = fixed offset from the radiometric data record, A2 = look-
up table (LUT) value, and l = local incidence angle. 
Beta-naught (βo) is suggested as standard terminology for the output product of most 
imaging radars (Raney, 1998).  
 
Response to radar energy (for a given wavelength and polarization) by the target is 
primarily dependent on three factors: surface roughness, local incident angle and the 
dielectric constant of the target materials (Raney, 1998). Surface Roughness is measured as 
the average height variation in the surface cover (measured in cm). Rayleigh (1945) 
proposed that the criterion for roughness depended on three parameters; incident angle, 
wavelength and surface irregularities. A surface is considered smooth if the height 
variations are smaller than the radar wavelength. Specular reflection is caused by a smooth 
surface where the incident energy is reflected and not backscattered. This results in smooth 
surfaces appearing as darker toned areas on an image. Diffuse reflection is caused by a 
rough surface, which scatters the energy equally in all directions. A significant portion of the 
energy will be backscattered to the radar, such that a rough surface will appear lighter in 
tone on an image. 
 
Corner reflection occurs when the target object reflects most of the energy directly back to 
the antenna resulting in a very bright appearance to the object. This occurs where there are 
buildings, metallic structures (urban environments) and cliff faces, folded rock (natural 
environments).  
 
Image geometry and radiometry are influenced by the angle of the incident illumination 
with respect to the local slope of the scene towards the radar. The image brightness per pixel 
is sensitive to the local incident angle, however, variations in the aspect angle due to the 
component of slope in the azimuth direction has negligible impact on image brightness 
(Guindon, 1990). Maxwell’s formulation considered the propagation of electromagnetic 
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(IEM) (Fung et al., 1992; Colpitts, 1998) are common examples of this kind of models. The 
models are inverted to estimate soil moisture content from radar backscattering coefficient. 
Soil moisture estimation accuracy is higher by this approach, however, model 
parameterization is complex. These SAR based soil moisture estimation algorithms are 
described and explained in detail in Henderson and Lewis (1998) and in Moran et al. (2004).  

 
1.3 Microwave Remote Sensing of Soil Moisture in Semi-arid Environment 
The presence of vegetative cover introduces complexity into soil moisture mapping due to 
the interaction of the microwave energy with the vegetation and soil. Depending on the 
amount of vegetation present, its dielectric properties, height and geometry (size, shape and 
orientation of its component parts), the sensitivity of microwave backscatter to volumetric 
soil moisture may be significantly reduced. Previous studies indicate that in a semi-arid 
environment the influence of sparse vegetation on the linear relationship between radar 
backscatter and soil moisture is negligible or can be ignored (Thomas et al., 2004; Lin and 
Wood, 1993; and Dubois et al., 1995).  
 
The research results presented in this chapter attempted to verify this concept in the semi-
arid environment of southeastern New Mexico. This research also explores the non-linear 
relationship between soil moisture and radar backscatter, and investigates the impact of 
vegetation in soil moisture estimation using microwave imagery in this area.  

 
2. Study Site 
 

Nash Draw, located in part of the northeastern Chihuahua desert in southeastern New 
Mexico (Figure 2), is a karst valley that developed in response to subsurface dissolution of 
evaporites and subsidence of the overlying strata (Holt et al., 2005). It is a complex example 
of the localized effects of evaporite karst on surface topography, near-surface geology, and 
hydrology (Powers et al., 2006). Although this area is in a semi-arid environment, the 
vegetation pattern is not uniform. Nash Draw covers an area of 400 sq. km and a subset area 
of 225 sq. km was selected as the study site. 
 

 
Fig. 2. Location of study site (Modified from Holt et al., 2005) 

 

In bare soil conditions, radar scattering is determined by surface roughness (geometry of the 
air soil boundary) and the microwave dielectric properties of the soil medium. The 
geometric factors affect the shape of the scattering pattern for an incident wave while the 
dielectric properties control the magnitude of reflection, absorption and transmission 
(Dobson and Ulaby, 1998). The average dielectric properties of the soil medium are 
dependent on the engineering properties of the soil including moisture content, density, 
texture, mineralogy and fluid chemistry. The dielectric constant of a material consists of two 
parts: real (Є’) and imaginary (Є”). In case of a perfectly dry soil, the relative dielectric 
constant is independent of soil type (Dobson et al., 1985). Dielectric constant in liquid water 
shows strong dependence on the microwave frequency and weak sensitivity to physical 
temperature. When compared to dry soil the real part of the relative dielectric constant is 30 
times greater and the imaginary part is about two orders of magnitude larger (Dobson and 
Ulaby, 1998). Due to the relationship between the dielectric constant in liquid water and 
microwave frequency the addition of water in liquid form to soil changes the dielectric 
constant of the mixture markedly.  
 
The penetration depth into a soil by microwave is proportional to radar wavelength 
(Dobson and Ulaby, 1998). Significant penetration can occur in low loss materials, such as 
arid soils. Maximum penetration can occur in dry soil condition, whereas, the least 
penetration will occur in wet soils.  
 
Studies, particularly in the past decade, have resulted in many methods, algorithms, and 
models relating satellite-based imagery from radar backscatter to surface soil moisture, 
however, no operational algorithm exists using radar data acquired by existing spaceborne 
sensors (Borgeaud and Saich, 1999). According to Moran et al. (2004) the promising 
approaches using SAR sensors for soil moisture estimation include: semi-empirical 
approaches, change detection, data fusion, and SAR with microwave scattering models.  
 
Semi-empirical algorithms generally use SAR imagery of single wavelength, incident angle 
and polarization. Multiple passes and/or ancillary information are required for better 
accuracy. This approach is often scene or site dependent (Moran et al., 2000; Quesney et al., 
2000). The change detection algorithms require multiple passes of SAR data and this 
approach has potential as an operational application (Engman, 1994). The reason for the 
operational suitability of this approach is that the algorithm is based on the assumption that 
the temporal variability of surface roughness and vegetation is at longer time scale than that 
of soil moisture content, and therefore, the change in radar backscatters between repeat 
passes results from the change in soil moisture. (Lu and Meyer, 2002). Research has been 
conducted into data fusion using passive and active microwave data, and microwave and 
optical data. Passive-active microwave data fusion algorithms use active backscattering 
coefficient to determine fine resolution vegetation biomass and surface roughness, and 
passive brightness temperature to estimate soil moisture content (Bindlish and Barros, 2002). 
The microwave-optical data fusion algorithms simplify the inverse problem for soil 
moisture content estimation on the basis of complementarily or interchangeability of optical 
and SAR data (Changey et al., 1995). Empirical, semi-empirical and theoretical microwave 
scattering models are available for use with the SAR data for soil moisture estimation. The 
Water Cloud Model (WCM) (Attema and Ulaby, 1978) and the Integral Equation Model 
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(IEM) (Fung et al., 1992; Colpitts, 1998) are common examples of this kind of models. The 
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Radar (SAR) imagery, the presence of speckle affects the procedures for texture class 
discrimination. Speckle noise needs to be reduced to preserve edges and image texture 
(D’Elia et al., 2004). The most well known model used as the basis for the development of 
many of the existing speckle filters is the multiplicative model with an exponential 
probability density function (Touzi, 2002). To remove the speckles in the radar scenes we 
applied different types of filtering techniques with different window sizes. We found 5x5 
Lee filtering provided better results and this method was used to de-speckle the acquired 
radar scenes.  
 

The processed (calibrated and filtered) SAR data and the GIS coverage of the sample 
locations were georectified to the same projection system. All imagery and GIS data were 
georectified using recent aerial photograph and Universal Transverse Mercator (UTM) 
projection system.  

Geometric Correction 

 
3.2 Elevation Data 
The knowledge of the local incident angle is essential for the quantitative estimation of soil 
moisture and roughness from SAR data. In the absence of topographic relief, the local 
incident angle equals the radar look angle. This is not true for terrain with larger 
topographic variations where the local incident angle becomes a function of the radar look 
angle and the local terrain slope. This makes the straightforward surface parameter 
estimation difficult (Hajnsek and Pottier, 2000). It is necessary to terrain correct the SAR data 
to allow geometric overlays of remotely sensed data from different sensors and/or 
geometries. The average elevation of the study site varies from 900 m to 1100 m, which is 
considered low relief for processing SAR imagery. However, despite the minimal 
topographic influence, a terrain correction was performed using USGS 30 m digital 
elevation model (DEM) to achieve greater geometric accuracy of the data.  

 
3.3 Insitu Soil Moisture Data 
Near-real time soil moisture data is needed to quantitatively map soil moisture with 
reasonable accuracy from SAR data. Soil samples were collected in selected parts of Nash 
Draw and analyzed to calculate volumetric soil moisture for calibration of the SAR imagery 
acquired on August 02, 2006 and November 06, 2006. Eighty soil samples were collected 
within a site covering 225 sq. km in Nash Draw.  
 

A stratified soil sampling technique (Dane and Topp, 2002) was used in the acquisition of 
the soil samples. Using this method, the study site was divided into several grids and a 
simple random sampling technique was used in each grid with prior definition of sample 
size. The study site was divided into 4 equal parts and random sample points were selected 
in each part using a 500 m grid spacing, with 20 samples collected in each quadrant. 
Accessibility and variation in soil types was given preference for selecting sampling sites. 
Samples were collected for measuring volumetric soil moisture. Figure 4 shows the 
distribution of the collected soil sample locations in the study site.  

Sampling Technique 

 

 

3. Data Used 
 

Rainfall in Nash Draw is unreliable and erratic. Hydrologic data shows that August is 
commonly the wettest part of the season and October marks the end of the rainy season. It 
was assumed that imagery acquired during the months of August through November 
would record the maximum variation of soil moisture in the study site.  

 
3.1 Synthetic Aperture Radar (SAR) Imagery  
Due to its high spatial resolution, Radarsat 1 SAR Fine imagery was considered to be the 
best imagery for estimating soil moisture in the study site. The Alaska Satellite Facility (ASF) 
in Fairbanks, Alaska served as the Radarsat 1 data node for the United States. The ASF 
acquired 5 scenes of Radarsat 1 SAR Fine imagery covering the Nash Draw area for this 
research. The imagery was acquired at 10 m spatial resolution with 50 X 50 km swath 
coverage. The scenes were acquired in descending mode at 37 º incidence angle. The image 
acquisition dates include August 02 and 26, September 19, October 13 and November 06 of 
2006. Figure 3 shows the acquired SAR imagery.  
 

 
Fig. 3. Acquired SAR imagery 
 
SAR Pre-processing 
Initially all acquired SAR imagery were received as Level 0 products and then converted to 
level 1 products. These Level 1 SAR data have undergone several pre-processing phases 
including terrain correction, calibration and filtering to be ready for soil moisture 
estimation.  
 

An initial experiment was conducted using one radar scene to determine the suitability of σo 
or βo for soil moisture estimation in our study site. It was found that backscatter values as βo 
had a better correlation with field measured soil moisture than backscatter values as σo in 
our study site (Hossain and Easson, 2007). We believe that due to the low topographic relief 
in the study site variations in radar backscatter expressed as βo produced better results. 
Based on these observations we decided to calibrate all the radar scenes as βo for this project.  

Data Calibration 

 

Coherent imaging systems produce images with a granular appearance, with a multitude of 
bright and dark spots caused by random constructive and destructive interference of the 
wavelets returning from the various scatterers within the resolution cell of the system 
(Goodman, 1975). From the mathematical point of view, the effect of this interference 
process can be regarded as a multiplicative noise, called speckle. In Synthetic Aperture 

Removing Speckles 
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Where, wv = volumetric soil moisture (%), Vw = volume of moisture content (cc), V = volume 
of sample = 76.55 (cc), Wms = weight of moist soil (gm), Wds = weight of dry soil (gm), Vw = 
Wms – Wds (volume of 1 gm water = 1 cc). 
 
Soil moisture measurements for sample # 15 and sample # 115 were excluded from all 
analysis due to the proximity of these samples to a lake in the study area (Figure 5). Samples 
# 15 and # 115 had soil moisture measurements of 24.6% and 22.48%, respectively. Soil 
moisture measurements for samples # 31 and # 32 (from August data set) and for samples # 
131 and # 132 (from November data set) were also excluded from the analysis due the 
distortion of SAR backscatter at these sample locations. These samples are located in dune 
sand and the backscatter values in the SAR imagery for that area are distorted apparently 
due to total reflection of the radar signal (Figure 6). Table 2. shows the statistics of the in situ 
soil moisture measurements.  
 

Statistics Measurement Dates 
August 01-03, 2006 November, 04-06, 2006 

Mean 6.48 2.80 
Minimum 2.55 0.26 
Maximum 14.53 10.16 
St. Deviation 2.56 2.13 
  

Table 2. Statistics of in situ soil moisture measurements 

 
3.4 Vegetation Maps  
Vegetative cover can strongly influence soil moisture mapping with SAR imagery due to the 
interaction of the microwaves with the vegetation and soil. The amount of vegetation, its 
dielectric properties and distribution pattern can significantly impact the sensitivity of 
microwave backscatter to volumetric soil moisture. A vegetation distribution map is needed 
for mapping soil moisture using SAR with reasonable accuracy.  
A vegetation map for the study site was not available at the same resolution as the SAR 
imagery. The acquired SAR imagery was used to produce a time series of vegetation maps 
for the study site. 
 

We combined the acquired five radar scenes to produce a temporal data set [Figure 7(a)]. 
The temporal data set was then used to perform multi-temporal analysis to create a 
vegetation map of the study site. Vegetation signatures were obtained from the multi-
temporal data for areas with little or no vegetation, sparse vegetation and dense vegetation. 
The obtained signatures were applied to the radar imagery to produce the vegetation map 
[Figure 7(b) and 7(c)]. Finally we simplified the vegetation map by dividing the study site 
into two zones: Zone 1 represents the area characterized by sparse, thin or no vegetation and 
Zone 2 represents areas characterized by comparatively denser vegetation [Figure 7(d)].  

General Vegetation Distribution Pattern Map 

 

 

RADARSAT 1 acquires imagery in HH polarization and in C band with 5.7 cm wavelength 
and 5.3 GHz frequency (RADARSAT International, 1995). The RADARSAT 1 beam should 
be able to penetrate the ground at least up to 3 cm in dry conditions. Therefore, sample 
collection was limited to within 3 cm below the land surface. A cylinder with 3 cm length 
and 5.7 cm diameter was used to collect soil cores. Figure 4 shows the procedure of soil 
sample collection. 
  

 
Fig. 4. Location and distribution of soil samples collected to measure the in situ soil moisture 
content (Left), and demonstration of soil sample collection (Right) 
 

Gravimetric soil moisture was measured and values were converted to volumetric soil 
moisture using sample volume. The ASTM D 2216-98 standard procedure (with 
modification) was used to calculate the gravimetric soil moisture and Equations (3) and (4) 
were used to calculate the volumetric moisture content. 

Volumetric Soil Moisture Measurement  
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Fig. 7. Vegetation mapping 

 
4. Methods 
 

The algorithms developed by a semi-empirical approach are the most common and widely 
used (Moran et al., 2000). In this study simple linear regression was performed between soil 
moisture obtained from the field data and radar backscatter to study the linear relationship 
between radar reflectivity and soil moisture. An Artificial neural network (ANN) was used 
to study the non-linear relationship between radar backscatter (reflectivity) and soil 
moisture. Correlation coefficient (R2) values were used to evaluate the suitability of the 
numerical models to map soil moisture in southeastern New Mexico 
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moisture estimation in this type of study site. It is important to note for our study site we 
modified the Equation (7) by using βo instead of σo as the input of SAR reflectivity values.  
 

βbams +=                       (8) 
 
Radar βº backscatter values were extracted for the soil sample locations where in situ soil 
moisture measurements were made and compared with volumetric soil moisture values for 
the sample locations. As discussed above, we used simple linear regression for the 
comparison and to calculate the coefficients a and b in the numerical model. We developed 
the model for the entire study site and also for different zones in the study site, based on 
vegetation density, to determine how well the model works for different land cover types, 
including vegetated areas and bare lands.  

 
4.2 Non-Linear Regressions 
Many SAR-based soil moisture estimation models assume that soil moisture distribution is 
linearly related to the radar reflectivity of the soil surface (e.g., Ulaby et al., 1996; Moran et 
al., 2000; Dobson et al.,1992; Dubois et al., 1995). Limited studies were conducted in the past 
to explore the non-linear relationship between soil moisture and radar backscatter 
(reflectivity). In this study we developed neural networks based numerical models to 
estimate soil moisture using SAR data in Nash Draw and to explore the non-linear 
relationship between soil moisture and SAR backscatter.  
 

Artificial neural networks, are a branch of artificial intelligence (Gardner and Dorling, 1998) 
in which the solution to a problem is learned from a set of examples (Bishop, 1994). A neural 
network can be regarded as a nonlinear mathematical function, which transforms a set of 
input variables into a set of output variables. The use of neural networks has been shown to 
be effective alternatives to more traditional statistical techniques (Schalkoff, 1992). Neural 
networks can be trained to approximate any smooth, measurable function (Hornik, et al., 
1989), can model highly non-linear functions and can be trained to be accurately generalized 
when presented with unseen data (Gardner and Dorling, 1998). In a typical neural network 
model, a single neuron forms a weighted sum of the inputs x1, . . .,xd given by a = Siwixi, and 
then transforms this sum using a non-linear activation function g( ) to give a final output 
z=g(a) (Figure 8). 

Artificial Neural Networks  

 

 
Fig. 8. A single processing unit in neural networks 

 

4.1 Simple Linear Regression  
According to Ulaby et al. (1996), the radar backscatter from a surface with vegetation 
consists of three components: (1) product of the backscatter contribution of bare soil surface 
(σ°) and the two way attenuation of the vegetated layer (τ2), (2) the direct backscatter 
contribution of the vegetation layer (σ°dv), and (3) multiple scattering involving the 
vegetation elements and the ground surface (σ°int.).  
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In case of densely vegetated surface, τ2~0 and σ° is determined largely by volumetric 
scattering from the vegetation canopy (Moran et al., 2004). For sparsely vegetated surfaces, 
τ2~1 and the second and third terms in the Equation (5) are negligible, and in this situation 
σ° is determined by the soil roughness and moisture content (Moran et al., 2004). Therefore, 
for bare soil, σ°s has a functional relation with soil moisture, ms and surface roughness, R 
(Engman and Chauhan, 1995), and it can be expressed as follows:  
 

),( ss mRf=σ                                                            (6) 
 
This indicates that for a target with uniform R, ms can be estimated using the following 
expression: 

σbams +=                                                                (7) 
 
Where a and b are regression coefficients, which are usually determined from field 
experiments encompassing the target-invariant R and the scene-invariants SAR wavelength 
(λ), incidence angle (θi), polarization, and calibration. However, Equation (7) is only valid 
for a given sensor, land use, and soil type, and for targets when τ2, σ°dv and σ°int are known 
or negligible (Moran et al., 2004).  
 
Quesney et al. (2000) resolved Equations (5)-(7) to derive soil moisture information from 
ERS SAR measurements over an agricultural watershed in France on the basis of a priori 
vegetation classification of the site and in situ soil moisture measurements. This study 
separated the areas with low vegetation biomass for soil moisture estimation.  
 
Similarly, for a semiarid watershed in Arizona, Moran et al. (2000) utilized the difference 
between dry- and wet-season SAR σ° (Δσ°) to normalize the effects of surface roughness and 
topography on ERS SAR measurements. Thoma et al. (2004) improved on this approach to 
minimize empiricism and used a quantitative form of Δ σ°to map soil moisture for an entire 
watershed with RADARSAT for three dates in 2003. In these studies, the effects of sparse 
vegetation were found to be negligible and could be ignored. These observations were also 
supported with similar findings by Lin and Wood (1993), Chanzy et al. (1997), Demircan et 
al. (1993), Dobson et al. (1992), and Dubois et al. (1995). 
 
Our study site, Nash Draw is characterized by a semi-arid environment and generally 
sparse vegetation cover. According to the previous researchers, the effects of sparse 
vegetation in the radar backscattering should be insignificant and can be ignored for soil 
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Fig. 9. Regression chart for entire study sites (a) August, 2006 and (b) November, 2006.  

 

A feed forward neural network can be regarded as a nonlinear mathematical function, 
which transforms a set of input variables into a set of output variables. The multilayer 
perceptron is the most widely used feed forward neural networks. Figure 8 shows a single 
processing unit of neural networks. If we consider a set of m such units, all with common 
inputs, then we arrive at a neural network having a single layer of adaptive parameters 
(weights). The output variables are denoted by zj and are given by Equation (9). 
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Where wji is the weight for input i to j, and g( ) is an activation function as discussed 
previously.  
 
The neural network model developed to estimate soil moisture in Nash Draw includes only 
one input, the radar backscatter values. This model demonstrates the nature of non-linear 
relationship between radar backscatter and soil moisture.  
 
5. Results 
 

5.1 Simple Linear regressions 
The simple linear regression models for the entire study site are shown in Figure 9.  
Figure 10 shows the regression models for different vegetation zones for August, 2006 data 
set, and Figure 11 shows the regression models for different vegetation zones for November, 
2006 data set. Equation (10) and Equation (11) represent the numerical models for the entire 
study site for August, 2006 data set and November 2006 data set respectively. Equation (12) 
and Equation (13) represent the numerical models for thinly vegetated areas (Zone 1) for 
August, 2006 data set and November 2006 data set respectively. Equation (14) and Equation 
(15) represent the numerical models for densely vegetated areas (Zone 2) for August, 2006 
data set and November 2006 data set respectively. Table 3 shows the results of the 
regression models for August, 2006 and November, 2006 respectively.  

 
β82.047.18_ +=augssm     (10) 
β23.013.6_ +=novssm      (11) 
β34.14.27_1 +=augzm      (12) 
β67.033.13_1 +=novzm      (13) 
β11.011.4_2 −=augzm      (14) 
β14.052.3_2 +=novzm      (15) 

 
Domain Correlation Coefficient (R2) 

August 2006 November 2006 
Entire study site 0.24 0.05 

Thinly vegetated areas (Zone 1) 0.61 0.51 
Densely vegetated areas (Zone 2) 0.01 0.04 

  
Table 3. Regression results 



Microwave Remote Sensing of Soil Moisture in Semi-arid Environment 545

 

 

Correlation between soil water and radar backscatter  
in the entire study sites  (August 2006)

y = 0.8116x + 18.468
R2 = 0.2301

0.00

2.50

5.00

7.50

10.00

12.50

15.00

17.50

-20.00-17.50-15.00-12.50-10.00

Beta-naught values (in db)

V
W

C
 (i

n 
%

)

R2 = 0.24 

Correlation between soil water and radar backscatter    
in the entire study site (November 2006)

y = 0.2308x + 6.1287
R2 = 0.0455

0.00

2.50

5.00

7.50

10.00

12.50

-20.50-18.00-15.50-13.00-10.50-8.00

Beta-naught values (in db)

V
W

C
 (i

n 
%

)

R2 = 0.05 

(b) 

(a) 

 
Fig. 9. Regression chart for entire study sites (a) August, 2006 and (b) November, 2006.  

 

A feed forward neural network can be regarded as a nonlinear mathematical function, 
which transforms a set of input variables into a set of output variables. The multilayer 
perceptron is the most widely used feed forward neural networks. Figure 8 shows a single 
processing unit of neural networks. If we consider a set of m such units, all with common 
inputs, then we arrive at a neural network having a single layer of adaptive parameters 
(weights). The output variables are denoted by zj and are given by Equation (9). 
 

( )∑ =
=

d

i ijij xwgz
0

                     (9) 

 
Where wji is the weight for input i to j, and g( ) is an activation function as discussed 
previously.  
 
The neural network model developed to estimate soil moisture in Nash Draw includes only 
one input, the radar backscatter values. This model demonstrates the nature of non-linear 
relationship between radar backscatter and soil moisture.  
 
5. Results 
 

5.1 Simple Linear regressions 
The simple linear regression models for the entire study site are shown in Figure 9.  
Figure 10 shows the regression models for different vegetation zones for August, 2006 data 
set, and Figure 11 shows the regression models for different vegetation zones for November, 
2006 data set. Equation (10) and Equation (11) represent the numerical models for the entire 
study site for August, 2006 data set and November 2006 data set respectively. Equation (12) 
and Equation (13) represent the numerical models for thinly vegetated areas (Zone 1) for 
August, 2006 data set and November 2006 data set respectively. Equation (14) and Equation 
(15) represent the numerical models for densely vegetated areas (Zone 2) for August, 2006 
data set and November 2006 data set respectively. Table 3 shows the results of the 
regression models for August, 2006 and November, 2006 respectively.  

 
β82.047.18_ +=augssm     (10) 
β23.013.6_ +=novssm      (11) 
β34.14.27_1 +=augzm      (12) 
β67.033.13_1 +=novzm      (13) 
β11.011.4_2 −=augzm      (14) 
β14.052.3_2 +=novzm      (15) 

 
Domain Correlation Coefficient (R2) 

August 2006 November 2006 
Entire study site 0.24 0.05 

Thinly vegetated areas (Zone 1) 0.61 0.51 
Densely vegetated areas (Zone 2) 0.01 0.04 

  
Table 3. Regression results 



Geoscience and Remote Sensing546

 

  

 R2 = 0.04 

(a) 

 R2 = 0.51 

(b) 

Correlation between soil water and radar 
backscatter in vegetated areas (November 2006) 

Correlation between soil water and radar backscatter 
in non- vegetated areas (November 2006) 

 
Fig. 11. Regression chart for different zones for November, 2006 data (a) Zone 1& (b) Zone 2 
(31 and 34 data values used in the analysis for zone 1 and Zone 2 respectively).  
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Fig. 10. Regression chart for different zones for August, 2006 data (a) Zone 1& (b) Zone 2 (31 
and 34 data values used in the analysis for zone 1 and Zone 2 respectively).  
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Fig. 10. Regression chart for different zones for August, 2006 data (a) Zone 1& (b) Zone 2 (31 
and 34 data values used in the analysis for zone 1 and Zone 2 respectively).  
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the numerical models developed for the parts of the study site identified as very thin or 
sparsely vegetated areas, and very low R2 values (0.01 – August data set and 0.04 – 
November data set) obtained for the numerical models developed for the parts of the study 
site identified as more densely vegetated areas.  
 
The non-linear relationship between radar reflectivity and soil moisture was investigated 
using a numerical model developed by feed forward neural networks with radar backscatter 
values and near real time in situ soil moisture measurements. The model was developed for 
the entire study site and did not show a strong non-linear relationship between radar 
backscatter (reflectivity) and soil moisture. The correlation coefficient (R2) (0.24) did not 
improve from that obtained by simple linear regression (0.24) between radar backscatter and 
soil moisture.  
 
This research indicates that in semi-arid environment vegetation coverage can significantly 
reduced the accuracy of soil moisture estimation and mapping using numerical models 
based on simple linear and non-linear relationships between radar backscatter values   
derived from high resolution SAR imagery and near real time in situ soil moisture 
measurements. This research also shows that numerical models based on only radar 
backscatter and  near real time in situ soil moisture measurements can only be used in  
thinly vegetated to bare soil conditions in a semi-arid environment to estimate and map soil 
moisture with improved accuracy (R2 = 0.51 to 0.61).  
 
We recommend to include soil type, soil salinity and surface elevation information (in 
addition to vegetation coverage and in situ soil moisture measurements) in both linear and 
non-linear numerical models to improve the accuracy of SAR based soil moisture estimation 
in semi-arid environment without separating the vegetated and non-vegetated zones.  
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The R2 values of the numerical models developed for the entire study site indicate that the 
linear relationship between the radar backscatter values obtained for the entire study site 
and soil moisture is not well defined. We observed this for both the August (R2 = 0.24) and 
November (R2 = 0.05) data sets. The R2 values of the numerical models developed for 
vegetated areas  (Zone2) for both August and November data set are very low (0.01 and 0.04 
respectively). We found higher R2 values for the numerical models developed for non-
vegetated or sparsely vegetated areas (Zone 1) for both August and November data set (0.61 
and 0.51 respectively). These findings indicate that the relationship between radar 
backscatter and soil moisture in densely vegetated areas is not linear.  

 
5.2 Non-linear Regressions (Neural Networks) 
We developed neural network based non-linear numerical models for soil moisture 
estimation for the entire study site using the August data set. We developed models using 
radar backscatter values as the only input to investigate the non-linear relationship between 
the radar backscatter (reflectivity) and soil moisture. We used JMP 6.0 statistical software to 
perform the neural networks based analysis. The model correlation coefficient (R2) and cross 
validation correlation coefficient (CV R2) were used to evaluate the model performance for 
soil moisture prediction. A neural network with 3 hidden nodes resulted in correlation 
coefficient (R2) and the cross validation correlation coefficient (CV R2) of 0.24 and 0.11 
respectively. This result indicates that the non-linear relationship between radar backscatter 
and soil moisture is also not well defined for the entire study site.  

 
5.3 Model Evaluation  
We evaluated the correlation coefficients (R2) and cross validation correlation coefficients 
(CV R2) (for the neural networks based models) developed by both linear and non-linear 
regressions for soil moisture estimation in Nash Draw, NM and made the following 
observations. 

• Simple linear regression between radar backscatter values and in situ soil 
moisture measurements can be used to develop SAR based soil moisture 
estimation model with model R2 values of 0.51 to 0.61, but the model 
application should be restricted to non-vegetated to thinly vegetated areas. 

• Neural network based non-linear regressions using radar backscatter values 
and in situ soil moisture measurements can be used to develop soil moisture 
estimation model for the entire study site with a model R2 value of 0.24 and 
CV R2 of 0.11. 

 
6. Conclusions and Discussion  
 

Earlier researchers reported that in a semi-arid environment with sparse vegetation, there is 
a linear relationship between soil moisture and radar backscatter. Our research shows that 
in semi-arid environment the influence of vegetation can influence the accuracy of the soil 
moisture estimation using the linear relationship between the radar backscatter and soil 
moisture. This observation is supported by the lower R2 values (0.24 – August data set and 
0.05 – November data set) obtained for the numerical models developed for the entire study 
site, the higher R2 values (0.61 – August data set and 0.51 – November data set) obtained for 



Microwave Remote Sensing of Soil Moisture in Semi-arid Environment 549

 

the numerical models developed for the parts of the study site identified as very thin or 
sparsely vegetated areas, and very low R2 values (0.01 – August data set and 0.04 – 
November data set) obtained for the numerical models developed for the parts of the study 
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reduced the accuracy of soil moisture estimation and mapping using numerical models 
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derived from high resolution SAR imagery and near real time in situ soil moisture 
measurements. This research also shows that numerical models based on only radar 
backscatter and  near real time in situ soil moisture measurements can only be used in  
thinly vegetated to bare soil conditions in a semi-arid environment to estimate and map soil 
moisture with improved accuracy (R2 = 0.51 to 0.61).  
 
We recommend to include soil type, soil salinity and surface elevation information (in 
addition to vegetation coverage and in situ soil moisture measurements) in both linear and 
non-linear numerical models to improve the accuracy of SAR based soil moisture estimation 
in semi-arid environment without separating the vegetated and non-vegetated zones.  
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1. Introduction    
 

In the last two decades, the interest for the estimation of Earth surface parameters from 
remotely sensed data has increased in the scientific community. Within this field, one of the 
most challenging and attractive problems is represented by the estimation of soil moisture 
(SM) and vegetation water content (VWC) as they are fundamental in many disciplines.  
The prediction of SM variations is equally important at mesoscale and smaller scales. 
Mesoscale atmospheric models have demonstrated sensitivity to spatial gradients while at 
field level, SM can be considered storage of water between rainfalls and evaporation thus 
acting as a regulator to fundamental hydrologic processes such as infiltration and runoff 
(Delworth, 1988). 
Surface SM information is also a critical forcing variable in many Soil Vegetation 
Atmosphere Transfer (SVAT) models which are able to estimate SM values at daily time 
steps.  
Vegetation is a fundamental component of every ecosystems and VWC is one of the most 
important biochemical components with 35-95% of the vegetation body. VWC yields 
information about the physiological conditions of the plants. Furthermore, estimation of 
VWC from local to global scales is central to the understanding of biomass burning 
processes, water stress and drought condition. The prediction of this variable can be 
important for irrigation strategies and for yield forecasting (Pennuelas et al., 1993).  
Spaceborne and airborne microwave sensors are best suited for the detection of water 
content (Ulaby et al., 1986). The retrieval of biophysical parameters from remotely sensed 
data falls within the category of inverse problems where, from a vector of measured values, 
m, one wishes to infer the set of ground parameters, x, that gave rise to them. The inverse 
problem is typically ill-posed due to its non-linearity between remote sensing measurements 
and ground parameters. Furthermore, many aspects of the natural surfaces, such as surface 
roughness and the amount and type of vegetation, alter the radar backscatter.  
Many approaches have been developed in order to provide possible solution to these 
inverse problems, spanning from empirical and semi-empirical approaches to sophisticated 
machine learning techniques. 
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surface measurements are presented in the algorithm. The practical use of Bayes’ theorem  is 
to turn probabilities that can be estimated from a training set into those that are required for 
the estimation of the unknown surface parameters (Marchant & Onyongo, 2003). A useful 
property of a Bayesian method is that it is optimal in the sense that it minimizes the 
expected error. Another important aspect is that, to derive these general pdfs, as performed 
with the Bayesian methodology, a large amount of experimental data is needed. The 
experimental data should cover a wide spectrum of real situations to obtain reliable 
statistical functions, but the inversion technique itself does not represent “the solution.” In 
fact, the inversion procedure has the same limitation as the forward model as it relies on 
limited surface parameter conditions. As an example, Haddad and Dubois (Haddad & 
Dubois, 1994), starting from the forward model proposed by Oh et al. (Oh et al, 1992)  used a 
Bayesian approach to determine the inverse model. As the model was based on a data set 
with a low correlation length, it failed to be applicable to the data sets without this 
condition.  
A suitable method for this kind of multidimensional retrieval is the neural network (NN). It 
can be trained to extract surface parameters from remotely sensed data, and in this way, it 
can perform the same function as a statistical inversion method. The training data for the 
NNs can be obtained from theoretical forward-scattering models, thus allowing the control 
of the range of parameters with which the network is trained. Artificial NNs (ANNs) have a 
number of advantages and disadvantages compared to conventional statistical algorithms. 
One advantage of an NN is that it can identify subtle and nonlinear patterns, which is not 
always the case with traditional statistical methods (Beale & Jackson, 1992). In addition, 
NNs do not require normally distributed continuous data and may be used to integrate data 
from different sources with poorly defined or unknown distributions. Another advantage is 
that NNs are able to take a specific set of input data and generalize a solution set, which 
may give the correct answer for unknown input patterns that are similar, but not identical, 
to the input data. One of the problems is the difficulty in adequately configuring and 
training a network. There are no given rules for the configuration of the network (in terms of 
the number of hidden nodes, hidden layers, etc.). The training process has to be carefully 
controlled due to the risk of overtraining the network. Overtraining is a phenomenon 
whereby the network learns a training data set to an excellent level but cannot accurately 
predict the correct answer with independent test data. Furthermore, overtraining frequently 
happens when the number of training data is limited as often are the remotely sensed data 
sets (Notarnicola et al, 2008)  
The main drawback of an NN is that the inverse empirical mapping established between 
remotely sensed data and surface parameters cannot be explicitly written down, and  the 
user can generally only act on some configuration parameters but not on the analytical 
expression that leads to the results.  
New approaches are emerging in the last years for the estimation of biophysical parameters; 
one of the most used is the Support Vector Regression (SVR). 
SVR, initially developed for classification purposes, is now being applied also to the 
estimation of biophysical parameters.  SVR is based on a geometrical rather than a statistical 
approach, because it bases the estimation on both the geometrical distances between 
samples and the maximization of the geometrical margin instead of on the estimation of the 
posterior probability distribution over the samples. For this reason, there are two main 
advantages with respect to NN and statistical approach. The SVR method is less sensitive to 

 

The development of empirical models has been studied both as a first approach to study the 
relationship between remotely sensed signals and surface parameters and to obtain a simple 
inversion model in itself. The frequently used linear approach is based on regression 
coefficients generated by the observations over a specific site (Prevot et al, 1993, Dubois et al 
1994). One of the first empirical models was proposed by Oh et al., 1992  on bare soils, where 
the co-polarized and cross-polarized ratios of the backscattering coefficients are expressed in 
terms of the surface parameters. The Oh model, which is developed from multi-polarization 
radar data, was revealed to be poorly effective when tested on synthetic aperture radar 
(SAR) data. Subsequently, Dubois et al. 1995 developed an empirical inversion model from 
scatterometer data and applied it to SAR data in the case of bare soils. The Dubois inversion 
model was found to be applicable to the different forms of measured data and tends to be 
quite accurate with a root-mean-square error (rmse) of 4.2% on SM values. Although the 
Dubois model performed well, it is site specific and is only valid under the conditions in 
which the measurements were taken. As a result of the way empirical models are developed 
and their relative inversion procedure, they have a limited range of applicability. The 
complexity and nonlinearity of the problems cannot be taken into account in empirical 
formulations, thus leading to the necessity of considering theoretical backscattering models.  
Many theoretical models have been developed in order to describe the interaction between 
the electromagnetic radiation and natural surfaces. They can represent a great variety of 
situations and still have the possibility to consider cases that have not been taken into 
account by the empirical models. On the other side, theoretical models are developed under 
several hypotheses that may not be completely verified in field conditions. One main 
limitation of a theoretical model is considered the description of the surface morphology. 
One of the most widely used descriptions is based on two parameters: 1) the standard 
deviation (SD) of heights s and 2) the correlation length l. The SD of heights is an estimate of 
the variance of the vertical dimension of the soil surface profile, whereas its correlation 
function relates the statistical correlation between any two points on a given surface. The 
surface correlation length l is usually defined as the displacement for which the correlation 
function is equal to 1/e (Ulaby et al, 1986). This parameterization is often considered critical 
because they do not completely describe the variability of natural surfaces (Mattia & Le 
Toan, 1999). The SD of heights can have an accuracy of only about 10%, the correlation 
length measurements vary as much as an order of magnitude (Dubois et al, 1995, 
Notarnicola et al, 2003). Although they have the capacity to generalize and treat a great 
variety of situations, theoretical forward-scattering algorithms are of a certain complexity 
and are sometimes difficult to invert due to the requirements of several parameters in the 
computations.  
To overcome this difficulty, typical inversion techniques are iterative methods and statistical 
approaches. Bindlish and Barros (Bindlish &Barros , 2000) used the integral equation model 
(IEM) with the Jacobian method—an iterative scheme—to perform the inversion on 
multifrequency multipolarization SAR data from Washita ’94. In this case, the retrieval can 
be performed on all the surface parameters, as they are included in the IEM. This algorithm, 
which is tested only with one data set in a single sensor configuration, produces SM 
estimates with an average error of 3.4%. Statistically based inversion methods, such as the 
Bayesian approach, have been in existence for a long time and are based on probabilities 
that a given set of measurements comes from certain surface parameter values. The 
probability density functions (pdfs) are estimated by training, where samples of sensor and 
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respect to the results obtained from the different procedure. Conclusions and future 
applications are drawn in section 7. 
 

SM Soil moisture 
GSM Gravimetric soil moisture 
VWC Vegetation water content 
VSM Volumetric soil moisture 
σ0. Backscattering coefficient 
τ2 Two-way attenuation of the vegetation layer 
ε Dielectric constant 
SD Standard deviation 
s Standard deviation of height 
l Correlation length 
IEM Integral Equation Model 
WCM Water Cloud Model 

Table 1. Summary of scientific notation and most used acronyms. 
 
2. Data set description 
 

SMEX’02 is a remote sensing experiment that was carried out in Iowa in 2002 
(http://nsidc.org/data/amsr_validation/soil_moisture/smex02/), mainly focused on 
modelling and algorithm validation over a range of SM conditions with moderate to high 
vegetation biomass conditions.  The main site, chosen for intensive sampling SM, vegetation 
and surface roughness, was the Walnut Creek watershed (Figure 1), where 32 fields, 10 
soybean and 21 corn fields, were sampled intensively. The field and sensor data acquired 
during this experiment are particularly suitable to our analysis because of: 

- The number of fields that were considered in the experiment with different level of 
soil and vegetation moisture; 

- The acquisition of both radar and optical data and the extensive ground 
measurements carried out within each field. 

 
2.1 Soil moisture measurements 
SM sampling in the Watershed sites was carried out to provide a reliable estimate of the 
mean and variance of the volumetric SM of the surface SM for fields that are approximately 
800 m by 800 m. These measurements are used primarily to support the aircraft based 
microwave investigations, which were conducted between 0900 and 1200 local time.  At four 
standard locations in each site the gravimetric soil moisture (GSM) was sampled on each 
day of sampling with a 0-6 cm scoop tool. This GSM sample was then split into 0-1 cm and 
1-6 cm samples providing a rough estimate of the site average 0-1 cm GSM. GSM is 
converted to volumetric soil moisture (VSM) by multiplying GSM and bulk density of the 
soil. Bulk density was sampled one time at each of these four locations using an extraction 
technique. VSM values are calculated by using GSM and bulk density that are the 
parameters directly measured in the fields. The soil texture data for the SMEX’02 study area 
were obtained from CONUS-SOIL dataset (Miller & White, 1998). Soil texture is of the 
utmost importance in physical models for estimation of soil dielectric properties. In fact the 
Hallikainen empirical formula derives the soil dielectric constant from SM and soil texture 
values (Hallikainen, 1995). The values of the real part of the dielectric constant along with 

 

the limited availability of training samples with respect to other machine learning 
techniques and to the overfitting of the datasets, thus leading to high generalization 
capabilities (Camps-Valls et al., 2006). Till now this approach has not yet applied for the SM 
estimation. 
Another way to overcome the difficulties of the single approach is to use the concept of 
ensemble. Ensembles are widely used in machine learning techniques and the main idea of 
ensemble learning is to employ multiple learners and combine their predictions. 
The last decade has seen many works related to ensemble learning systems. These systems 
are groups of machine learning approaches where each learner provides an estimate of a 
target variables that after are combined in different ways in order to reduce the 
generalization error if compared to the single learner (Brown et al., 2005). 
The different estimates are usually combined through a combination function, commonly a 
majority vote for classification and a linear combination for regression. It is a good 
improvement in the combined estimates if the individual estimators should exhibit different 
patterns of generalization 
As an example some works on ensemble of neural networks are reported. Cho and Kim 
(1995) combined the results from multiple neural networks using fuzzy logic which resulted 
in more accurate classification. Bishop (1995) affirms that if L networks produce errors 
which have zero mean and are uncorrelated, then the sum-of-squares error can be reduced 
by a factor of L simply by averaging the predictions of the L networks. Liu and Yao (1999) 
proposed the Negative Correlation Learning (NCL) algorithm wherein a penalty term is 
added to the error function which helps in making the individual predictors as different 
from each other as possible while encouraging the accuracy of individual predictors. This 
enables the mapping function learnt by the ensemble to generalize better when an unseen 
input is to be processed.  
In this context, this chapter will address assessed remote sensing procedures, such as 
empirical models, Bayesian methods for the estimation of SM and VWC from multi-
frequency and multi-polarization SAR images in synergy with optical sensors and 
electromagnetic models. Initially, the procedures are used as separate inversion methods. In 
this case, limitations and potentialities are illustrated.  Subsequently, each method is 
considered as an element of an ensemble from which then the best estimates are drawn.  
The basic concept behind this ensemble method is that each single methodology has its 
advantage and disadvantage and it is able to detect some features with high accuracy and 
other features with low accuracy. The idea of ensemble learning is to employ multiple 
learners and combine their predictions. Numerous works applied in different context have 
demonstrated that the ensemble estimate accuracy is quite often much higher than the 
accuracy of the single predictor (Ueda & Nakano, 1996).  
This work presents an innovative approach for the ensemble of regression algorithms by 
considering both different regression techniques applied to different sensor configurations 
thus exploiting the capability of different frequencies/polarization combination to estimate 
soil and vegetation features. 
The chapter is organized as follows. Section 2 is devoted to the description of analyzed 
experimental data sets. Section 3 illustrates the most used electromagnetic models whose 
simulations will be used in the inversion procedure. These procedures are outlined in 
section 4. The results of the different procedures are discussed in section 5. Section 6 
introduces the concept of ensemble estimates and discusses the results of this technique with 
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respect to the results obtained from the different procedure. Conclusions and future 
applications are drawn in section 7. 
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ensemble. Ensembles are widely used in machine learning techniques and the main idea of 
ensemble learning is to employ multiple learners and combine their predictions. 
The last decade has seen many works related to ensemble learning systems. These systems 
are groups of machine learning approaches where each learner provides an estimate of a 
target variables that after are combined in different ways in order to reduce the 
generalization error if compared to the single learner (Brown et al., 2005). 
The different estimates are usually combined through a combination function, commonly a 
majority vote for classification and a linear combination for regression. It is a good 
improvement in the combined estimates if the individual estimators should exhibit different 
patterns of generalization 
As an example some works on ensemble of neural networks are reported. Cho and Kim 
(1995) combined the results from multiple neural networks using fuzzy logic which resulted 
in more accurate classification. Bishop (1995) affirms that if L networks produce errors 
which have zero mean and are uncorrelated, then the sum-of-squares error can be reduced 
by a factor of L simply by averaging the predictions of the L networks. Liu and Yao (1999) 
proposed the Negative Correlation Learning (NCL) algorithm wherein a penalty term is 
added to the error function which helps in making the individual predictors as different 
from each other as possible while encouraging the accuracy of individual predictors. This 
enables the mapping function learnt by the ensemble to generalize better when an unseen 
input is to be processed.  
In this context, this chapter will address assessed remote sensing procedures, such as 
empirical models, Bayesian methods for the estimation of SM and VWC from multi-
frequency and multi-polarization SAR images in synergy with optical sensors and 
electromagnetic models. Initially, the procedures are used as separate inversion methods. In 
this case, limitations and potentialities are illustrated.  Subsequently, each method is 
considered as an element of an ensemble from which then the best estimates are drawn.  
The basic concept behind this ensemble method is that each single methodology has its 
advantage and disadvantage and it is able to detect some features with high accuracy and 
other features with low accuracy. The idea of ensemble learning is to employ multiple 
learners and combine their predictions. Numerous works applied in different context have 
demonstrated that the ensemble estimate accuracy is quite often much higher than the 
accuracy of the single predictor (Ueda & Nakano, 1996).  
This work presents an innovative approach for the ensemble of regression algorithms by 
considering both different regression techniques applied to different sensor configurations 
thus exploiting the capability of different frequencies/polarization combination to estimate 
soil and vegetation features. 
The chapter is organized as follows. Section 2 is devoted to the description of analyzed 
experimental data sets. Section 3 illustrates the most used electromagnetic models whose 
simulations will be used in the inversion procedure. These procedures are outlined in 
section 4. The results of the different procedures are discussed in section 5. Section 6 
introduces the concept of ensemble estimates and discusses the results of this technique with 



Geoscience and Remote Sensing560

 

During the campaign, two Landsat Thematic Mapper (TM) scenes from Landsat 5 and three 
Landsat Enhanced Thematic Mapper plus (ETM+) from Landsat 7 were acquired during the 
primary study period. They were mainly used to calculate the brightness temperature and 
the indices, the Normalized Difference Vegetation Index (NDVI) and the Normalized 
Difference Water Index (NDWI). These two indices are also very important factors in 
estimating VWC which is needed for SM estimation using microwave methods. The images 
were atmospherically and radiometrically corrected to produce the at-ground reflectance 
and then the NDVI and NDWI indices (Gao et al., 1996). 
In this work, the data acquired on 1st July and some data taken randomly from the other 
dates were considered as training samples. The fact to not consider exclusively the data 
coming from one single day allows the results to be independent from the specific soil and 
weather conditions of a single date.  
 
3. Electromagnetic models 
 

As the proposed approaches, both the empirical and the statistical methods, consider in 
different ways simulated data, theoretical models for bare and vegetated soils are briefly 
described. For bare soil, the SAR response has been simulated by means of the Integral 
Equation Model (IEM), (Fung, 1994). This model, with respect to other electromagnetic 
models, has the advantage of being applicable to a wide range of roughness scale. For the 
model, the input parameters are the real part of the dielectric constant, the standard 
deviation of height and the correlation length. The dielectric constant is linked directly to 
VSM and soil texture through some well known and validated experimental relationships 
(Hallikainen, 1985).  
 

 
Fig. 1. Distribution of the Walnut Creek fields on the LANDSAT image. The size of the 
watershed is 18 km wide and 36 km long. The coordinate of the image centre are 
449205.0E/4645240.0N (UTM Zone 15, NAD 83). The large gray areas are towns. 
 
In the IEM formulation, the like polarized backscattering coefficients for surfaces with small 
or medium roughness are given by: 
 

 

the roughness parameters are the inputs to the theoretical models used in this inversion 
approach. This part is described in the following sections. 

 
2.2 Vegetation water content measurements 
VWC (kg/m2) was measured several times in 32 fields with four rounds.  VWC in plant 
stems and leaves were computed as 
 

VWC’ = Bg’ – Bd’(g/plant)        (1) 
 

where Bg’ is the green biomass + tare weight and Bd’ is the dry biomass + tare weight.  This 
assumes that water loss from the tares (paper bags) was negligible in comparison with that 
from the plant samples.  In row crops, areal stand density (ASD; plants/m2) was estimated 
from the row plant density (RD; plants/m) by using 
 

ASD = RD/RS               (2)  
 

where RS is the row spacing.  VWC (kg/m2) was then computed as 
 

VWC = 10-3 * VWC’ * ASD.        (3) 
 

However not every field was sampled during each round. This implies that a measured 
VWC value is not available for all days of acquisitions. For each field-date combination, 
three locations in the field were visually selected from airborne digital imagery to represent 
average, minimum and maximum canopy conditions.  Above ground biomass was removed 
and wet and dry weights were used to compute VWC. For this investigation, all samples 
within a field on a given date were averaged and this single value was used. 
Other ground truth measurements used in this work include surface roughness in terms of 
standard deviation of heights and correlation length. 

 
2.3 Remotely sensed data 
The AirSAR images (resolution: 8 -12 m ground range) were acquired on 1, 5, 7, 8, 9 July 
2002. The LANDSAT (resolution: 30 m) images were acquired contemporary to SAR on 1, 8 
July 2002.  
The five L- and C-band images were processed by the AirSAR operational processor 
providing calibrated data sets.  The absolute and relative calibration accuracy obtained for 
each sensor, as reported in the literature (van Zyl, 1992), are listed in table 2. 
 

ABSOLUTE/RELATIVE  C-BAND L-BAND 
AIRSAR ±1.0 dB / ± 0.4 dB ±1.2 dB / ± 0.5 dB 

Table 2. AIRSAR calibration accuracy. 

From sensitivity studies (Dubois et al., 1995), in order to avoid errors in the SM estimation 
larger than 4.2%, the relative calibration error should be less than 0.5 dB and the absolute 
calibration error should be less than 2.0 dB, because the inversion is also more sensitive to 
relative than absolute calibration errors. 
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VWC= Aσ01 + B σ02 + C       (7) 
 

where σ01,  σ02 are the backscattering coefficients with the following configurations:   

- σ01 and  σ02 are respectively σ0HH, σ0VV for C band 

- σ01 and  σ02 are respectively σ0HH, σ0VV for L band  

- σ01 and  σ02 are respectively σ0HH for C band  and σ0HH for L band 

Within 32 fields, some of them have been chosen randomly and considered as training 
fields. The training data belong to the acquisitions carried out on 1st July, thus assuring that 
the comparison with the Bayesian approach results is performed under identical training 
conditions. For the test, the data acquired on 8th July were used. The choice for the training 
and test data were dictated from the availability of Landsat image in contemporary 
acquisitions with SAR data.  The correlation coefficients and the F-values for the empirical 
correlations in the training data are listed in table 3.  
 

Empirical model R2 F P 
σ0HH, σ0VV for C band 0.68 26.2 < 0.05* 
σ0HH, σ0VV for L band 0.64 21.8 < 0.05* 
σ0HH C band/ σ0HH  
L band  

0.68 26.4 < 0.05* 

Table 3. Correlation coefficients (R2), F test values (F) and level of confidence (P) for the 
empirical models to retrieve VWC (*indicates significance at the 0.05 probability level). 
 
For SM, a different kind of empirical relationship has been supposed because a simple linear 
relationship similar to the one for VWC did not produce acceptable results. An approach 
was proposed by Notarnicola et al. 2006, following an approach developed by Chen et al. 
2003 and based on a previous work by Dubois et al. 1995. This empirical approach was 
derived and tested on a subset of the SMEX’02 data, producing acceptable results. However, 
when applied to the whole data, the results were not satisfactory. Then, in order to take into 
account the different components in the interaction of the SAR signal with the soil and 
vegetation, the empirical model has been inspired to the vegetation theoretical model 
described in section 3. 
The SM has been supposed to be a function of backscattering coefficients, of VWC, of the 
roughness parameter s and of a combination of the roughness parameter multiplied by an 
attenuation factor expressed as exp(-VWC): 
 

SM= Aσ01 + B σ02 + C VWC + D s + E s exp(-VWC) + F.  (8) 

This relationship should take into account the following contributions due to the interaction 
among the signal, the canopy and the soil (Attema & Ulaby, 1978) 
- the relationship to the backscattering coefficients is considered as a kind of mean values of 
the overall responses of soil, vegetation and their interaction; 
- the relationship to VWC is fundamental as VWC plays a key role in these densely 
vegetated fields on the retrieval of SM as already demonstrated in Notarnicola et al. 2007. It 
quantifies the contribution of VWC to the detected signal. 
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where k is the wave number, θ is the incidence angle, kz = kcosθ, kx = ksenθ and pp refers to 
the horizontal (HH) or vertical (VV) polarization state and s is the standard deviation of 

terrain heights. The term n
ppI depends on k, s and on RH, RV, the Fresnel reflection 

coefficients in horizontal and vertical polarizations. The Fresnel coefficients depend directly 
on the dielectric constant. The symbol W (-2kx,0) is the Fourier transform of the nth power of 
the surface correlation coefficient. In this context, an exponential correlation function has 
been adopted that seems to better describe the properties of natural surfaces (Fung, 1994). 
For vegetated soils, the simple approach, based on the so-called water-cloud model (WCM), 
was developed by Attema and Ulaby (1978), who proposed to represents, in a radiative 
transfer model, the vegetation canopy as a uniform cloud whose spherical droplets are held 
in place structurally by dry matter. The WCM represents the power backscattered by the 
whole canopy σ0 as the incoherent sum of the contribution of the vegetation σ0veg and the 
contribution of the underlying soil σ0soil, which is attenuated by the vegetation layer through 
the vegetation trasmissivity τ2. For a given incidence angle the backscatter coefficient is 
represented by the general form: 
 

σ0 =  σ0veg  + τ2σ0soil  .    (5) 
 

Particularly, this expression can be written in more detailed way: 
 

σ0 =  A VWC cosθ(1-τ2) + τ2σ0soil ,    (6) 
 

where VWC is the vegetation water content (kg/m2), θ the incidence angle, σ0soil represents 
the backscattering coefficient of bare soil that in this case calculated by using the IEM model,  
τ2 is the two-way vegetation trasmissivity with τ2 = exp(-2B VWC/ cosθ). The parameters A 
and B depend on the canopy type and require an initial calibration phase where they have to 
be found in dependence of the canopy type.  
In this work the model simulation enters differently in the inversion procedure. For the 
Bayesian approach, the simulated data are generated in order to compare them to the 
measured data and to create the noise probability density function (pdf) as detailed in the 
section devoted to this approach. The formulation of the WCM has been used in the 
derivation of the empirical models for the consideration of all the scattering components 
that have to be taken into account in the interaction between vegetation-soil and the SAR 
signal. 

 
4. Description of inversion methodologies  
 

4.1 Empirical methods 
The empirical approach has been developed in two separate versions, one for the VWC 
estimates and the other one for the SM estimates. 
For VWC, the linear relationship has been modeled as follows: 
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- the relationship to the backscattering coefficients is considered as a kind of mean values of 
the overall responses of soil, vegetation and their interaction; 
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where k is the wave number, θ is the incidence angle, kz = kcosθ, kx = ksenθ and pp refers to 
the horizontal (HH) or vertical (VV) polarization state and s is the standard deviation of 
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ppI depends on k, s and on RH, RV, the Fresnel reflection 

coefficients in horizontal and vertical polarizations. The Fresnel coefficients depend directly 
on the dielectric constant. The symbol W (-2kx,0) is the Fourier transform of the nth power of 
the surface correlation coefficient. In this context, an exponential correlation function has 
been adopted that seems to better describe the properties of natural surfaces (Fung, 1994). 
For vegetated soils, the simple approach, based on the so-called water-cloud model (WCM), 
was developed by Attema and Ulaby (1978), who proposed to represents, in a radiative 
transfer model, the vegetation canopy as a uniform cloud whose spherical droplets are held 
in place structurally by dry matter. The WCM represents the power backscattered by the 
whole canopy σ0 as the incoherent sum of the contribution of the vegetation σ0veg and the 
contribution of the underlying soil σ0soil, which is attenuated by the vegetation layer through 
the vegetation trasmissivity τ2. For a given incidence angle the backscatter coefficient is 
represented by the general form: 
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Particularly, this expression can be written in more detailed way: 
 

σ0 =  A VWC cosθ(1-τ2) + τ2σ0soil ,    (6) 
 

where VWC is the vegetation water content (kg/m2), θ the incidence angle, σ0soil represents 
the backscattering coefficient of bare soil that in this case calculated by using the IEM model,  
τ2 is the two-way vegetation trasmissivity with τ2 = exp(-2B VWC/ cosθ). The parameters A 
and B depend on the canopy type and require an initial calibration phase where they have to 
be found in dependence of the canopy type.  
In this work the model simulation enters differently in the inversion procedure. For the 
Bayesian approach, the simulated data are generated in order to compare them to the 
measured data and to create the noise probability density function (pdf) as detailed in the 
section devoted to this approach. The formulation of the WCM has been used in the 
derivation of the empirical models for the consideration of all the scattering components 
that have to be taken into account in the interaction between vegetation-soil and the SAR 
signal. 

 
4. Description of inversion methodologies  
 

4.1 Empirical methods 
The empirical approach has been developed in two separate versions, one for the VWC 
estimates and the other one for the SM estimates. 
For VWC, the linear relationship has been modeled as follows: 
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P(σ1m, σ2m,, …, | Si) by taking into account the presence of this noise factor Ni  and setting 
the relationship between measured and simulated data as follows: 
 

σim=Ni σith        (9) 
 

where σim and σith are respectively the measured and theoretical values of sensor responses.  
Once calculated the function P(σ1m, σ2m, …, | Si), the Bayes’ theorem allows for the 
calculation of the posterior probability from the above conditional probability and the prior 
probability: 
 

iim2m1i

im2m1i
m2m1i dS)S|,..,(P)S(P

)S|,..,(P)S(P
,...),|S(P

∫ σσ

σσ
=σσ .  (10) 

 
In the case of bare fields, the theoretical values calculated by the IEM model should be as 
close as possible to the measured ones and then the pdf mean should be close to the value of 
1 with a standard deviation that represents the field variability as well as the sensor error. 
For vegetated areas, the resulting pdf means should quantify the different behavior of radar 
signal for bare and vegetated fields. Thus pdfs should contain information on some 
vegetation parameters that influence the radar signal. Particularly, a good correlation has 
been found between pdf means and VWC. Instead of correlating pdf means directly to 
measured VWC, the estimates of this parameter, obtained from a LANDSAT image, have 
been considered. The purpose is to verify whether the pdf mean variations can be predicted 
using VWC derived from other remotely sensed data. The methodology for the calculation 
of VWC from LANDSAT images has been derived and tested in Jackson et al. 2004. The pdf 
means have been correlated to these LANDSAT derived VWC. A linear relationship has 
been presumed among pdf means and VWC, initially in the following form: 
 

Pdf1 = a1 VWC + b1             (11)  
Pdf2 = a2 VWC + b2 .             (12) 

 
The general trend indicates that pdf means decrease as VWC increases. However the trend 
is not constant, a group of data belonging to corn fields has a particular behavior and also if 
the VWC is relatively high (around 4 kg/m2) the corresponding pdf means is high as well. 
This is in contrast to what established before. This group is made up of pdf values that 
indicate a relative small difference between the measured and the theoretical backscattering 
coefficients. This may be ascribed to the presence of a rough surface whose contribute to 
theoretical backscattering coefficients is higher with respect to a smooth surface (Ulaby et 
al.,1986).  
Within each vegetated group, soybean fields are characterized by low values of s, around 0.6 
cm, which determine low values of theoretical backscattering coefficients. Then the ratio 
between measured and theoretical values is below 1 even if the vegetation is not very dense. 
On the other side, the roughness in the corn fields is characterized by higher values of s. The 
rougher surface contributes with high theoretical backscattering coefficients and determines 
values of the ratio not as low as expected in the case of this dense corn vegetation. 

 

- the contribute of the soil is divided in two terms, one is SM which in this case is the 
parameter to be estimated and the other is the roughness parameters s. As showed in 
previous studies (Notarnicola et al 2007, Du et al, 2008), this last parameter plays an 
important role also for densely vegetated fields. 
- the relationship to s*exp(-VWC) takes into consideration double bouncing effect which 
may appear especially for tall plants such as corn plants in case of shorter wavelength (C 
band). The contribution of the soil is represented by the s parameter multiplied by exp(-
VWC) which represent the attenuation of the signal from soil due to the presence of 
vegetation. 
The correlation coefficients and the F-values for the empirical correlations in the training 
data are listed in table 4. 
 

Empirical model R2 F P 
σ0HH, σ0VV for C band 0.32 2.30 > 0.05*** 
σ0HH, σ0VV for L band 0.42 3.41 < 0.10** 
σ0HH C band/ σ0HH 
L band  

0.48 4.20 < 0.05* 

Table 4. Correlation coefficients (R2), F test values (F) and level of confidence (P) for the 
empirical models to retrieve SM (*indicates significance at the 0.05 probability level;   
**indicates significance at the 0.10 probability level;***indicates that based on F test  the 
relationship is considered not reliable). 
 
The data in table 3 and 4 illustrate the difficulty to infer information about SM especially in 
the case of the C band. If the data are further divided in two groups, soybean and corn 
fields, the correlation improves notably for corn (R2=0.63) but the correlation is not 
considered reliable for the F test. For the soybean fields, the correlation does not change 
considerably with respect to the values shown in table 4.  
The training data were used to evaluate the multiple regressions. The obtained relationships 
are then applied to the test data in order to verify their generalization capabilities and 
robustness. This analysis is illustrated in the section dedicated to the results comparison. 

 
4.2 Bayesian methodology 
The main aim is to infer the soil parameter values, Si, that for vegetated soils are the soil 
dielectric constant ε, the standard deviations of heights, s, and the correlation length, l, and 
the vegetation water content VWC by measuring features f1, f2, …, in this case represented 
by backscattering coefficients, σ1m, σ2m, ....,. The procedure is divided into training and test 
phase. 
In the training phase, the conditional probability P(σ1m, σ2m,, …, | Si) can be estimated by 
using the Bayes’ theorem from a part of the data. This is the probability of finding that 
particular vector of features σi, given specific values of Si.   
By using IEM, theoretical values of the sensors responses, in correspondence to ground 
truth, are obtained. The latter are compared to the experimental values introducing random 
variables, Ni, not depending on ε, s and l and representing a function that takes into account 
some noise factors such as the sensor noise, the error introduced by IEM and the contribute 
of vegetation (Notarnicola et al., 2006). The problem consists in finding an estimate of the 
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been found between pdf means and VWC. Instead of correlating pdf means directly to 
measured VWC, the estimates of this parameter, obtained from a LANDSAT image, have 
been considered. The purpose is to verify whether the pdf mean variations can be predicted 
using VWC derived from other remotely sensed data. The methodology for the calculation 
of VWC from LANDSAT images has been derived and tested in Jackson et al. 2004. The pdf 
means have been correlated to these LANDSAT derived VWC. A linear relationship has 
been presumed among pdf means and VWC, initially in the following form: 
 

Pdf1 = a1 VWC + b1             (11)  
Pdf2 = a2 VWC + b2 .             (12) 

 
The general trend indicates that pdf means decrease as VWC increases. However the trend 
is not constant, a group of data belonging to corn fields has a particular behavior and also if 
the VWC is relatively high (around 4 kg/m2) the corresponding pdf means is high as well. 
This is in contrast to what established before. This group is made up of pdf values that 
indicate a relative small difference between the measured and the theoretical backscattering 
coefficients. This may be ascribed to the presence of a rough surface whose contribute to 
theoretical backscattering coefficients is higher with respect to a smooth surface (Ulaby et 
al.,1986).  
Within each vegetated group, soybean fields are characterized by low values of s, around 0.6 
cm, which determine low values of theoretical backscattering coefficients. Then the ratio 
between measured and theoretical values is below 1 even if the vegetation is not very dense. 
On the other side, the roughness in the corn fields is characterized by higher values of s. The 
rougher surface contributes with high theoretical backscattering coefficients and determines 
values of the ratio not as low as expected in the case of this dense corn vegetation. 

 

- the contribute of the soil is divided in two terms, one is SM which in this case is the 
parameter to be estimated and the other is the roughness parameters s. As showed in 
previous studies (Notarnicola et al 2007, Du et al, 2008), this last parameter plays an 
important role also for densely vegetated fields. 
- the relationship to s*exp(-VWC) takes into consideration double bouncing effect which 
may appear especially for tall plants such as corn plants in case of shorter wavelength (C 
band). The contribution of the soil is represented by the s parameter multiplied by exp(-
VWC) which represent the attenuation of the signal from soil due to the presence of 
vegetation. 
The correlation coefficients and the F-values for the empirical correlations in the training 
data are listed in table 4. 
 

Empirical model R2 F P 
σ0HH, σ0VV for C band 0.32 2.30 > 0.05*** 
σ0HH, σ0VV for L band 0.42 3.41 < 0.10** 
σ0HH C band/ σ0HH 
L band  

0.48 4.20 < 0.05* 

Table 4. Correlation coefficients (R2), F test values (F) and level of confidence (P) for the 
empirical models to retrieve SM (*indicates significance at the 0.05 probability level;   
**indicates significance at the 0.10 probability level;***indicates that based on F test  the 
relationship is considered not reliable). 
 
The data in table 3 and 4 illustrate the difficulty to infer information about SM especially in 
the case of the C band. If the data are further divided in two groups, soybean and corn 
fields, the correlation improves notably for corn (R2=0.63) but the correlation is not 
considered reliable for the F test. For the soybean fields, the correlation does not change 
considerably with respect to the values shown in table 4.  
The training data were used to evaluate the multiple regressions. The obtained relationships 
are then applied to the test data in order to verify their generalization capabilities and 
robustness. This analysis is illustrated in the section dedicated to the results comparison. 

 
4.2 Bayesian methodology 
The main aim is to infer the soil parameter values, Si, that for vegetated soils are the soil 
dielectric constant ε, the standard deviations of heights, s, and the correlation length, l, and 
the vegetation water content VWC by measuring features f1, f2, …, in this case represented 
by backscattering coefficients, σ1m, σ2m, ....,. The procedure is divided into training and test 
phase. 
In the training phase, the conditional probability P(σ1m, σ2m,, …, | Si) can be estimated by 
using the Bayes’ theorem from a part of the data. This is the probability of finding that 
particular vector of features σi, given specific values of Si.   
By using IEM, theoretical values of the sensors responses, in correspondence to ground 
truth, are obtained. The latter are compared to the experimental values introducing random 
variables, Ni, not depending on ε, s and l and representing a function that takes into account 
some noise factors such as the sensor noise, the error introduced by IEM and the contribute 
of vegetation (Notarnicola et al., 2006). The problem consists in finding an estimate of the 
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Analogous calculation can be performed for the variable k which represents VWC. The pdf  
P(ε, s, l ,k|σ1m, σ2m, …) has to be integrated over the whole range of dielectric constant 
values and roughness parameters in order to obtain a pdf that retains exclusively 
information on the VWC: 
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From this distribution the mean value and the variance of the estimator can be extracted 
(Gelman, 1995) as follows: 
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In all these calculations, the prior pdf for the parameters, over which integration is 
performed, has to be specified. In the integration for the calculation of the marginal 
distribution, the prior pdf has been considered uniform across the whole possible range of 
values. This means that no supplementary information about these parameters was 
considered apart from their range of values. The dielectric constant has been integrated in 
the range from 2 to 20 and the VWC in the range 0.1 to 8 kg/m2. The integration window for 
s is [0.1 cm, 3.0 cm] and for l is [0.1 cm, 21.0 cm], they cover most of the surface 
measurements. The purpose was to verify the capability to extract dielectric constant and 
VWC values independently from roughness levels. This procedure has been applied to 
backscattering coefficients σ1m, σ2m,... in the following configurations: 

- C band, HH and VV polarizations; 
- L band, HH and VV polarizations; 
- C and L band, HH polarization. 

 
5. Results of the single methodologies and relative comparison 
 

As illustrated in previous paragraphs, the inversion methodologies have been applied to 
different sensors configurations, trying to exploit if the combination of different polarizations 
and/or bands may help to extract the soil features. In fact, due to the different way C band or 
L band signals interact with soil and the above canopy layer, they are sensitive to different 
surface characteristics. Then their use is important to the concept of the ensemble that will be 
described in the next section.  
In this paragraph, the results of the empirical and Bayesian methodologies are illustrated and 
evaluated in terms of: 

- Correlation coefficients , R2, between the estimates and the ground truth values 
- Root Mean Square Error, RMSE, between the estimates and the ground truth values. 

 

The correlation between pdf means, VWC and s has been also considered in the inversion 
procedures as a multiple fit: 
 

Pdf1 = a1 VWC + b1 s + c1     (13) 
Pdf2 = a2 VWC + b2 s + c2 .    (14) 

 
Table 5 reports the correlation coefficients (R2) for the considered remotely sensed data 
configuration for the linear relationships (11) and (12) between pdf means and VWC values 
and the linear relationships (13) and (14) among pdf means, VWC values and the roughness 
parameter s. 
 

Polarization/frequency Only VWC 
R2 

VWC + roughness 
R2 

CHH+CVV 0.23 0.50 
LHH+LVV 0.61 0.85 
CHH+LHH 0.37 0.52 

Table 5. Correlation coefficients (R2) for a linear relationship between pdf means and the 
VWC values (column 2) and among pdf means, VWC values the roughness parameter s 
(standard deviation of heights) (column 3). 
 
The aim of the training phase is to evaluate the pdf P(Si |σ1m, σ2m,, …,) while in the test 
phase the expression (10) is applied on the second half of the acquired data in order to verify 
the prediction capability of  this methodology.  
The dependence of the pdf means on the amount of VWC introduces a new variable in the 
inversion problem (Notarnicola et al, 2007) that can be used to extract VWC values 
themselves from the radar signal. With the introduction of the VWC as a new variable k, the 
posterior pdf expressed in (10) can be written as follows: 
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As the main interest was to extract dielectric constant values from which SM can be 
calculate (Hallikainen et al., 1985), a first integration over the pdf P(ε, s, l ,k|σ1m, σ2m, …) is 
performed with respect to the roughness parameters, s and l, and k over their range of 
values in order to obtain a marginal distribution: 
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This distribution represents the probability of the different dielectric constant values for the 
possible combination of measured backscattering coefficients σ1m, σ2m,, …, (Notarnicola & 
Posa., 2004).  
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From this distribution the mean value and the variance of the estimator can be extracted 
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In all these calculations, the prior pdf for the parameters, over which integration is 
performed, has to be specified. In the integration for the calculation of the marginal 
distribution, the prior pdf has been considered uniform across the whole possible range of 
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measurements. The purpose was to verify the capability to extract dielectric constant and 
VWC values independently from roughness levels. This procedure has been applied to 
backscattering coefficients σ1m, σ2m,... in the following configurations: 

- C band, HH and VV polarizations; 
- L band, HH and VV polarizations; 
- C and L band, HH polarization. 

 
5. Results of the single methodologies and relative comparison 
 

As illustrated in previous paragraphs, the inversion methodologies have been applied to 
different sensors configurations, trying to exploit if the combination of different polarizations 
and/or bands may help to extract the soil features. In fact, due to the different way C band or 
L band signals interact with soil and the above canopy layer, they are sensitive to different 
surface characteristics. Then their use is important to the concept of the ensemble that will be 
described in the next section.  
In this paragraph, the results of the empirical and Bayesian methodologies are illustrated and 
evaluated in terms of: 

- Correlation coefficients , R2, between the estimates and the ground truth values 
- Root Mean Square Error, RMSE, between the estimates and the ground truth values. 

 

The correlation between pdf means, VWC and s has been also considered in the inversion 
procedures as a multiple fit: 
 

Pdf1 = a1 VWC + b1 s + c1     (13) 
Pdf2 = a2 VWC + b2 s + c2 .    (14) 

 
Table 5 reports the correlation coefficients (R2) for the considered remotely sensed data 
configuration for the linear relationships (11) and (12) between pdf means and VWC values 
and the linear relationships (13) and (14) among pdf means, VWC values and the roughness 
parameter s. 
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CHH+CVV 0.23 0.50 
LHH+LVV 0.61 0.85 
CHH+LHH 0.37 0.52 

Table 5. Correlation coefficients (R2) for a linear relationship between pdf means and the 
VWC values (column 2) and among pdf means, VWC values the roughness parameter s 
(standard deviation of heights) (column 3). 
 
The aim of the training phase is to evaluate the pdf P(Si |σ1m, σ2m,, …,) while in the test 
phase the expression (10) is applied on the second half of the acquired data in order to verify 
the prediction capability of  this methodology.  
The dependence of the pdf means on the amount of VWC introduces a new variable in the 
inversion problem (Notarnicola et al, 2007) that can be used to extract VWC values 
themselves from the radar signal. With the introduction of the VWC as a new variable k, the 
posterior pdf expressed in (10) can be written as follows: 
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As the main interest was to extract dielectric constant values from which SM can be 
calculate (Hallikainen et al., 1985), a first integration over the pdf P(ε, s, l ,k|σ1m, σ2m, …) is 
performed with respect to the roughness parameters, s and l, and k over their range of 
values in order to obtain a marginal distribution: 
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This distribution represents the probability of the different dielectric constant values for the 
possible combination of measured backscattering coefficients σ1m, σ2m,, …, (Notarnicola & 
Posa., 2004).  
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For the Bayesian methodology, similar analyses were also found in Notarnicola et al. 2006. 
In that case, the methodologies were applied only to few fields of the same data sets. With 
respect to the accuracy reported in Notarnicola et al., 2006, a worsening in the performance 
is found. In particular the data set includes all the fields in the WC basin and the fields 
located in the eastern part which exhibits anomalous values of SM, some very high values 
around 0.35 cm3/cm3 and some values lower than 0.05 cm3/cm3. 
If the watershed is divided in two parts, the western and the eastern part, the performances 
of the algorithm for SM retrieval differ significantly. The correlation coefficients R2 are equal 
to 0.33 and 0.70, not significantly different from those found in Notarnicola et al. 2006. 
Furthermore, the performances notably change if in the data set the soybean and corn fields 
are considered separately. This happens only for the Bayesian approach while the results for 
the empirical approach remain the same. The results for the Bayesian approach are reported 
in table 8. 
Similar characteristics are also found in (Lakhankar et al., 2009), where it is proved that the 
RMSE is dependent on the level of vegetation of the different fields. Furthermore, in the case 
of C band, the signal coming from the VWC dominates over the signal coming from soil. In 
fact, when the vegetation has low value of VWC, such as in the case of soybean fields, the C 
band is able to provide acceptable estimates for SM. In the case of corn fields, the best results 
are obtained with the combination of C and L band, one sensitive to VWC and the other to 
the surface contribution. In this case, the discrepancies may be ascribed to the fact that in the 
Bayesian formulation the double bouncing between soil and corn trunk effect is not taken 
into account. This effect in such kind of plants with broad leaves could dominate (Macelloni 
et al., 2001). 
 

Methods R2 RMSE (cm3/cm3) 
Corn fields   
Bayesian C band  0.13 0.13 
Bayesian L band 0.17 0.09 
Bayesian C – L band 0.47 0.06 
Soybean fields   
Bayesian C band  0.69 0.03 
Bayesian L band 0.18 0.07 
Bayesian C – L band 0.67 0.04 

Table 9. Correlation coefficients (R2), RMSE for the comparison between the different 
estimates and ground truth values for SM values and for the Bayesian approach. With 
respect to table 7, in this case, the soybean and corn fields are considered separately. In 
italics, the values significantly different from the ones found in whole data sets are 
indicated.  

 
 
6. Ensemble estimates and relative results  
 

The idea to use the ensemble concepts emerges from the previous analysis on the results of 
the single inversion techniques. Different wavelengths (C – L band) or their combination can 
be used to extract information according to different types of vegetation, different level of 
SM and VWC. This information stemming from the previous analysis can be inserted in an 
ensemble approach. The problem can be formalized in the following way.  

 

This analysis is carried out on the test data. Tables 6 and 7 list the performance characteristics 
of the single procedure for each sensor configuration respectively for VWC and SM estimates. 
The best performances are done by the C and combination of C and L band data for the 
Bayesian approach, while for the empirical approach only the L band retain the good 
performances obtained during the training phase.  
 

Methods R2 RMSE (kg/m2) 
Empirical C band  0.20 2.44 
Empirical L band 0.56 1.29 
Empirical C – L band 0.25 2.27 
Bayesian C band  0.64 1.30 
Bayesian L band 0.46 1.46 
Bayesian C – L band 0.55 1.29 

Table 6. Correlation coefficients (R2), RMSE for the comparison between the different 
estimates and the ground truth values for VWC values.  
 

Methods R2 RMSE (cm3/cm3) 
Empirical C band  0.20 0.11 
Empirical L band 0.0006 0.09 
Empirical C – L band 0.05 0.12 
Bayesian C band  0.14 0.11 
Bayesian L band 0.17 0.08 
Bayesian C – L band 0.47 0.05 

Table 7. Correlation coefficients (R2), RMSE for the comparison between the different 
estimates and the  ground truth values for SM values.  
 
As expected the estimation of SM is quite difficult, thus determining values of R2 not higher 
than 0.47 and high RMSE up to 0.12 cm3/cm3. The performance of the empirical and 
Bayesian approach improves if the extreme values of SM are excluded from the error 
computation. In this case, the results are illustrated in table 8 where values of SM higher 
than 0.27 cm3/cm3 and lower than 0.10 cm3/cm3 have been excluded. 
 

Methods R2 RMSE (cm3/cm3) 
Empirical C band  0.11 0.06 
Empirical L band 0.40 0.05 
Empirical C – L band 0.42 0.08 
Bayesian C band  0.22 0.10 
Bayesian L band 0.45 0.05 
Bayesian C – L band 0.65 0.02 

Table 8. Correlation coefficients (R2), RMSE for the comparison between the different 
estimates and   ground truth values for SM values, excluding extreme values. 
 
This indicates that both algorithms are not able to predict the extreme values of the SM 
range. For low values, it depends on the fact that the signal for soil is weak and difficult to 
be disentangled from the vegetation signal. For high values, the signal from soil is strong 
but in the case of C band the effect of absorption from ‘narrow leaf’ plants, such as soybean, 
determines a lower signal reaching the sensor (Macelloni et al., 2001). The L band estimates 
are the only one able to predict highest values of SM. 
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This indicates that both algorithms are not able to predict the extreme values of the SM 
range. For low values, it depends on the fact that the signal for soil is weak and difficult to 
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but in the case of C band the effect of absorption from ‘narrow leaf’ plants, such as soybean, 
determines a lower signal reaching the sensor (Macelloni et al., 2001). The L band estimates 
are the only one able to predict highest values of SM. 



Geoscience and Remote Sensing570

 

Methods/ranges 0.0-1.0 1.0-3.0 > 3.0 
Empirical C band      
Empirical L band  x  
Empirical C – L band     
Bayesian C band x  x 
Bayesian L band     
Bayesian C – L band    

Table 10. Approaches which exhibit the lowest RMSE in three different VWC ranges 
 

Methods/ranges 0.0-0.10 0.10-0.15 0.15-0.20 0.20-0.25 > 0.25 
Empirical C band- corn    x   
Empirical C band- soybean      
Empirical L band -corn      
Empirical L band- soybean   x x  
Empirical C – L band - corn x x    
Empirical C –L  band- 
soybean 

     

Bayesian C band - corn      
Bayesian C band - soybean x     
Bayesian L band - corn    x x 
Bayesian L band - soybean  x   x 
Bayesian C – L band- corn      
Bayesian C – L band - 
soybean 

     

Table 11. Approaches which exhibit the lowest RMSE in five different SM ranges, further 
divided in corn and soybean groups. 
 
This analysis is the base for the application on the test data sets. The six approaches have 
been applied to the test data and the best estimates have been calculated by using the 
following three steps: 

- Step 1 Calculation of the estimates average, considering all the values if they fall in 
the same range and excluding one or two values if they disagree with the other 
ones. If there is a conflict between an empirical estimate and a Bayesian one, the 
last has been chosen as it is most reliable in many cases. This first step is useful to 
individuate the range of the estimates and then adopt the best estimator. For VWC 
the range of the parameters has been also compared with the estimates deriving 
from the LANDSAT images by using the approach of Jackson et al. 2004. 

- Step 2. Considering each estimate, a RMSE coming from the training data have 
been associated and a new mean has been calculated by considering only the first 
three values which have the lowest RMSE. 

- Step 3. To the two mean values calculated at point 1 and 2, a correction factor is 
applied which gives more weight to the mean value with the lowest variance. 
Furthermore, in case of presence of high values of SM, the results from the 
Bayesian approach in L band has been used as it is the only approach which is able 
to detect high values of SM. 

The idea of the procedures originates from the ability of the different procedure and 
configurations to detect some specific soil and vegetation characteristics.  
The output of these procedures has been reported in table 12. 

 

The knowledge about the function f, which performs the inversion from the signal domain 
to the feature domain, is represented by a learning sample of n independent observations: 
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For real valued responses in regression problems, the prediction of the ensemble is a 
weighted sum of the predictions of the basis models. The next part of the section is 
dedicated in finding the best solution in order to create weighted estimates starting from the 
estimates of the single learners. 
In this case, the single learners are represented by the empirical and Bayesian approaches 
applied to different sensor configurations. As indicated in the section dedicated to the 
results analysis, the information given by the different approaches and the different 
configurations are in many cases complementary with respect to the type of vegetation, and 
of SM values. Then they can be considered as the members of an ensemble and the main aim 
is to find the best combination of members which then will lead to find the best estimates for 
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In this case, one of the main differences with respect to the traditional ensemble techniques 
is that the single learner is trained separately and then the estimates are considered as part 
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The inversion approaches have been applied to the training data in order to calculate the 
RMSE considering the following configurations: 
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cm3/cm3; 
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- For VWC, three main groups have been considered, 0.0- 1.0, 1.0-3.0, higher than 3.0 
kg/m2. 

For each of these groups, the RMSE errors have been calculated in order to verify for which 
of the six inversion procedures adopted it is possible to find the lowest value of RMSE. The 
output of this procedure is illustrated in the following tables: 
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Methods/ranges 0.0-1.0 1.0-3.0 > 3.0 
Empirical C band      
Empirical L band  x  
Empirical C – L band     
Bayesian C band x  x 
Bayesian L band     
Bayesian C – L band    

Table 10. Approaches which exhibit the lowest RMSE in three different VWC ranges 
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soybean 
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Fig. 2. Results from the single approaches (the three ones with the highest accuracy) and the 
ensemble approach applied to VWC estimates.  The mean rmse of ground data is around 
20%. Each graph reports the correlation coefficient R2 and the linear fit between measured 
and estimated VWC. 
 

 

 

Ensemble R2 RMSE 
VWC 0.66 1.20 (kg/m2) 
SM 0.83 0.03 (cm3/cm3) 

Table 12. Results from the ensemble approach applied to VWC and SM estimates.  
 
The results reported in table 12 indicate a notable improvement in the estimation of both SM 
and VWC considering the R2 between measured and estimated values. For the RMSE, the 
improvement is evident especially for SM, while for VWC the ensemble RMSE is similar to 
the one found for the Bayesian approach considered as a single learner. Anyhow, the VWC 
values were already quite well estimated from the single approaches, and then the ensemble 
approach is not expected to improve much more the estimation as revealed comparing both 
R2 and RMSE (Brown et al, 2005) On the other side, it is interesting to highlight the 
information for SM that has been extracted from the single learners and that contribute to 
determine the better estimates.  The results of the ensemble technique are illustrated in 
figure 2 for VWC and in figure 3 for SM. In each figure, there are four graphs where the 
results from the three approaches with the highest accuracy and the ensemble results are 
reported. 
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7. Conclusions and future applications 
 

The main aim of this chapter is to illustrate the application of some standard inversion 
procedures, an empirical and a Bayesian approach for the estimation of VWC and SM from 
radar images in cases of densely vegetated fields. In this analysis, the presence of vegetation 
determines a strong disturb to the evaluation of SM. Both methodologies make use or are 
related to the formulation of theoretical electromagnetic models such as IEM for bare soils 
and WCM for vegetated fields. The approaches have been applied considering one 
frequency channel, C or L band and their combination. In all the case, both co-polarized 
channels, HH and VV, have been used. Subsequently these single learners have been 
considered as members of an ensemble and a procedure mainly based on the variance 
minimization has been applied to derive the best estimates. 
Results from the single learners indicate that for VWC:  

- The algorithms are able to detect three main ranges: from 0.0 to 1.0 Kg/m2, from 1.0 
to 3.0 Kg/m2 and values higher than 3 Kg/m2.  

- The Bayesian approach determines the best estimates especially in terms of RMSE. 
- In the case of Bayesian approach both C and L band can provide reliable estimates 

with high correlation coefficients and low RMSE values.  
While for SM: 

- The empirical approach works better if the extreme value of SM are excluding from 
the computation of R2 and RMSE. This demonstrates the ability of the approach to 
determine an average SM status, but in case of extreme situations such as very low 
or high values of SM, the algorithm is not enough sensitive to these values and able 
to disentangle the vegetation effect from the radar signal. 

- Also the Bayesian approach is sensitive to this problem even in a minor way. In fact 
the estimates improve if some anomalous SM values are eliminated. These SM high 
values are not correlated to high values of backscattering coefficients or VWC.  

- In the Bayesian approach, the different use of C and L band emerges if soybean and 
corn fields are analyzed separately. In this case, for the corn fields, only the 
combination of C and L band can provide estimates with acceptable R2 and RMSE. 
For soybean fields, good results are determined by both C band and the 
combination of C and L band. 

These analyses are the starting point from which the ensemble part derives. It is clear that 
there is not a unique method which can provide reliable estimates for all types of soil 
condition in terms of vegetation and SM status. These are due to the limitation of the 
method itself, for example generally the empirical approaches are quite site specific, but in 
some cases, each method or sensor configuration is able to detect some specific 
characteristics and is insensitive to some others. 
The ensemble approach used in this work considers the single estimates and determines the 
best estimates based on an approach which aims at minimizing the variance in an iterative 
way. Results from the ensemble learner indicate: 

- For VWC the improvement is not so evident, even because the single estimates 
were already good enough. 

 

 
 

 
 

 
Fig. 3. Results from the single approaches (the three ones with the highest accuracy) and the 
ensemble approach applied to SM estimates.  The confidence interval for measured SM 
values is ± 0.05 cm3/cm3. Each graph reports the correlation coefficient R2 and the linear fit 
between measured and estimated SM. 
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- The net improvement is evident for SM, where diverse capability of each single 
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1. Introduction 

The SAR pattern width is the most significant characteristics of modern georadars providing 
remote sensing of the Earth within the specified radar swath. A simplified consideration of 
formation of the SAR directional pattern is given for an idealized case of signal pickup from 
the equidistant points along the vehicle trajectory at its constant travel speed. Nevertheless, 
the signal parameters influencing the character of the directional pattern of the synthetic 
aperture radar are not constant at implementation of the georadar with SAR This results in 
swinging in time of the SAR directional pattern in addition to its widening; therefore, the 
characteristics of the detected extended object on the Earth may differ from the real ones. 
The given chapter contains a new methodology for research and optimization of the 
directional pattern for the interferometric SAR and the calculated examples of the above-
mentioned methodology. A peculiar method of transients determination in the selective 
filters entering the SAR path at the radar signal passing through them lies in the basis of the 
calculation procedure for determination of swinging of the radar antenna directional 
pattern. There is taken into account influence on the SAR characteristics of non-equidistance 
of the readings along the vehicle trajectory. The Doppler effect influence on formation of the 
antenna directional pattern is also under consideration. There is given the method of taking 
into account the out-of-parallelism of the beams for each point of the sensed surface at 
formation of the SAR directional pattern.  
It is worth mentioning that even a small deviation of the SAR directional pattern caused (in 
particular) by dynamic mode of the georadar path operation may result in a considerable 
inaccuracy of information acquisition at remote sensing of the Earth. For example, at the 
vehicle altitude of h = 500 km and the antenna direction error of 1°, the error in 
determination of the coordinates of each detected point of the Earth surface is around 10 km 
(which is not permissible for information acquisition at remote sensing of the Earth). 

26
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Here the damping constant  equals to a half of the bandpass of a separate selective section, 
r – the resonance frequency, 2/122

0 )(   r  - the filter free frequency; let’s assume 
2b . 

The image of the radio pulse of intermediate frequencyimd with  duration 
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For the signal image at the BF output we have fout(s) = fin(s)K(s). 
Thus, according to FILT (Zolotarev et al., 2005), transition into the space of the originals 
gives a complex representation of the signal at the filter output 
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where the complex constants lB  may be found from the expression 
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Let’s look for the real signal as )}(Im{)( tftf outout

 . 
Let’s represent the complex output signal as 
 
 )()()( tNtftf normout

  ,                                                       (2) 
 
where the BF response to a Monoharmonic signal is assumed as a normalizing function 

represented as )(
0 )()(   tj

imdnorm
imdejKAtf  . )(tN  - the normalized complex envelope 

curve of the signal at the output of the BF under investigation, module )(tN  characterizes 

the behavior of the signal envelope curve at the BF output, and function )}(arg{)( tNt   
determines the current behavior of its phase. 
For a plane wave front, the phase difference (caused by the wave arrival under the  angle) 
for the base between the adjacent readings a, is determined with the expression 
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For the side-lobe suppression, the law of the amplitude distribution along the aperture L is  

The given chapter deals with consideration of a combined influence of the above-mentioned 
factors on the SAR characteristic. There are given recommendations on minimization of a 
dynamic error of the directional pattern of synthetic aperture radar.  

 
2. Influence of transients on the interferometric SAR characteristics for the 
sensing pulse with rectangular envelope curve  

Numerous works on the SAR equipment are devoted to formation of the directional pattern 
of the required type for detecting and ranging the objects with provision of the required 
angular resolution. The use of an interferometric approach at SAR designing permits to 
increase the angle resolution. A high range resolution is achieved by the maximum possible 
shortening of a pseudorandom sequence discrete. Formation of the antenna directional 
pattern (ADP) with synthetic aperture requires sampling at the specified points of the radar 
carrier trajectory of the amplitude and the phase of the received signal that is significantly 
lower than the noise level before the correlator. The task of the signal correlation processing 
is obtaining the required signal-to-noise ratio with the equivalent gain equal to 60-80 dB 
(Boerner, 2000; Boerner, 2004; Antipov et al., 1988; Filippov et al., 1994). 
A significant limiting factor is the transients that inevitably take place in various sections of 
the signal processing path that have the frequency selective properties; these sections 
include a physical antenna, the phase-shifting circuits, the summers and the multipliers. 
Despite the fact that the problems of a steady-state mode for SAR are represented by a brad 
scope of research, operation of the given systems in the dynamic mode has hardly been 
described (Vendic & Parnes, 2002). Most probably, this may be justified by a high level of 
laboriousness of the oscillatory systems research with the accuracy up to a signal phase. 
Potential possibilities to increase the range resolution are defined by a minimal realizable 
duration of the sequence discrete. In this case, phase overshooting at each discrete occurring 
due to the transients limits the informational possibilities of the radars with the PSK and 
FSK signals. 
The impact of transients on the SAR directional pattern is revealed in the work. The given 
result was acquired on the base of the “fast” inverse Laplace transform (FILT) method 
developed earlier by one of the authors (the method permits to get a selective system 
response with the accuracy up to a signal phase and provide solution to the amplitude-
phase-frequency problem in radio electronics on the FILT base) (Zolotarev, 1969; Zolotarev, 
1996; Zolotarev, 1999; Zolotarev et al., 2004; Zolotarev et al., 2005). 
There are used the analog frequency converters for the ultra wideband signals with duration 
of about 1 ns after the antenna path in the SAR. In this case, the subsequent selective filters 
determine the resulting channel bandpass. That is why the given work deals with analysis of 
impact of the transients occurring in these filters on the SAR directional pattern. 
There will be analyzed 2 identical unilateral selective elements as a bandpass filter (BF). The 
BF transfer characteristic can be written down in the form of a fractional rational function 
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Here the damping constant  equals to a half of the bandpass of a separate selective section, 
r – the resonance frequency, 2/122

0 )(   r  - the filter free frequency; let’s assume 
2b . 
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The above-mentioned charts show that “swinging” of the SAR directional pattern in respect 
to the one calculated for the steady-state mode increases along with the increase of the 
signal bandwidth and the bandpass filter. Thus, there is limited the accuracy of the direction 
finding according to the angular coordinates of the detected object. As modern SARs use 
ultra wideband signals, one should take into account the directional pattern time shift that 
constitutes the values comparable with the SAR beam width. 
Proceeding from the actual dynamic operation mode of the system with SAR, the obtained 
results make it possible to estimate the limit capabilities of building the synthetic antennae 
that apply the interference principle. 

 
3. Influence of transients on the interferometric SAR characteristics for 
sensing pulse with bell-shaped envelope curve 

As it is shown in the work (Zolotarev et al., 2005), transients in the elements of the SAR 
formation circuit provide a significant impact on the direction of the directional pattern 
major maximum. In this case, when implementing the SAR radars, it is necessary to pay 
serious attention to the actual SAR characteristic obtained in the result of the corresponding 
signal conversion. Ignoring of this factor may result in rough errors at determination of the 
detected surface parameters. A lot of works contain a supposition that smoothing of the 
envelope curve shape will decrease the influence of transients on the SAR characteristic. 
Due to this, it seems to be important to consider the SAR formation at the use of a bell-
shaped sensing signal with the Gaussian envelope curve. The radio pulses with a sinus-
quadratic envelope curve are the characteristics similar to the given signal. Let’s consider 
the SAR formation for the given signal type at various Q-factors of the antenna filters and 
signal duration. 
There will be analyzed 3 identical unilateral selective elements as a band pass filter. The BF 
transfer characteristic will be written down as a fractional rational function 
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Here, damping constant  equals to a half of the bandpass of a separate selective section, r 
– the resonance frequency, let’s assume 2b . 
The sensing signal with a sinus-quadratic envelope curve is written down as 
 
 )](1)(1)[sin()2(sin)( 2
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Let’s transform the last expression into the form of 
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The image of a radio pulse with the c frequency,  duration and the bell-shaped envelope 
curve 

chosen in the following way: I(z) = 1 + cos(2z/L), z  L/2, where is assumed to be equal 
to 0.4 (Sazonov, 1988). SAR directional pattern F() for 100 readings along the spacecraft 
trajectory is represented in Figure 1, where   is given in radians. 
 

 
Fig. 1. SAR directional pattern 
 
In fact,  will have the increment (t) caused by the transient. It will result in dependence 
of real   on the time, i.e. 
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Figure 2 shows the calculated charts in nondimensional time t for the transient and the 
corresponding positions of the SAR directional pattern for various transient time points. The 
number of the readings along the spacecraft trajectory chosen for calculation equals to 100. 
 

 
Fig. 2. Design parameters: Q-factor 22/   rQ , pulse duration  = 4; 1 – 5.0t , 2 – 

8.0t , 3 – t , 4 – 4.1t . 
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The above-mentioned charts show that “swinging” of the SAR directional pattern in respect 
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signal bandwidth and the bandpass filter. Thus, there is limited the accuracy of the direction 
finding according to the angular coordinates of the detected object. As modern SARs use 
ultra wideband signals, one should take into account the directional pattern time shift that 
constitutes the values comparable with the SAR beam width. 
Proceeding from the actual dynamic operation mode of the system with SAR, the obtained 
results make it possible to estimate the limit capabilities of building the synthetic antennae 
that apply the interference principle. 
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envelope curve shape will decrease the influence of transients on the SAR characteristic. 
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shaped sensing signal with the Gaussian envelope curve. The radio pulses with a sinus-
quadratic envelope curve are the characteristics similar to the given signal. Let’s consider 
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signal duration. 
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Figure 2 shows the calculated charts in nondimensional time t for the transient and the 
corresponding positions of the SAR directional pattern for various transient time points. The 
number of the readings along the spacecraft trajectory chosen for calculation equals to 100. 
 

 
Fig. 2. Design parameters: Q-factor 22/   rQ , pulse duration  = 4; 1 – 5.0t , 2 – 
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Fig. 3. Design parameters: Q-factor Q = r / 2 = 25, pulse duration  = 8; 1 – 5.0t , 2 – 

8.0t , 3 – t , 4 – 4.1t . 
 

 
Fig. 4. Design parameters: Q-factor Q = 5, pulse duration  = 8; 1 – 5.0t , 2 – 8.0t , 3 
– t , 4 – 4.1t . 
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We have fout(s) = fin(s)K(s) for the signal image at the BF output. 
Then, according to the FILT (Zolotarev, 1969; Zolotarev et al., 2004; Zolotarev et al., 2005), 
the transition into space of the originals gives a complex representation of the signal at the 
filter output )(tfout , the real signal will be found as )}(Im{)( tftf outout

 . 
Let’s represent the complex output signal as 
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where the BF response to a Monoharmonic signal is assumed as a normalizing function 

represented as )(
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cejKAtf  . )(tN  - the normalized complex envelope 

curve of the signal at the output of the BF under investigation, module )(tN  characterizes 

behavior of the signal envelope curve at the BF output and function )}(arg{)( tNt   
determines the current behavior of its phase. 
Concerning the plane wave front, the phase difference (caused by a wave arrival under the  
angle) for the base between the adjacent readings a, is determined with the expression 
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In fact,  will have increment (t) caused by the transient. It will result in dependence of 
real   on the time, i.e. 
 

)()( tt   ,  



cos2

)()(



a

tt . 

 
Figure 3, 4 shows the calculated charts in nondimensional time t for the transient and the 
corresponding positions of the SAR directional pattern for various time points of transients. 
The number of readings along the spacecraft trajectory chosen for calculation at the SAR 
formation equals to 1000, 2/a , 1.0  m. 
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Fig. 3. Design parameters: Q-factor Q = r / 2 = 25, pulse duration  = 8; 1 – 5.0t , 2 – 

8.0t , 3 – t , 4 – 4.1t . 
 

 
Fig. 4. Design parameters: Q-factor Q = 5, pulse duration  = 8; 1 – 5.0t , 2 – 8.0t , 3 
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Figure 3, 4 shows the calculated charts in nondimensional time t for the transient and the 
corresponding positions of the SAR directional pattern for various time points of transients. 
The number of readings along the spacecraft trajectory chosen for calculation at the SAR 
formation equals to 1000, 2/a , 1.0  m. 
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with the accuracy of up to a signal phase, make it possible to get reliable recommendations 
when building the high-precision ERS equipment that applies correlation processing of the 
signals. Figure 5 shows an example of a pseudorandom sequence (PRS) at the output of the 
correlation device for the ERS system. 
 

 
Fig. 5. Calculated parameters: element duration 10  ns, IF filter frequency 1 GHz, 
sequence length 31N , interference-to-signal ratio 10/ sn PP . 
 
In the system under implementation the PRS duration constitutes 1023 elements which 
allows a significant signal level increase above the noise. This permits (owing to the use of 
the polarity effects and a thin phase structure of the central peak of the correlation function) 
to obtain important additional information on the results of scanning the Earth. 
 

 
Fig. 6. 1 – ACF for the signal undistorted by the transient; 2 – CCF for the signals from the 
main path and the reference one; 3 – CF, the reference signal coincides (in its form) with the 
input signals that have passed through the filters. 

As it proceeds from the calculated charts (Figure 3, 4), the maximum of the SAR directional 
pattern turns out to be shifted for the bell-shaped (sinus-quadratic) pulse regarding the case 
of the transients’ absence. This shift depends on the filters Q-factor value and rises together 
with the increase of the signal bandwidth and also depends on the current time of the 
transient. With the flight altitude being 5000h m, this shift in the horizontal plane for the 
object that is being detected reaches considerable values of about several hundreds meters. 
That is why when designing radars with the SAR, it is necessary to pay serious attention to 
minimization of the error caused by the transients in the antenna circuit. 

 
4. Research of the effect produced by transients on the correlation properties 
of the signals with pseudorandom phase shift keying in the systems of the 
radar remote sensing of the Earth 

Significance of modern radar methods of sensing the Earth caused rapid development of the 
given scientific and engineering areas and their practical application in various research 
fields of the Earth geostructure. The most important parameters determining quality of 
these systems are the lock range in the plane that is perpendicular to the carrier path, 
narrowing of the directional pattern owing to the antenna aperture synthesis as well as the 
duration of a sensing radio pulse signal providing sequential scanning of the Earth surface 
along the narrow directional pattern of the synthetic antenna. Nowadays the range 
resolution of about ten centimeters (at sequential scanning) is treated as the upper reachable 
limit for the systems of the Earth Remote Sensing (ERS) (Zolotarev et al., 2006). In this case, 
the value of High Frequency (HF) filling of the radar signal is usually about 3-10 GHz. One 
of the most important requirements for the given systems is a high level of coherence of HF 
filling of the sensing signals that is required to form the narrow directional pattern of the 
antenna with a synthetic aperture. The second requirement proceeds from the necessity to 
ensure the signal level high increase over the interference signal when making the decision 
concerning the properties of the Earth surface sensed area. The above-mentioned 
requirement justifies formation of a pseudorandom sequence of the sensing radar signal 
with phase shift keying. In this case, the extraction of a low-level signal from the noise is 
carried out by the correlation device (Varakin, 1985) which is the “heart” of the ERS system. 
As the sensing signals are distinguished by high frequencies of HF filling, it is necessary to 
convert frequency (for their primary processing) with use of the intermediate frequency (IF) 
filters. In this case, the minimal filling frequency constitutes the value of around 1 GHz. 
With the current level of the processor equipment development, the given condition 
requires usage of the analogous IF filters at primary processing of the received signal. The 
unavoidable transients appearing in this case lead to distortion of the phase and envelope 
curve of each sequence element, and in the end they may result in a significant deterioration 
of the ERS system correlation device operation (Zolotarev et al., 2004; Zolotarev et al., 2005). 
However, laboriousness and inconvenience of obtaining the accurate solutions for analyzing 
the correlator operation with the filters resulted in almost complete lack of the research 
conducted in the given direction. This prevents from obtaining reliable recommendations 
when building the ERS system correlator and makes one decide in favor of the idealized 
model of its operation. 
The new results obtained in the given work on the basis of the fast inverse Laplace 
transform method (Zolotarev, 1969; Zolotarev, 2004) ensuring description of the transient 
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with the accuracy of up to a signal phase, make it possible to get reliable recommendations 
when building the high-precision ERS equipment that applies correlation processing of the 
signals. Figure 5 shows an example of a pseudorandom sequence (PRS) at the output of the 
correlation device for the ERS system. 
 

 
Fig. 5. Calculated parameters: element duration 10  ns, IF filter frequency 1 GHz, 
sequence length 31N , interference-to-signal ratio 10/ sn PP . 
 
In the system under implementation the PRS duration constitutes 1023 elements which 
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the polarity effects and a thin phase structure of the central peak of the correlation function) 
to obtain important additional information on the results of scanning the Earth. 
 

 
Fig. 6. 1 – ACF for the signal undistorted by the transient; 2 – CCF for the signals from the 
main path and the reference one; 3 – CF, the reference signal coincides (in its form) with the 
input signals that have passed through the filters. 
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sequence. Thus the range resolution of the ERS system becomes worse. If there is a 
considerable increase in the sequence length (in this case it is 1023 elements), the influence of 
the transients on the range resolution reduces significantly. However, as the research 
conducted revealed, the transients provide a considerable impact on the dynamic shift of the 
synthetic antenna directional pattern and therefore, there is a decrease in the accuracy of the 
object location on the Earth surface (Zolotarev et al., 2005; Zolotarev et al., 2006). 

 
5. Research of the influence of transients, non-equidistance of the taken 
readings, divergence of beams on the interferometric SAR characteristics 

There is under consideration a combined influence of the transients in the filters of the radar 
system selective circuits, non-equidistance of the taken readings and divergence of the 
beams at the distance up to the Earth surface reflecting elements that is comparable with a 
synthetic antenna aperture value. There is taken into account influence of the above-
mentioned factors on the resolution capability of the radar system for the Earth remote 
sensing. The transients lead to swinging of the SAR antenna pattern; the other indicated 
factors result in widening of the synthetic antenna pattern. There are given the 
corresponding relationships and diagrams that make it possible to take into account the 
influence of the above-mentioned factors and determine the ways for reduction of the 
destructive factors influence on the synthetic antenna pattern. 
The results of the work are original as a combined influence of the factors has not been 
under consideration before. According to the calculation results, the factors provide a rather 
considerable influence on the form of the antenna directional pattern that may result in 
serious errors when determining the characteristics of the extended object lying within the 
radar swath. 
The research conducted in the given work has revealed that it is impossible to develop the 
radar system with application of the interferometric SAR without an obligatory 
consideration of the combined influence of the indicated factors on the SAR ADP. 
1. Influence of the transients in the selective filters and the antenna-feeder section of the 
system path forming the SAR. In this case, there is under consideration the case of 
application of the identical filters in the selective path that is extremely complicated for 
analysis. To conduct research of the transients influence, there was applied the method 
developed in (Zolotarev, 1969; Zolotarev, 2004), providing a fast inverse Laplace transform 
at conducting research of the dynamic modes of oscillatory systems. As the systems of 
interferometric SAR formation are the phase ones, it is highly necessary to apply the given 
method, as it allows obtaining of the exact analytical expressions with the accuracy of up to 
a phase for the response of the system selective path to the radiofrequency pulse excitation. 
The band filter represented by 4 identical unilateral selective elements will be under 
consideration as a selective path. The transfer characteristic of the BF will be written down 
as a fractional rational function 
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One of the ways of building the correlation function for the correlator with filters is that a 
high frequency component is filtered after the signal correlation processing by means of 
frequency conversion. Figure 6 shows the output signal for the given case. Curves b and c 
correspond to the PRS passing through the detuned filter (the value of detuning equals to a 
half of the bandpass filter). 
The proper operation of the system may be ensured only with the transients taken into 
account, and in particular, when applying normalization of the levels subject to combination 
of the parameters of the filters and the signal. 
 

 
Fig. 7.  Correlation function for the sequence with a 1023-element length. 
 

 
Fig. 8. The correlation peak at the enlarged scale: 1 – ACF for the signal undistorted by 
transient; 2 – CCF for the signals from the main path and the reference one. 
As it proceeds from Figure 6, the transients provide a significant impact on the form of the 
signal at the correlator output in case of a relatively small number of the elements of 
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sequence. Thus the range resolution of the ERS system becomes worse. If there is a 
considerable increase in the sequence length (in this case it is 1023 elements), the influence of 
the transients on the range resolution reduces significantly. However, as the research 
conducted revealed, the transients provide a considerable impact on the dynamic shift of the 
synthetic antenna directional pattern and therefore, there is a decrease in the accuracy of the 
object location on the Earth surface (Zolotarev et al., 2005; Zolotarev et al., 2006). 
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considerable influence on the form of the antenna directional pattern that may result in 
serious errors when determining the characteristics of the extended object lying within the 
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The research conducted in the given work has revealed that it is impossible to develop the 
radar system with application of the interferometric SAR without an obligatory 
consideration of the combined influence of the indicated factors on the SAR ADP. 
1. Influence of the transients in the selective filters and the antenna-feeder section of the 
system path forming the SAR. In this case, there is under consideration the case of 
application of the identical filters in the selective path that is extremely complicated for 
analysis. To conduct research of the transients influence, there was applied the method 
developed in (Zolotarev, 1969; Zolotarev, 2004), providing a fast inverse Laplace transform 
at conducting research of the dynamic modes of oscillatory systems. As the systems of 
interferometric SAR formation are the phase ones, it is highly necessary to apply the given 
method, as it allows obtaining of the exact analytical expressions with the accuracy of up to 
a phase for the response of the system selective path to the radiofrequency pulse excitation. 
The band filter represented by 4 identical unilateral selective elements will be under 
consideration as a selective path. The transfer characteristic of the BF will be written down 
as a fractional rational function 
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One of the ways of building the correlation function for the correlator with filters is that a 
high frequency component is filtered after the signal correlation processing by means of 
frequency conversion. Figure 6 shows the output signal for the given case. Curves b and c 
correspond to the PRS passing through the detuned filter (the value of detuning equals to a 
half of the bandpass filter). 
The proper operation of the system may be ensured only with the transients taken into 
account, and in particular, when applying normalization of the levels subject to combination 
of the parameters of the filters and the signal. 
 

 
Fig. 7.  Correlation function for the sequence with a 1023-element length. 
 

 
Fig. 8. The correlation peak at the enlarged scale: 1 – ACF for the signal undistorted by 
transient; 2 – CCF for the signals from the main path and the reference one. 
As it proceeds from Figure 6, the transients provide a significant impact on the form of the 
signal at the correlator output in case of a relatively small number of the elements of 
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Fig. 9. Calculated parameters: Q-factor of selective system Q = r / 2 = 25, pulse duration 
 = 4; 1 — 20.t  ; 2 — 40.t  ; 3 — 60.t  ; 4 — 80.t   
 
As it proceeds from the calculated charts (Figure 9), the maximum of the SAR directional 
pattern turns out to be shifted regarding the case of the transients’ absence. This shift 
depends on the filters Q-factor value and rises together with the increase of the signal 
bandwidth and depends on the current time of the transient. When the flight altitude h = 
4,000 m, this shift in a horizontal plane for the detected object reaches considerable values of 
about several hundred meters. That is why when designing radars with the SAR, it is 
necessary to pay special attention to minimization of the error caused by the transients in 
the antenna circuits. 
 
2. Non-equidistance of the taken readings along the vehicle trajectory is an important factor 
that shall be taken into account at the SAR ADP formation. 
Now, unlike the previous point, we will consider the base between the adjacent readings as 
a random quantity corresponding to the Gaussian law. Let {ai} be a sequence of the distances 
between the adjacent readings of the reflected signal along the vehicle trajectory with the 
mean value equal to a and the dispersion . So, the difference of the phases between the 
adjacent readings may be determined with the following expression: 
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Then there is used an interferometric approach for building the SAR ADP, the number of 
the readings taken along the vehicle trajectory is assumed equal to 500 (Figure 10). For a 
sidelobe suppression (Figure 11) the amplitude distribution law along the aperture L is 
chosen in the following way I(z) = 1 + cos(2z/L), z  L/2, where assume equal to 0.4 
(Sazonov, 1988). 
 

Here damping constant  equals to a half of the bandpass of a separate selective section, r –
resonance frequency, let’s assume 2b . 
The sensing signal with a rectangular envelope is written down as 
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The image of a radio pulse with the c frequency and  duration 
 





















  





 s

c

c

c

c
in e

s
cossins

s
cossins

A)s(f 22220

, 
 c . 

 
We have fout(s) = fin(s)K(s) for the signal image at the BF output. 
In this case, according to the FILT (Zolotarev, 1969; Zolotarev, 2004), transition into the 
space of the originals gives a complex representation of the signal at the filter output 

)(tfout , the real signal may be found as )}(Im{)( tftf outout
 . 

Let’s represent the complex output signal as 
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where the BF response to a Monoharmonic signal is assumed as a normalizing function 

represented as )(
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curve of the signal at the output of the BF under investigation, module )(tN  characterizes 

behavior of the signal envelope curve at the BF output and function )}(arg{)( tNt   
determines the current behavior of its phase. 
Concerning the plane wave front, the phase difference (caused by a wave arrival under the  
angle) for the base between the adjacent readings a, is determined with the expression 
 



 sin2 a


. 

 
In fact,  will have the increment (t) caused by the transient (Zolotarev et al., 2006). It will 
result in dependence of the real   on the time, i.e. 
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Figure 9 shows the calculated charts of the corresponding positions of the SAR directional 
pattern for various time points of the transients. The number of the readings along the 
vehicle trajectory chosen for calculation at the SAR formation N = 500, 2/a , 1.0  m. 
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Fig. 9. Calculated parameters: Q-factor of selective system Q = r / 2 = 25, pulse duration 
 = 4; 1 — 20.t  ; 2 — 40.t  ; 3 — 60.t  ; 4 — 80.t   
 
As it proceeds from the calculated charts (Figure 9), the maximum of the SAR directional 
pattern turns out to be shifted regarding the case of the transients’ absence. This shift 
depends on the filters Q-factor value and rises together with the increase of the signal 
bandwidth and depends on the current time of the transient. When the flight altitude h = 
4,000 m, this shift in a horizontal plane for the detected object reaches considerable values of 
about several hundred meters. That is why when designing radars with the SAR, it is 
necessary to pay special attention to minimization of the error caused by the transients in 
the antenna circuits. 
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that shall be taken into account at the SAR ADP formation. 
Now, unlike the previous point, we will consider the base between the adjacent readings as 
a random quantity corresponding to the Gaussian law. Let {ai} be a sequence of the distances 
between the adjacent readings of the reflected signal along the vehicle trajectory with the 
mean value equal to a and the dispersion . So, the difference of the phases between the 
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We have fout(s) = fin(s)K(s) for the signal image at the BF output. 
In this case, according to the FILT (Zolotarev, 1969; Zolotarev, 2004), transition into the 
space of the originals gives a complex representation of the signal at the filter output 
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Figure 9 shows the calculated charts of the corresponding positions of the SAR directional 
pattern for various time points of the transients. The number of the readings along the 
vehicle trajectory chosen for calculation at the SAR formation N = 500, 2/a , 1.0  m. 
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parallelism of the beams. As a rule, the vehicles with a greater altitude have a greater 
velocity (for example, the low-altitude vehicles - up to 5 km, jet planes – about 10 km, 
medium-altitude satellites – about 1,500 km). Correspondingly, there is increase in the 
number of the readings taken within the same time interval that contributes to narrowing 
the SAR ADP. 
In case of taking into consideration out-of-parallelism of the beams, the difference of the 
phases between the signals of the adjacent readings is written down in the following way: 
 

 

















cos
)

h
atg(h)( 112 2 .                                      (7) 

 
Building of the SAR directional pattern shall be carried out as in the previous cases. 
 

 
Fig. 12. SAR ADP at N = 500; beam parallelism case — 1, out-of-parallelism case: 2 — 
vehicle’s altitude h = 4,000 m; 3 — h = 3,000 m 
 
One shall keep in mind that increase in the velocity altitude for maintaining the radio links 
energetics requires increase in the radiant power of the transmitter installed on the vehicle. 
The research conducted revealed that all the above-indicated factors provide a significant 
impact on the SAR ADP characteristics. It is worth mentioning that when designing the 
corresponding systems (for example, radar remote sensing of the Earth), it is necessary to 
pay special attention to minimization of the locating angle dynamic error by means of time 
shifting of the directional pattern. In this sense one should refer to the methods of 
compensation of the transients in the selective filters of the path. 
Another significant factor providing an impact on the SAR ADP is out-of-parallelism of the 
beams. Here one can come across some contradictions as at present a special attention is 
paid to the large-scale ground maps that require application of the flight vehicles at 
relatively low altitudes. 
Non-equidistance of the readings also provides an impact on the quality of the formed SAR 
ADP. That is why it is important to ensure the equipment building with a rigid timing of the 
reflected signal readings. 

 
Fig. 10. Interferometric SAR ADP. 
 

 
Fig. 11. Interferometric SAR ADP  with sidelobe suppression. 
 
The obtained charts show that the increase in dispersion for the distance between the 
adjacent readings results in a significant increase in the value of the SAR ADP sidelobes. As 
the research shows, to minimize the ADP sidelobe level, it is necessary to decrease the 
dispersion value. Introduction of the cosine amplitude distribution of the readings due to 
aperture (Figure 11) also contributes to it. 
 
3. A significant deterioration of the angle selectivity at the SAR directional pattern formation 
is determined by out-of-parallelism of the beams for each point of the sensed surface (Figure 
12). The vehicle altitude increase above the surface is also a means for reducing out-of-
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parallelism of the beams. As a rule, the vehicles with a greater altitude have a greater 
velocity (for example, the low-altitude vehicles - up to 5 km, jet planes – about 10 km, 
medium-altitude satellites – about 1,500 km). Correspondingly, there is increase in the 
number of the readings taken within the same time interval that contributes to narrowing 
the SAR ADP. 
In case of taking into consideration out-of-parallelism of the beams, the difference of the 
phases between the signals of the adjacent readings is written down in the following way: 
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paid to the large-scale ground maps that require application of the flight vehicles at 
relatively low altitudes. 
Non-equidistance of the readings also provides an impact on the quality of the formed SAR 
ADP. That is why it is important to ensure the equipment building with a rigid timing of the 
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Fig. 10. Interferometric SAR ADP. 
 

 
Fig. 11. Interferometric SAR ADP  with sidelobe suppression. 
 
The obtained charts show that the increase in dispersion for the distance between the 
adjacent readings results in a significant increase in the value of the SAR ADP sidelobes. As 
the research shows, to minimize the ADP sidelobe level, it is necessary to decrease the 
dispersion value. Introduction of the cosine amplitude distribution of the readings due to 
aperture (Figure 11) also contributes to it. 
 
3. A significant deterioration of the angle selectivity at the SAR directional pattern formation 
is determined by out-of-parallelism of the beams for each point of the sensed surface (Figure 
12). The vehicle altitude increase above the surface is also a means for reducing out-of-
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Let’s represent the complex output signal as 
 

)()()( tNtftf normout
  , 

 
where the BF response to a Monoharmonic signal is assumed as a normalizing function 

represented as )(
0 )()(   tj

cnorm
cejKAtf  , module of multiplicative function )(tN  

characterizes behavior of the signal envelope curve at the BF output and function 
)}(arg{)( tNt   determines the current behavior of its phase. 

Concerning the plane wave front, the phase difference (caused by the wave arrival under 
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Non-equidistance of the taken readings along the vehicle trajectory is an important factor 
that shall also be taken into account at the SAR ADP formation. 
Let’s consider the base between the adjacent readings as a random quantity corresponding 
to the Gaussian law. Let {ai} be sequence of the distances between the adjacent readings of 
the reflected signal along the vehicle trajectory with the mean value equal to a and the 
dispersion . So, the difference of the phases between the adjacent readings may be 
determined with the following expression: 
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A significant deterioration of the angle selectivity at the SAR directional pattern formation is 
conditioned by out-of-parallelism of the beams for each point of the sensed surface. The 
vehicle altitude increase above the surface is also a means for reducing out-of-parallelism of 
the beams. Correspondingly, there is increase in the number of readings taken for the same 
time interval that contributes to narrowing the SAR ADP. 
In case of taking into consideration out-of-parallelism of the beams, the difference of the 
phases between the signals of the adjacent readings is written down in the following way: 
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For a sidelobe suppression (Figure 13) the amplitude distribution law along the aperture L is 
chosen in the following way I(z) = 1 + cos(2z/L), z  L/2, where  is assumed equal to 
0.4 (Sazonov, 1988). 

6. Influence of a combination of factors on the character of synthetic aperture 
radar directional pattern: transients, non-equidistance of the readings and 
out-of-parallelism of the beams at the Earth remote sensing  

There is under consideration a combined influence of the transients in the filters of the radar 
system selective circuits, non-equidistance of the taken readings and divergence of the 
beams at the distance up to the Earth surface reflecting elements that is comparable with the 
synthetic antenna aperture value. The transients lead to swinging of the SAR antenna 
pattern; the other indicated factors result in widening of the synthetic antenna pattern and a 
sidelobe increase. 
A combined influence of the factors was not under consideration before, though they 
provide a rather considerable influence on the form of the antenna directional pattern which 
may result in serious errors when determining the characteristics of the extended object 
lying within the radar swath (Zolotarev et al., 2007). 
There is under investigation influence of the transients in the selective filters of the system 
path forming the SAR. In this case, there is under consideration application of the identical 
filters in the selective path that is extremely complicated for analysis. To conduct research of 
the transients influence, there was applied the method developed in (Zolotarev, 1969; 
Zolotarev, 2004), providing a fast inverse Laplace transform at conducting research of the 
dynamic modes of oscillatory systems. As there are interferometric SARs under 
investigation, it is necessary to apply the given method, as it allows obtaining of the 
analytical expressions with the accuracy of up to a phase for the response of the system 
selective path to the radiofrequency pulse excitation. 
The band filter represented by 4 identical unilateral selective elements will be under 
consideration as a selective path. The transfer characteristic of the BF will be written down 
as a fractional rational function 
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We will have fout(s) = fin(s)K(s) for the signal image at the BF output. According to the FILT 
(Zolotarev, 1969; Zolotarev, 2004), transition into the space of the originals gives a complex 
representation of the signal at the filter output )(tfout , the real signal can be found as 
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Let’s represent the complex output signal as 
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Non-equidistance of the taken readings along the vehicle trajectory is an important factor 
that shall also be taken into account at the SAR ADP formation. 
Let’s consider the base between the adjacent readings as a random quantity corresponding 
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7. Conclusion 

The conducted research revealed that transients provide the most critical influence on the 
SAR directional pattern. It is difficult to eliminate the dynamic error of the SAR ADP, and at 
a high flight altitude of modern vehicles even a small angle deviation results in a wrong 
estimation of the location of a surface-reflecting element. It is worth mentioning that when 
designing the corresponding systems (for example, a radar remote sensing of the Earth), 
special attention shall be paid to minimization of the dynamic error of the locating angle due 
to the directional pattern time shifting. 
Increase in the distance dispersion between the adjacent readings results in a significant 
increase in the SAR ADP sidelobes. That is why it is important to ensure equipment 
building with a rigid timing of the reflected signal readings. As research shows, to minimize 
the ADP sidelobe level, it is necessary to decrease the dispersion value. 
Another significant factor providing an impact on the SAR ADP is out-of-parallelism of the 
beams. At present a special attention is paid to the large-scale ground maps that require 
application of the flight vehicles at relatively low altitudes. In this case, the factor of out-of-
parallelism of the beams demonstrates itself more vividly. 
In general, when designing the SAR implementation systems, it is necessary to take into 
consideration a combined influence of all the discussed factors. 
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Fig. 14. Dynamic of the SAR directional pattern behavior when taking into account influence 
of the transients. The calculated parameters are chosen the same as the ones in Figure 13, but 
there is taken into account availability of 4 identical filters in the system selective path, Q-
factor of the selective system Q = r / 2 = 25, pulse duration  = 4. 

 
Fig. 15. In this figure there is taken into account a combined influence of the 3 indicated 
factors determining deformation of the SAR directional pattern:  = 0,25, vehicle altitude h = 
4,000 m. 
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